Thermal Fluid Characteristics for Pebble Bed HTGRs.

Size: px
Start display at page:

Download "Thermal Fluid Characteristics for Pebble Bed HTGRs."

Transcription

1 Thermal Fluid Characteristics for Pebble Bed HTGRs. Frederik Reitsma IAEA Course on High temperature Gas Cooled Reactor Technology Beijing, China Oct 22-26, 2012

2 Overview Background Key T/F parameters Key T/F characteristics Heat transfer modeling T/F modeling challenges Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 2

3 Background Analysis of thermal-fluid systems Often complicated because of the complex nature of fluid flow and heat transfer Characteristics of thermal-fluid systems Time-dependent Multidimensional Complex geometries Complicated boundary conditions Coupled transport phenomena Turbulent flow Structural and phase change Energy losses and irreversibilities Variety of energy sources Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 3

4 Basic principles Need to solve the governing equations in: Conservation of mass Conservation of momentum Conservation of energy Heat transfer Conduction Convection Radiation Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 4

5 Typical thermal-dynamic cycles The T/F conditions of the reactor are determined from the type of thermodynamic cycle used Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 5

6 Typical reactor T/F parameters Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 6

7 Key T/F characteristics Helium is a single phase coolant No phase change in the cycle to deal with Helium has excellent heat transfer properties Compressible gas Large ΔT across reactor inlet to outlet Requires a smaller coolant mass flow rate resulting in lower pumping requirements High coolant outlet temperatures Allows for higher thermal efficiency in power conversion cycles and process heat applications Small ΔT between fuel and coolant (~70 C) Large temperature margins in the fuel (~ C) Slow thermal transients Large thermal capacitance in the fuel and graphite combined with a low power density results in slow transients Pebble bed is one flow channel Strong coupling in the pebble bed does not require throttling of flow channels or adjusting for flow distribution through the core Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 7

8 Thermal fluid considerations In the Thermal-Fluid design of a pebble bed core, the following aspects need to be considered: Positions of heat generated Flow path design to keep the metallic components cool Identification of all intentional and unintentional flow paths Pressure zoning to prevent hot gas impingement Temperature stratification in the outlet flow Component Temperatures Needs to design both an active (forced flow) and passive (natural) heat transfer path Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 8

9 Heat generation input Heat is generated in both local (in the fuel) and non-local sources Heat sources: Fuel Reflectors Control rods Lateral restraints Core barrel Reactor vessel Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 9

10 Coolant flow design The coolant flow path design needs to consider the following aspects: cool the metallic structures where necessary reduce bypass flows provide a uniform temperature distribution mix the bypass flows to lower the thermal lower the thermal stratification in the outlet gas Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 10

11 Secondary flow paths Engineered Control rod cooling flow Central reflector cooling flow Pressurisation flow Leakage paths Across side reflector Inlet-to-outlet Along side reflector Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 11

12 Passive heat transfer path description Centre Reflector Pebble Bed Side Reflector Core Barrel RPV RCCS Citadel Conduction Radiation Conduction Conduction Radiation Convection Convection Conduction Radiation Conduction Radiation Convection Convection Conduction Convection Radiation Inherent post-shutdown decay heat removal is achievable through conduction, natural convection and radiation heat transfer. Design choices include core geometry, low power density and high thermal capacity of the core structures. Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 12

13 Effect of Different Residual Heat Removal Mechanisms on Peak Fuel Temperature Active and passive heat removal CCS is an active heat removal system Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 13

14 T/F Correlations Helium properties Given by KTA Calculation of the Material Properties of Helium Heat transfer from sphere to gas Given by KTA Heat Transfer in Spherical Fuel Elements Function of ΔT, sphere diameter, Pr, Re, coolant properties, bed porosity Pressure loss through a pebble bed Given by KTA Loss of Pressure through Friction in pebble bed cores Function of bed porosity, sphere diameter, coolant properties, bed height, bed diameter, mass flow Effective thermal conductivity of a pebble bed Given by Zehner-Schlünder correlation Function of bed porosity, sphere material properties which in turn is dependent on temperature and dose Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 14

15 Bypass flow Needs to predicts leak flows Use systems code like or detailed CFD Core flow Bypass Leakage LRD Pebble Bed CROD channel Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 15

16 Effects of modelling bypass flows Bypass flows could increase thermal gradients and thus stresses in components Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 16

17 Example of test facility and required Modelling Proximity refinement Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 17

18 Analysis Requirements (A typical picture needed) Reactor Power Profile Detailed Component Temperatures Reactor Neutronics and Thermal Fluid Analysis Reactor Flow Distribution and Temperatures Computational Fluid Dynamics (CFD) Fluid/Structure Interaction Structural Analysis Detailed Flow Distributions Cycle Flow Conditions Detailed Flow Distributions and Neutronic Data Thermal Fluid Analysis

19 Physical Phenomena FLUID FLOW Very hot helium gas under high pressure flows through an inlet, riser channels, leakage paths, inlet plenum, pebble bed, outlet plenum Frictional resistance (mainly in the pebble bed core, riser channels and leakage paths) cause pressure drops Heat transfer from the solid through convection (mainly in the pebble bed and riser channels) Internal heat redistribution in the gas through heat conduction and braided turbulent flow (in the pebble bed) Secondary helium circuit for cooling purposes SOLID HEAT TRANSFER Nuclear heat sources (mainly in the pebbles) Pebble-pebble heat transfer through solid and stagnant gas conduction, radiation, etc. Heat transfer in the reflector through conduction and radiation Heat transfer to the gas through convection (mainly in the pebble bed and riser channels, couples the solid and gas temperatures) Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 19

