Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece

Size: px
Start display at page:

Download "Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece"

Transcription

1 Chapter 54 Ecosystems PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece

2 Overview: Ecosystems, Energy, and Matter An ecosystem consists of all the organisms living in a community, as well as the abiotic factors with which they interact Ecosystems range from a microcosm, such as an aquarium, to a large area such as a lake or forest

3

4 Regardless of an ecosystem s size, its dynamics involve two main processes: energy flow and chemical cycling Energy flows through ecosystems while matter cycles within them

5 Concept 54.1: Ecosystem ecology emphasizes energy flow and chemical cycling Ecologists view ecosystems as transformers of energy and processors of matter

6 Ecosystems and Physical Laws Laws of physics and chemistry apply to ecosystems, particularly energy flow Energy is conserved but degraded to heat during ecosystem processes

7 Trophic Relationships Energy and nutrients pass from primary producers (autotrophs) to primary consumers (herbivores) and then to secondary consumers (carnivores) Energy flows through an ecosystem, entering as light and exiting as heat Nutrients cycle within an ecosystem

8 LE 54-2 Tertiary consumers Microorganisms and other detritivores Secondary consumers Detritus Primary consumers Primary producers Heat Key Chemical cycling Energy flow Sun

9 Decomposition Decomposition connects all trophic levels Detritivores, mainly bacteria and fungi, recycle essential chemical elements by decomposing organic material and returning elements to inorganic reservoirs

10

11 Concept 54.2: Physical and chemical factors limit primary production in ecosystems Primary production in an ecosystem is the amount of light energy converted to chemical energy by autotrophs during a given time period

12 Ecosystem Energy Budgets The extent of photosynthetic production sets the spending limit for an ecosystem s energy budget

13 The Global Energy Budget The amount of solar radiation reaching the Earth s surface limits photosynthetic output of ecosystems Only a small fraction of solar energy actually strikes photosynthetic organisms

14 Gross and Net Primary Production Total primary production is known as the ecosystem s gross primary production (GPP) Net primary production (NPP) is GPP minus energy used by primary producers for respiration Only NPP is available to consumers Ecosystems vary greatly in net primary production and contribution to the total NPP on Earth

15 LE 54-4 Open ocean Continental shelf Estuary Algal beds and reefs Upwelling zones Extreme desert, rock, sand, ice Desert and semidesert scrub Tropical rain forest Savanna Cultivated land Boreal forest (taiga) Temperate grassland Woodland and shrubland Tundra Tropical seasonal forest Temperate deciduous forest Temperate evergreen forest Swamp and marsh Lake and stream Key Marine Terrestrial Freshwater (on continents) ,500 2,500 2,200 1,600 1,200 1,300 2, ,000 1,500 2,000 2,500 Percentage of Earth s surface area Average net primary production (g/m 2 /yr) Percentage of Earth s net primary production

16 Overall, terrestrial ecosystems contribute about two-thirds of global NPP Marine ecosystems contribute about one-third

17 LE 54-5 North Pole 60 N 30 N Equator 30 S 60 S South Pole W 60 W 0 60 E 120 E 180

18 Primary Production in Marine and Freshwater Ecosystems In marine and freshwater ecosystems, both light and nutrients control primary production

19 Light Limitation Depth of light penetration affects primary production in the photic zone of an ocean or lake

20 Nutrient Limitation More than light, nutrients limit primary production in geographic regions of the ocean and in lakes

21 A limiting nutrient is the element that must be added for production to increase in an area Nitrogen and phosphorous are typically the nutrients that most often limit marine production Nutrient enrichment experiments confirmed that nitrogen was limiting phytoplankton growth in an area of the ocean

22 LE Shinnecock Bay Moriches Bay 2 Atlantic Ocean Coast of Long Island, New York Phytoplankton (millions of cells/ml) Phytoplankton Inorganic phosphorus 5 Great South Bay Station number Moriches Bay Inorganic phosphorus (µm atoms/l) Shinnecock Bay Phytoplankton biomass and phosphorus concentration Phytoplankton (millions of cells per ml) Ammonium enriched Phosphate enriched Unenriched control 0 Starting algal density Station number Phytoplankton response to nutrient enrichment