20 Heat transfer in the Pebble Bed Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 20

21 The Lumped Parameter Approach Could also be described as a macroscopic approach Uses a relatively coarse grid for the gas (as opposed to CFD simulations) The gas is treated as inviscid (no turbulence models, etc.) The porous medium approximation is used in the core Makes use of (non material property) empirical correlations (e.g. for frictional resistance and heat transfer via convection) because the flow field around each pebble is not resolved and the gas is inviscid Programs like RELAP, FLOWNEX and CFD programs using the porous medium approximation are also lumped parameter models Many of the earlier codes used for HTR-Pebble-Bed modeling is 2D, which enforces the lumped parameter approach In the core these programs predict different temperatures for the gas and solid, this the pseudo-heterogeneous approach (not to be confused with the term heterogeneous which refers to subdivided pebbles and kernels) Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 21

22 Unique features to take into account Fast reactivity transients kernel modelling In normal operation very small difference (normally not modelled at all) Essential to model the kernel temperature behaviour explicitly (with all the coatings) Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 22

23 Power [% of Nominal] Critical thermal heat transfer modelling Core Power (% of full) in PBMR400 / HTR-Modul after Large Reactivity Insertion Homog SS Triso - no gap Time [sec] Because the fuel is dispersed in a matrix, simplistic energy deposition assumptions can lead to large errors when modeling reactivity insertions (e.g., control rod withdrawal or water ingress) Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 23

24 Other pebble specific aspects to remember Different fuel spheres of different batches in multi-pass have: Different heat sources Different graphite thermal conductivity (temperature, fluence and irradiation T dependent) Thus different surface temperatures (may want to include kernel buffer layer gap and fission product buildup...) Variations in pebble packing fractions Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 24

25 Ultimate heat sink Significant amount of work was performed to find a passive Reactor Cavity Cooling System (RCCS). Different systems were investigated using coupled CFD models: Direct passive air cooled Indirect passive air cooled Direct passive water cooled Indirect active water cooled Direct active water cooled with boil-off Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 25

26 Summary Flow phenomena in a pebble bed is straightforward and well characterized Thermo physical properties of helium is well understood and characterized Modeling challenges stems from defining flow paths with loosely packed side reflector blocks that creates leak flow paths Modern modeling and calculation methods are used to calculate design inputs for components in lieu of measurements from operating plants Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 26

27 Materials and design shape the core neutronics and thermal flow characteristics Graphite is the moderator and structure, not metal and water high temperature solid moderator hard thermal spectrum fixed burnable poison possible large physical dimensions low power density Helium is the coolant not water Coolant is transparent to thermal neutrons Coolant has no phase change Fuel is carbide-clad, small ceramic, particles not metal clad UO 2 PyC/SiC carbide clad is primary fission product release barrier Fuel operates at high temperatures with wide margin to failure Double heterogeneity in physics modelling in fuel Heat removal path through core structures Modular requires metallic vessel For increased power (and lower maximum fuel temperature in DLOFC) - have to go to annular core Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 27

28 Source material used: HTGR Technology Course for the Nuclear Regulatory Commission, May 24 27, 2010 HTR/ECS 2002 High temperature Reactor School, 2002 Advanced Reactor Concepts Workshop, PHYSOR 2012 Coupling of neutronics and thermal-hydraulics codes for the simulation of transients of pebble bed HTR reactors, T. Rademer, W. BERNNAT and G. Lohnert, Paper C22, HTR2004 Oct 22-26, 2012 IAEA Course on High temperature Gas Cooled Reactor Technology 28

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor

Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Experiments Carried-out, in Progress and Planned at the HTR-10 Reactor Yuliang SUN Institute of Nuclear and New Energy Technology, Tsinghua University Beijing 100084, PR China 1 st Workshop on PBMR Coupled

More information

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory I. Introduction Benchmark Specification for HTGR Fuel Element Depletion Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory Anthony P. Ulses Office of Research U.S. Nuclear

More information

FLOW & HEAT TRANSFER IN A PACKED BED - TRANSIENT

FLOW & HEAT TRANSFER IN A PACKED BED - TRANSIENT FLOW & HEAT TRANSFER IN A PACKED BED - TRANSIENT This case study demonstrates the transient simulation of the heat transfer through a packed bed with no forced convection. This case study is applicable

More information

English - Or. English NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE. Benchmark Specification for HTGR Fuel Element Depletion

English - Or. English NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE. Benchmark Specification for HTGR Fuel Element Depletion Unclassified NEA/NSC/DOC(2009)13 NEA/NSC/DOC(2009)13 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 16-Jun-2009 English

More information

THE PATH TOWARDS A GERMANE SAFETY AND LICENSING APPROACH FOR MODULAR HIGH TEMPERATURE GAS-COOLED REACTORS ABSTRACT

THE PATH TOWARDS A GERMANE SAFETY AND LICENSING APPROACH FOR MODULAR HIGH TEMPERATURE GAS-COOLED REACTORS ABSTRACT THE PATH TOWARDS A GERMANE SAFETY AND LICENSING APPROACH FOR MODULAR HIGH TEMPERATURE GAS-COOLED REACTORS FREDERIK REITSMA International Atomic Energy Agency (IAEA) Vienna International Centre, PO Box

More information

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification

GT-MHR OVERVIEW. Presented to IEEE Subcommittee on Qualification GT-MHR OVERVIEW Presented to IEEE Subcommittee on Qualification Arkal Shenoy, Ph.D Director, Modular Helium Reactors General Atomics, San Diego April 2005 Shenoy@gat.com GT-MHR/LWR COMPARISON Item GT-MHR

More information

A STUDY ON THE STANDARD SYSTEM FOR HTGR POWER PLANTS

A STUDY ON THE STANDARD SYSTEM FOR HTGR POWER PLANTS SMiRT-23, Paper ID 636 A STUDY ON THE STANDARD SYSTEM FOR HTGR POWER PLANTS ABSTRACT Lihong Zhang *, Fu Li, Yujie Dong, and Jingyuan Qu Institute Nuclear and New Energy Technology Collaborative Innovation

More information

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018 DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM Yujie DONG INET, Tsinghua University, China January 24, 2018 Meet the Presenter Dr. Dong is a Professor in Nuclear Engineering at the Tsinghua University, Beijing,

More information

Economic potential of modular reactor nuclear power plants based on the Chinese HTR-PM project

Economic potential of modular reactor nuclear power plants based on the Chinese HTR-PM project Available online at www.sciencedirect.com Nuclear Engineering and Design 237 (2007) 2265 2274 Economic potential of modular reactor nuclear power plants based on the Chinese HTR-PM project Zuoyi Zhang,

More information

Safety Issues for High Temperature Gas Reactors. Andrew C. Kadak Professor of the Practice

Safety Issues for High Temperature Gas Reactors. Andrew C. Kadak Professor of the Practice Safety Issues for High Temperature Gas Reactors Andrew C. Kadak Professor of the Practice Major Questions That Need Good Technical Answers Fuel Performance Normal operational performance Transient performance

More information

Development of a DesignStage PRA for the Xe-100

Development of a DesignStage PRA for the Xe-100 Development of a DesignStage PRA for the Xe-100 PSA 2017 Pittsburgh, PA, September 24 28, 2017 Alex Huning* Karl Fleming Session: Non-LWR Safety September 27th, 1:30 3:10pm 2017 X Energy, LLC, all rights

More information

Concept and technology status of HTR for industrial nuclear cogeneration

Concept and technology status of HTR for industrial nuclear cogeneration Concept and technology status of HTR for industrial nuclear cogeneration D. Hittner AREVA NP Process heat needs from industry Steam networks In situ heating HTR, GFR 800 C VHTR > 800 C MSR 600 C SFR, LFR,

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

Advanced Reactors Mission, History and Perspectives

Advanced Reactors Mission, History and Perspectives wwwinlgov Advanced Reactors Mission, History and Perspectives Phillip Finck, PhD Idaho National Laboratory Senior Scientific Advisor June 17, 2016 A Brief History 1942 CP1 First Controlled Chain Reaction

More information

ANTARES The AREVA HTR-VHTR Design PL A N TS

ANTARES The AREVA HTR-VHTR Design PL A N TS PL A N TS ANTARES The AREVA HTR-VHTR Design The world leader in nuclear power plant design and construction powers the development of a new generation of nuclear plant German Test facility for HTR Materials

More information

An Effective Methodology for Thermal-Hydraulics Analysis of a VHTR Core and Fuel Elements

An Effective Methodology for Thermal-Hydraulics Analysis of a VHTR Core and Fuel Elements University of New Mexico UNM Digital Repository Nuclear Engineering ETDs School of Engineering ETDs 7-11-2013 An Effective Methodology for Thermal-Hydraulics Analysis of a VHTR Core and Fuel Elements Boyce

More information

PEBBLE FUEL DESIGN FOR THE PB-FHR

PEBBLE FUEL DESIGN FOR THE PB-FHR PEBBLE FUEL DESIGN FOR THE PB-FHR Anselmo T. Cisneros, Raluca O. Scarlat, Micheal R. Laufer, Ehud Greenspan, and Per F. Peterson University of California Berkeley 4155 Etcheverry Hall MC 1720, Berkeley,

More information

System Analysis of Pb-Bi Cooled Fast Reactor PEACER

System Analysis of Pb-Bi Cooled Fast Reactor PEACER OE-INES-1 International Symposium on Innovative Nuclear Energy Systems for Sustainable Development of the World Tokyo, Japan, October 31 - November 4, 2004 System Analysis of Pb-Bi ooled Fast Reactor PEAER

More information

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium

Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN Paper 1079 Application of CANDLE Burnup to Block-Type High Temperature Gas Cooled Reactor for Incinerating Weapon Grade Plutonium Yasunori Ohoka * and Hiroshi

More information

Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System Atom Indonesia Vol. 41 No. 2 (2015) 53-60 Atom Indonesia Journal homepage: http://aij.batan.go.id Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System L.P. Rodriguez 1*,