23 Experiments in another ocean region showed that iron limited primary production

24

25 The addition of large amounts of nutrients to lakes has a wide range of ecological impacts In some areas, sewage runoff has caused eutrophication of lakes, which can lead to loss of most fish species

26

27 Primary Production in Terrestrial and Wetland Ecosystems In terrestrial and wetland ecosystems, climatic factors such as temperature and moisture affect primary production on a large scale Actual evapotranspiration can represent the contrast between wet and dry climates Actual evapotranspiration is the water annually transpired by plants and evaporated from a landscape It is related to net primary production

28 LE 54-8 Net primary production (g/m 2 /yr) 3,000 2,000 1, Desert shrubland Arctic tundra Temperate forest Mountain coniferous forest Temperate grassland Tropical forest 500 1,000 1,500 Actual evapotranspiration (mm/yr)

29 On a more local scale, a soil nutrient is often the limiting factor in primary production

30 LE June July N + P N only Control P only August 1980 Live, above-ground biomass (g dry wt/m 2 )

31 Concept 54.3: Energy transfer between trophic levels is usually less than 20% efficient Secondary production of an ecosystem is the amount of chemical energy in food converted to new biomass during a given period of time

32 Production Efficiency When a caterpillar feeds on a leaf, only about onesixth of the leaf s energy is used for secondary production An organism s production efficiency is the fraction of energy stored in food that is not used for respiration

33 LE Plant material eaten by caterpillar 200 J Feces 100 J 33 J 67 J Cellular respiration Growth (new biomass)

34 Trophic Efficiency and Ecological Pyramids Trophic efficiency is the percentage of production transferred from one trophic level to the next It usually ranges from 5% to 20%

35 Pyramids of Production A pyramid of net production represents the loss of energy with each transfer in a food chain

36 LE Tertiary consumers 10 J Secondary consumers 100 J Primary consumers 1,000 J Primary producers 10,000 J 1,000,000 J of sunlight

37 Pyramids of Biomass In a biomass pyramid, each tier represents the dry weight of all organisms in one trophic level Most biomass pyramids show a sharp decrease at successively higher trophic levels

38 LE 54-12a Trophic level Dry weight (g/m 2 ) Tertiary consumers Secondary consumers Primary consumers Primary producers Most biomass pyramids show a sharp decrease in biomass at successively higher trophic levels, as illustrated by data from a bog at Silver Springs, Florida.

39 Certain aquatic ecosystems have inverted biomass pyramids: Primary consumers outweigh the producers

40 LE 54-12b Trophic level Dry weight (g/m 2 ) Primary consumers (zooplankton) Primary producers (phytoplankton) 21 4 In some aquatic ecosystems, such as the English Channel, a small standing crop of primary producers (phytoplankton) supports a larger standing crop of primary consumers (zooplankton).

41 Pyramids of Numbers A pyramid of numbers represents the number of individual organisms in each trophic level

42 LE Trophic level Number of individual organisms Tertiary consumers Secondary consumers Primary consumers Primary producers 3 354, ,624 5,842,424

43 Dynamics of energy flow in ecosystems have important implications for the human population Eating meat is a relatively inefficient way of tapping photosynthetic production Worldwide agriculture could feed many more people if humans ate only plant material

44 LE Trophic level Secondary consumers Primary consumers Primary producers

45 The Green World Hypothesis Most terrestrial ecosystems have large standing crops despite the large numbers of herbivores

46

47 The green world hypothesis proposes several factors that keep herbivores in check: Plant defenses Limited availability of essential nutrients Abiotic factors Intraspecific competition Interspecific interactions

48 Concept 54.4: Biological and geochemical processes move nutrients between organic and inorganic parts of the ecosystem Life depends on recycling chemical elements Nutrient circuits in ecosystems involve biotic and abiotic components and are often called biogeochemical cycles