More information

NGNP Point Design Results of the Initial Neutronics and Thermal- Hydraulic Assessments During FY-03

NGNP Point Design Results of the Initial Neutronics and Thermal- Hydraulic Assessments During FY-03 INEEL/EXT-03-00870 Revision 1 NGNP Point Design Results of the Initial Neutronics and Thermal- Hydraulic Assessments During FY-03 September 2003 Idaho National Engineering and Environmental Laboratory

More information

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen ADVANCED GAS COOLED REACTORS Tim McKeen ADI Limited, Fredericton, Canada Keywords: Advanced Gas Cooled Reactors, Reactor Core, Fuel Elements, Control Rods Contents 1. Introduction 1.1. Magnox Reactors

More information

LEU Conversion of the University of Wisconsin Nuclear Reactor

LEU Conversion of the University of Wisconsin Nuclear Reactor LEU Conversion of the University of Wisconsin Nuclear Reactor Paul Wilson U. Wisconsin-Madison Russian-American Symposium on the Conversion of Research Reactors to Low Enriched Uranium Fuel 8-10 June 2011

More information

Small Modular Reactors

Small Modular Reactors Small Modular Reactors Nuclear Institute Joint Nuclear Energy CDT Event, York University, 24 May 2017 Kevin Hesketh Senior Research Fellow Scope To highlight generic design issues from SMRs But not to

More information

Small Modular Reactor Materials R&D Program Materials Coordination Webinar

Small Modular Reactor Materials R&D Program Materials Coordination Webinar Small Modular Reactor Materials R&D Program Materials Coordination Webinar William Corwin Office of Advanced Reactor Technologies U.S. Department of Energy August 2012 SMRs Are Strong Contenders to Augment

More information

Effect of U-9Mo/Al Fuel Densities on Neutronic and Steady State Thermal Hydraulic Parameters of MTR Type Research Reactor

Effect of U-9Mo/Al Fuel Densities on Neutronic and Steady State Thermal Hydraulic Parameters of MTR Type Research Reactor International Conference on Nuclear Energy Technologies and Sciences (2015), Volume 2016 Conference Paper Effect of U-9Mo/Al Fuel Densities on Neutronic and Steady State Thermal Hydraulic Parameters of

More information

High Temperature GasCooled Reactors Lessons. Learned Applicable to the Next Generation Nuclear Plant. J. M. Beck C. B. Garcia L. F.

High Temperature GasCooled Reactors Lessons. Learned Applicable to the Next Generation Nuclear Plant. J. M. Beck C. B. Garcia L. F. INL/EXT-10-19329 High Temperature GasCooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant J. M. Beck C. B. Garcia L. F. Pincock September 2010 INL/EXT-10-19329 High Temperature

More information

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS M. Clemente a, S. Langenbuch a, P. Kusnetzov b, I. Stenbock b a) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Garching, E-mail:

More information

CAREM: AN INNOVATIVE-INTEGRATED PWR

CAREM: AN INNOVATIVE-INTEGRATED PWR 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 2005 SMiRT18-S01-2 CAREM: AN INNOVATIVE-INTEGRATED PWR Rubén MAZZI INVAP Nuclear Projects

More information

GAS-COOLED FAST REACTORS DHR SYSTEMS, PRELIMINARY DESIGN AND THERMAL- HYDRAULIC STUDIES

GAS-COOLED FAST REACTORS DHR SYSTEMS, PRELIMINARY DESIGN AND THERMAL- HYDRAULIC STUDIES GAS-COOLED FAST REACTORS DHR SYSTEMS, PRELIMINARY DESIGN AND THERMAL- HYDRAULIC STUDIES J.Y. MALO *, C. BASSI, T. CADIOU, M. BLANC, A. MESSIÉ 1, A. TOSELLO and P. DUMAZ CEA/DEN/DER/SESI, CEA Cadarache

More information

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT TAKAKAZU TAKIZUKA

REACTOR TECHNOLOGY DEVELOPMENT UNDER THE HTTR PROJECT TAKAKAZU TAKIZUKA ELSEVIER www.elsevier.com/locate/pnucene Progress in Nuclear Energy; Vol. 47, No. 1-4, pp. 283-291,2005 Available online at www.sciencedirect.com 2005 Elsevier Ltd. All rights reserved s =, E N e E ~)

More information

Very-High-Temperature Reactor System

Very-High-Temperature Reactor System Atomic Energy Society of Japan Journal of NUCLEAR SCIENCE and TECHNOLOGY (JNST) Very-High-Temperature Reactor System Ing. S. BOUČEK 1, Ing. R. VESECKÝ 2 1 Faculty of Electrical Engineering, Czech Technical

More information

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading

ANTARES Application for Cogeneration. Oil Recovery from Bitumen and Upgrading ANTARES Application for Cogeneration Oil Recovery from Bitumen and Upgrading Michel Lecomte Houria Younsi (ENSEM) Jérome Gosset (ENSMP) ENC Conference Versailles 11-14 December 2005 1 Presentation Outline