49 A General Model of Chemical Cycling Gaseous carbon, oxygen, sulfur, and nitrogen occur in the atmosphere and cycle globally Less mobile elements such as phosphorus, potassium, and calcium cycle on a more local level A model of nutrient cycling includes main reservoirs of elements and processes that transfer elements between reservoirs All elements cycle between organic and inorganic reservoirs

50 LE Reservoir a Reservoir b Organic materials available as nutrients Living organisms, detritus Fossilization Organic materials unavailable as nutrients Coal, oil, peat Assimilation, photosynthesis Respiration, decomposition, excretion Burning of fossil fuels Reservoir c Inorganic materials available as nutrients Weathering, erosion Reservoir d Inorganic materials unavailable as nutrients Atmosphere, soil, water Formation of sedimentary rock Minerals in rocks

51 Biogeochemical Cycles In studying cycling of water, carbon, nitrogen, and phosphorus, ecologists focus on four factors: 1. Each chemical s biological importance 2. Forms in which each chemical is available or used by organisms 3. Major reservoirs for each chemical 4. Key processes driving movement of each chemical through its cycle

52 LE 54-17a Solar energy Transport over land Net movement of water vapor by wind Precipitation over ocean Evaporation from ocean Evapotranspiration from land Precipitation over land Runoff and groundwater Percolation through soil

53 LE 54-17b CO 2 in atmosphere Photosynthesis Cellular respiration Burning of fossil fuels and wood Carbon compounds in water Higher-level Primary consumers consumers Detritus Decomposition

54 LE 54-17c N 2 in atmosphere Assimilation Nitrogen-fixing bacteria in root nodules of legumes Decomposers Ammonification Nitrification NO 3 Denitrifying bacteria Nitrifying bacteria NH 3 Nitrogen-fixing soil bacteria NH 4 + Nitrifying bacteria NO 2

55 LE 54-17d Rain Geologic uplift Weathering of rocks Runoff Plants Sedimentation Soil Leaching Plant uptake of PO 4 3 Consumption Decomposition

56 Decomposition and Nutrient Cycling Rates Decomposers (detritivores) play a key role in the general pattern of chemical cycling Rates at which nutrients cycle in different ecosystems vary greatly, mostly as a result of differing rates of decomposition

57 LE Consumers Producers Decomposers Nutrients available to producers Abiotic reservoir Geologic processes

58 Vegetation and Nutrient Cycling: The Hubbard Brook Experimental Forest Vegetation strongly regulates nutrient cycling Research projects monitor ecosystem dynamics over long periods The Hubbard Brook Experimental Forest has been used to study nutrient cycling in a forest ecosystem since 1963

59 The research team constructed a dam on the site to monitor loss of water and minerals

60 LE Concrete dams and weirs built across streams at the bottom of watersheds enabled researchers to monitor the outflow of water and nutrients from the ecosystem. One watershed was clear cut to study the effects of the loss of vegetation on drainage and nutrient cycling. Nitrate concentration in runoff (mg/l) Completion of tree cutting Deforested Control The concentration of nitrate in runoff from the deforested watershed was 60 times greater than in a control (unlogged) watershed.

61 In one experiment, the trees in one valley were cut down, and the valley was sprayed with herbicides

62 Net losses of water and minerals were studied and found to be greater than in an undisturbed area These results showed how human activity can affect ecosystems

63 Concept 54.5: The human population is disrupting chemical cycles throughout the biosphere As the human population has grown, our activities have disrupted the trophic structure, energy flow, and chemical cycling of many ecosystems

64 Nutrient Enrichment In addition to transporting nutrients from one location to another, humans have added new materials, some of them toxins, to ecosystems

65 Agriculture and Nitrogen Cycling Agriculture removes nutrients from ecosystems that would ordinarily be cycled back into the soil Nitrogen is the main nutrient lost through agriculture; thus, agriculture greatly impacts the nitrogen cycle Industrially produced fertilizer is typically used to replace lost nitrogen, but effects on an ecosystem can be harmful