More information

Next and Last Generation of Nuclear Power Plants Paul Howarth

Next and Last Generation of Nuclear Power Plants Paul Howarth Next and Last Generation of Nuclear Power Plants Paul Howarth Exec Director, Dalton Nuclear Institute IMechE Branch Meeting Jan 2009 Order of Service Introduction to status of advanced systems The 3 contending

More information

1. INTRODUCTION. Corresponding author. Received December 18, 2008 Accepted for Publication April 9, 2009

1. INTRODUCTION. Corresponding author.   Received December 18, 2008 Accepted for Publication April 9, 2009 DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE SEUNG-HWAN SEONG *, TAE-HO LEE and SEONG-O KIM

More information

A Research Reactor Simulator for Operators Training and Teaching. Abstract

A Research Reactor Simulator for Operators Training and Teaching. Abstract Organized and hosted by the Canadian Nuclear Society. Vancouver, BC, Canada. 2006 September 10-14 A Research Reactor Simulator for Operators Training and Teaching Ricardo Pinto de Carvalho and José Rubens

More information

Development of a Data Standard for V&V of Software to Calculate Nuclear System Thermal-Hydraulic Behavior

Development of a Data Standard for V&V of Software to Calculate Nuclear System Thermal-Hydraulic Behavior Development of a Data Standard for V&V of Software to Calculate Nuclear System Thermal-Hydraulic Behavior www.inl.gov Richard R. Schultz & Edwin Harvego (INL) Ryan Crane (ASME) Topics addressed Development

More information

Evolution of Nuclear Energy Systems

Evolution of Nuclear Energy Systems ALLEGRO Project 2 Evolution of Nuclear Energy Systems 3 General objectives Gas cooled fast reactors (GFR) represent one of the three European candidate fast reactor types. Allegro Gas Fast Reactor (GFR)

More information

CFD Analysis of Decay Heat Removal Scenarios of the Lead cooled ELSY reactor. Michael Böttcher

CFD Analysis of Decay Heat Removal Scenarios of the Lead cooled ELSY reactor. Michael Böttcher CFD Analysis of Decay Heat Removal Scenarios of the Lead cooled ELSY reactor Michael Böttcher Institut für Neutronenphysik und Reaktortechnik (INR), Karlsruher Institut für Technologie, KIT Abstract In

More information

High Temperature Gas-Cooled Reactors Now More Than Ever!

High Temperature Gas-Cooled Reactors Now More Than Ever! High Temperature Gas-Cooled Reactors Now More Than Ever! Dr. Finis SOUTHWORTH Chief Technology Officer AREVA Inc. On behalf of the NGNP Industrial Alliance, LLC Washington DC Section ANS Rockville, MD

More information

LFR core design. for prevention & mitigation of severe accidents

LFR core design. for prevention & mitigation of severe accidents LFR core design for prevention & mitigation of severe accidents Giacomo Grasso UTFISSM Technical Unit for Reactor Safety and Fuel Cycle Methods Coordinator of Core Design Work Package in the EURATOM FP7

More information

Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries International Nuclear Energy Volume 21, Article ID 918567, 18 pages http://dx.doi.org/1.1155/21/918567 Research Article A Small-Sized HTGR System Design for Multiple Heat Applications for Developing Countries

More information

Uncertainty of the pebble flow to power peak factor

Uncertainty of the pebble flow to power peak factor IAEA Technical Meeting on Re-evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor (HTR) Fuel and Structural Materials Uncertainty of the pebble flow to power

More information

Jülich, Author: Peter Pohl

Jülich, Author: Peter Pohl Author: Peter Pohl Jülich, 18.08.2005 Pl/pi. OUR HTGR MANIFESTO Motivation In a world of new nuclear concepts, a profusion of ideas, and many newcomers to the HTGR, the author, having been chiefly involved

More information

THERMO-HYDRAULIC BEHAVIOUR OF COOLANT IN NUCLEAR REACTOR VVER-440 UNDER REFUELLING CONDITIONS

THERMO-HYDRAULIC BEHAVIOUR OF COOLANT IN NUCLEAR REACTOR VVER-440 UNDER REFUELLING CONDITIONS Journal of MECHANICAL ENGINEERING Strojnícky časopis, VOL 67 (2017), NO 1, 87-92 THERMO-HYDRAULIC BEHAVIOUR OF COOLANT IN NUCLEAR REACTOR VVER-440 UNDER REFUELLING CONDITIONS PAULECH Juraj 1, KUTIŠ Vladimír

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document 19.39 In-Vessel Retention of Molten Core Debris 19.39.1 Introduction In-vessel retention of molten core debris through water cooling of the external surface of the reactor vessel is a severe accident management

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Fluoride Salt Cooled High Temperature Reactors

Fluoride Salt Cooled High Temperature Reactors Fluoride Salt Cooled High Temperature Reactors Workshop on Advanced Reactors PHYSOR 2012 Knoxville, TN April 15, 2012 David Holcomb HolcombDE@ornl.gov FHRs Combine Desirable Attributes From Other Reactor

More information

A NEUTRONIC FEASIBILITY STUDY OF THE AP1000 DESIGN LOADED WITH FULLY CERAMIC MICRO-ENCAPSULATED FUEL

A NEUTRONIC FEASIBILITY STUDY OF THE AP1000 DESIGN LOADED WITH FULLY CERAMIC MICRO-ENCAPSULATED FUEL Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013) A NEUTRONIC FEASIBILITY STUDY OF THE AP1000 DESIGN LOADED WITH FULLY CERAMIC

More information

INL/EXT Key Design Requirements for the High Temperature Gascooled Reactor Nuclear Heat Supply System

INL/EXT Key Design Requirements for the High Temperature Gascooled Reactor Nuclear Heat Supply System INL/EXT-10-19887 Key Design Requirements for the High Temperature Gascooled Reactor Nuclear Heat Supply System September 2010 DISCLAIMER This information was prepared as an account of work sponsored by

More information

Small Modular Reactors & waste management issues

Small Modular Reactors & waste management issues Small Modular Reactors & waste management issues 8 th May 2014, Bucharest International Framework For Nuclear Energy Cooperation Infrastructure development working group meeting Dan Mathers Business Leader

More information

CAREM Prototype Construction and Licensing Status

CAREM Prototype Construction and Licensing Status IAEA-CN-164-5S01 CAREM Prototype Construction and Licensing Status H. Boado Magan a, D. F. Delmastro b, M. Markiewicz b, E. Lopasso b, F. Diez, M. Giménez b, A. Rauschert b, S. Halpert a, M. Chocrón c,

More information

High Temperature Gas Cooled Reactors

High Temperature Gas Cooled Reactors High Temperature Gas Cooled Reactors Frederik Reitsma Gas-Cooled Reactors Technology Nuclear Power Technology Development Section Division of Nuclear Power Department of Nuclear Energy 11th GIF-IAEA Interface

More information

Reactor Technology --- Materials, Fuel and Safety

Reactor Technology --- Materials, Fuel and Safety Reactor Technology --- Materials, Fuel and Safety UCT EEE4101F / EEE4103F April 2015 Emeritus Professor David Aschman Based on lectures by Dr Tony Williams Beznau NPP, Switzerland, 2 x 365 MWe Westinghouse,

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

Design Study of Innovative Simplified Small Pebble Bed Reactor

Design Study of Innovative Simplified Small Pebble Bed Reactor Design Study of Innovative Simplified Small Pebble Bed Reactor Dwi Irwanto 1* and Toru OBARA 2 1 Department of Nuclear Engineering, Tokyo Institute of Technology 2 Research Laboratory for Nuclear Reactors,

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code

Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code Journal of Physical Science, Vol. 26(2), 73 87, 2015 Modelling an Unprotected Loss-of-Flow Accident in Research Reactors using the Eureka-2/Rr Code Badrun Nahar Hamid, 1* Md. Altaf Hossen, 1 Sheikh Md.

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

Multiphase Flow Dynamics 4

Multiphase Flow Dynamics 4 Multiphase Flow Dynamics 4 Nuclear Thermal Hydraulics von Nikolay I Kolev 1. Auflage Multiphase Flow Dynamics 4 Kolev schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

More information

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Safety Of Boiling Water Reactors - Javier Ortiz-Villafuerte and Yassin A. Hassan

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Safety Of Boiling Water Reactors - Javier Ortiz-Villafuerte and Yassin A. Hassan SAFETY OF BOILING WATER REACTORS Javier Ortiz-Villafuerte Departamento de Sistemas Nucleares, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, 52045, México. Department of

More information

HTGR PROJECTS IN CHINA

HTGR PROJECTS IN CHINA HTGR PROJECTS IN CHINA ZONGXIN WU and SUYUAN YU * Institute of Nuclear and New Energy Technology, Tsinghua University Beijing, 100084, China * Corresponding author. E-mail : suyuan@tsinghua.edu.cn Received

More information

CONTENTS. ACRONYMS... v. 1. AN ESSENTIAL ROLE FOR NUCLEAR ENERGY Meeting the Challenges of Nuclear Energy s Essential Role...

CONTENTS. ACRONYMS... v. 1. AN ESSENTIAL ROLE FOR NUCLEAR ENERGY Meeting the Challenges of Nuclear Energy s Essential Role... 1 2 iii CONTENTS ACRONYMS... v 1. AN ESSENTIAL ROLE FOR NUCLEAR ENERGY... 1 1.1 Meeting the Challenges of Nuclear Energy s Essential Role... 1 2. FINDINGS OF THE ROADMAP... 3 2.1 Generation IV Nuclear

More information

The "Réacteur Jules Horowitz" : The preliminary design

The Réacteur Jules Horowitz : The preliminary design The "Réacteur Jules Horowitz" : The preliminary design A. BALLAGNY - S. FRACHET CEA Direction des Réacteurs Nucléaires 31, 33 Rue de la Fédération 75752 PARIS Cédex 15 J.L. MINGUET - C. LEYDIER TECHNICATOME

More information

NUCLEAR FUEL AND REACTOR

NUCLEAR FUEL AND REACTOR NUCLEAR FUEL AND REACTOR 1 Introduction 3 2 Scope of application 3 3 Requirements for the reactor and reactivity control systems 4 3.1 Structural compatibility of reactor and nuclear fuel 4 3.2 Reactivity

More information

CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID

CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID CFD ANALYSIS OF MINI CHANNEL HEAT EXCHANGER USING WATER AS A WORKING FLUID Bhavesh K. Patel 1, Ravi S. Engineer 2, Mehulkumar H. Tandel 3 1 Assistant Professor, Mechanical Engineering, Government Engineering

More information

HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan

HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan HTR reactors within Polish strategy of nuclear energy development Cooperation with Japan Taiju SHIBATA Senior Principal Researcher Group Leader, International Joint Research Group HTGR Hydrogen and Heat

More information

EU Designs and Efforts on ITER HCPB TBM

EU Designs and Efforts on ITER HCPB TBM EU Designs and Efforts on ITER HCPB TBM L.V. Boccaccini Contribution: S. Hermsmeyer and R. Meyder ITER TBM Project Meeting at UCLA February 23-25, 2004 UCLA, February 23rd, 2004 EU DEMO and TBM L.V. Boccaccini

More information

40-Ton Articulated Truck Cooling System Modelling Using STAR-CCM+

40-Ton Articulated Truck Cooling System Modelling Using STAR-CCM+ 40-Ton Articulated Truck Cooling System Modelling Using STAR-CCM+ Gary Yu, Martin Timmins and Mario Ciaffarafa DENSO Marston Ltd, Bradford, BD17 7JR, UK DENSO Marston Founded in 1904 Acquired by DENSO

More information

Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs

Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs October 27, 2014 H. Hoshi, R. Kojo, A. Hotta, M. Hirano Regulatory Standard and Research Department, Secretariat of Nuclear

More information

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1 U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION NUREG-0800 (Formerly NUREG-75/087) 4.3 NUCLEAR DESIGN REVIEW RESPONSIBILITIES Primary - Core Performance Branch

More information

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Ade Gafar Abdullah 1,2,*, Zaki Su ud 2, Rizal Kurniadi 2, Neny Kurniasih 2, Yanti Yulianti 2,3 1 Electrical

More information

BARC BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA. A.K. Nayak, PhD

BARC BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA. A.K. Nayak, PhD BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA A.K. Nayak, PhD Reactor Engineering Division Bhabha Atomic Research Centre Trombay, Mumbai 400085, India INPRO Consultancy Meeting

More information

Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)

Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP) ORNL/TM-2010/163 Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP) August 2010 Prepared by David L. Moses DOCUMENT AVAILABILITY Reports produced after January

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea HALDEN S IN-PILE TEST TECHNOLOGY FOR DEMONSTRATING THE ENHANCED SAFETY OF WATER REACTOR FUELS Margaret A. McGrath 1 1 OECD Halden Reactor Project, IFE: Os Alle 5/P.O. Box 173, 1751 Halden, Norway, Margaret.mcgrath@ife.no

More information

EXPERIMENTAL ACTIVITIES FOR GSI-191

EXPERIMENTAL ACTIVITIES FOR GSI-191 INTRODUCTION Generic Safety Issue 191 (GSI-191), Assessment of Debris Accumulation on PWR Sump Performance, can be categorized into the head loss through a debris bed on the strainer (the upstream effect)

More information

Passive Safety Features for Small Modular Reactors

Passive Safety Features for Small Modular Reactors International Seminars on Planetary Emergencies Erice, Sicily -- August 2010 Passive Safety Features for Small Modular Reactors D. T. Ingersoll, Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge,

More information

COLD NEUTRON SOURCE AT CMRR

COLD NEUTRON SOURCE AT CMRR COLD NEUTRON SOURCE AT CMRR Hu Chunming Shen Wende, Dai Junlong, Liu Xiankun ( 1 ) Vadim Kouzminov, Victor Mityukhlyaev / 2 /, Anatoli Serebrov, Arcady Zakharov ( 3 ) ABSTRACT As an effective means to

More information

Full MOX Core Design in ABWR

Full MOX Core Design in ABWR GENES4/ANP3, Sep. -9, 3, Kyoto, JAPAN Paper 8 Full MOX Core Design in ABWR Toshiteru Ihara *, Takaaki Mochida, Sadayuki Izutsu 3 and Shingo Fujimaki 3 Nuclear Power Department, Electric Power Development

More information

A Compact Transportable Nuclear Power Reactor

A Compact Transportable Nuclear Power Reactor A Compact Transportable Nuclear Power Reactor Can be rapidly deployed to remote locations to support oil recovery, disaster relief and basic infrastructure Paul Farrell and James Powell 1 Brookhaven Technology

More information

CFD analysis of coolant flow in the nuclear reactor VVER440

CFD analysis of coolant flow in the nuclear reactor VVER440 Applied and Computational Mechanics 1 (27) 499-56 CFD analysis of coolant flow in the nuclear reactor VVER44 J. Katolický a, *, M. Bláha b, J. Frelich b, M. Jícha a a Brno University of Technology, Brno,

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 ) 22 32

Available online at  ScienceDirect. Energy Procedia 71 (2015 ) 22 32 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 22 32 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 Particle-type Burnable Poisons for

More information

Dry storage systems and aging management

Dry storage systems and aging management Dry storage systems and aging management H.Issard, AREVA TN, France IAEA TM 47934 LESSONS LEARNED IN SPENT FUEL MANAGEMENT Vienna, 8-10 July 2014 AREVA TN Summary Dry storage systems and AREVA Experience

More information

Compact, Deployable Reactors for Power and Fuel in Remote Regions

Compact, Deployable Reactors for Power and Fuel in Remote Regions Compact, Deployable Reactors for Power and Fuel in Remote Regions James R. Powell and J. Paul Farrell Radix Corporation, Long Island, New York Presented by Jerry M. Cuttler Dunedin Energy Systems, LLC

More information

Controlled management of a severe accident

Controlled management of a severe accident July 2015 Considerations concerning the strategy of corium retention in the reactor vessel Foreword Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents.

More information

Abstract. Nomenclature. A Porosity function for momentum equations L Latent heat of melting (J/Kg) c Specific heat (J/kg-K) s Liquid fraction

Abstract. Nomenclature. A Porosity function for momentum equations L Latent heat of melting (J/Kg) c Specific heat (J/kg-K) s Liquid fraction Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids Abstract Priyanshu Goyal, Anu Dutta,

More information

Thermal Hydraulic Simulations of the Angra 2 PWR

Thermal Hydraulic Simulations of the Angra 2 PWR Thermal Hydraulic Simulations of the Angra 2 PWR Javier González-Mantecón, Antonella Lombardi Costa, Maria Auxiliadora Fortini Veloso, Claubia Pereira, Patrícia Amélia de Lima Reis, Adolfo Romero Hamers,

More information

Materials Challenges for the Supercritical Water-cooled Reactor (SCWR)

Materials Challenges for the Supercritical Water-cooled Reactor (SCWR) Materials Challenges for the Supercritical Water-cooled Reactor (SCWR) http://ottawapolicyresearch.ca sbaindur@ottawapolicyresearch.ca CNS 2007 Saint John, NB. Outline of Talk Introduction Talk aimed at

More information

Reactivity requirements can be broken down into several areas:

Reactivity requirements can be broken down into several areas: Reactivity Control (1) Reactivity Requirements Reactivity requirements can be broken down into several areas: (A) Sufficient initial reactivity should be installed to offset the depletion of U 235 and

More information

Maintenance Concept for Modular Blankets in Compact Stellarator Power Plants

Maintenance Concept for Modular Blankets in Compact Stellarator Power Plants Maintenance Concept for Modular Blankets in Compact Stellarator Power Plants Siegfried Malang With contributions of Laila A. EL-Guebaly Xueren Wang ARIES Meeting UCSD, San Diego, January 8-10, 2003 Overview

More information

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code Journal of Physics: Conference Series OPEN ACCESS Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code To cite this article: F De Rosa et al 2014 J. Phys.: Conf. Ser. 547

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

PREFACE COATED PARTICLE FUELS

PREFACE COATED PARTICLE FUELS PREFACE COATED PARTICLE FUELS T. D. GULDEN General Atomic Company, P.O. Box 81608, San Diego, California 92138 H. NICKEL Kernforschungsanlage, Jiilich, Federal Republic of Germany Received April 14, 1977

More information

Opportunities for International Collaboration on Modular High Temperature Reactors

Opportunities for International Collaboration on Modular High Temperature Reactors Opportunities for International Collaboration on Modular High Temperature Reactors Matt Richards, 1 Chris Hamilton, 1 Donald Hoffman, 2 Kazuhiko Kunitomi, 3 Min-Hwan Kim, 4 Michael A. Fütterer, 5 Grzegorz

More information

Fusion-Fission Hybrid Systems

Fusion-Fission Hybrid Systems Fusion-Fission Hybrid Systems Yousry Gohar Argonne National Laboratory 9700 South Cass Avenue, Argonne, IL 60439 Fusion-Fission Hybrids Workshop Gaithersburg, Maryland September 30 - October 2, 2009 Fusion-Fission

More information

Presentation by: Andrew Murphy Chicago-Kent College of Law

Presentation by: Andrew Murphy Chicago-Kent College of Law Presentation by: Andrew Murphy Chicago-Kent College of Law The concept that things are made up of small particles dates back to ancient Greek philosophers In fact, the term atom comes from the Greek word

More information

Involvement of EDF in the Halden Reactor Project: a long-term cooperation in R&D

Involvement of EDF in the Halden Reactor Project: a long-term cooperation in R&D Involvement of EDF in the Halden Reactor Project: a long-term cooperation in R&D Atoms For the Future 2016 Session: Nuclear Fuel 28/06/2016 Alexandre Lavoil alexandre.lavoil@edf.fr EDF SEPTEN/CN OUTLINE

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors Journal of Physics: Conference Series PAPER OPEN ACCESS Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors To cite this article: Zaki Su'ud et al 2017 J. Phys.: Conf. Ser. 799 012013 View

More information

The European nuclear industry and research approach for innovation in nuclear energy. Dominique Hittner Framatome-ANP EPS, Paris, 3/10/2003

The European nuclear industry and research approach for innovation in nuclear energy. Dominique Hittner Framatome-ANP EPS, Paris, 3/10/2003 The European nuclear industry and research approach for innovation in nuclear energy Dominique Hittner Framatome-ANP EPS, Paris, 3/10/2003 Contents The EPS and MIT approach The approach of the European

More information