66

67 Contamination of Aquatic Ecosystems Critical load for a nutrient is the amount that plants can absorb without damaging the ecosystem When excess nutrients are added to an ecosystem, the critical load is exceeded Remaining nutrients can contaminate groundwater and freshwater and marine ecosystems Sewage runoff causes cultural eutrophication, excessive algal growth that can greatly harm freshwater ecosystems

68 Acid Precipitation Combustion of fossil fuels is the main cause of acid precipitation North American and European ecosystems downwind from industrial regions have been damaged by rain and snow containing nitric and sulfuric acid

69 LE Europe North America

70 By the year 2000, acid precipitation affected the entire contiguous United States Environmental regulations and new technologies have allowed many developed countries to reduce sulfur dioxide emissions

71 LE Field ph <

72 Toxins in the Environment Humans release many toxic chemicals, including synthetics previously unknown to nature In some cases, harmful substances persist for long periods in an ecosystem One reason toxins are harmful is that they become more concentrated in successive trophic levels In biological magnification, toxins concentrate at higher trophic levels, where biomass is lower

73 LE Herring gull eggs 124 ppm Concentration of PCBs Smelt 1.04 ppm Lake trout 4.83 ppm Zooplankton ppm Phytoplankton ppm

74 Atmospheric Carbon Dioxide One pressing problem caused by human activities is the rising level of atmospheric carbon dioxide

75 Rising Atmospheric CO 2 Due to the burning of fossil fuels and other human activities, the concentration of atmospheric CO 2 has been steadily increasing

76 How Elevated CO 2 Affects Forest Ecology: The FACTS-I Experiment The FACTS-I experiment is testing how elevated CO 2 influences tree growth, carbon concentration in soils, and other factors over a ten-year period

77

78 The Greenhouse Effect and Global Warming The greenhouse effect caused by atmospheric CO 2 keeps Earth s surface at a habitable temperature Increased levels of atmospheric CO 2 are magnifying the greenhouse effect, which could cause global warming and climatic change

79 Depletion of Atmospheric Ozone Life on Earth is protected from damaging effects of UV radiation by a protective layer or ozone molecules in the atmosphere Satellite studies suggest that the ozone layer has been gradually thinning since 1975

80 LE Ozone layer thickness (Dobson units) Year (Average for the month of October)

81 Destruction of atmospheric ozone probably results from chlorine-releasing pollutants produced by human activity

82 LE Chlorine atoms Chlorine from CFCs interacts with ozone (O 3 ), forming chlorine monoxide (CIO) and oxygen (O 2 ). O 2 Chlorine O 3 CIO O 2 Sunlight causes Cl 2 O 2 to break down into O 2 and free chlorine atoms. The chlorine atoms can begin the cycle again. Sunlight Cl 2 O 2 CIO Two CIO molecules react, forming chlorine peroxide (Cl 2 O 2 ).

83 Scientists first described an ozone hole over Antarctica in 1985; it has increased in size as ozone depletion has increased

84 LE October 1979 October 2000

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Chapter 3 Ecosystem Ecology. Reading Questions

Chapter 3 Ecosystem Ecology. Reading Questions APES Name 22 Module 7 Chapter 3 Ecosystem Ecology Monday Tuesday Wednesday Thursday Friday 17 Module 6 The Movement of Energy 18 Ecosystem Field Walk 19 Module 7 The 23 Module 8 Responses to Disturbances

More information

Chapter 36: Population Growth

Chapter 36: Population Growth Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

Niche and Habitat a species plays in a community. What it does all

Niche and Habitat a species plays in a community. What it does all Ecosystem Dynamics What is ecology? Study of the interactions between parts of the environment Connections in nature Abiotic: soil comp. Biotic: and Abiotic and Biotic factors factors in the environment

More information

The Law of Conservation of Matter. Matter cannot be created nor destroyed Matter only changes form There is no away

The Law of Conservation of Matter. Matter cannot be created nor destroyed Matter only changes form There is no away Review Items Ecosystem Structure The Law of Conservation of Matter Matter cannot be created nor destroyed Matter only changes form There is no away Laws Governing Energy Changes First Law of Thermodynamics

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere Slide 1 / 40 1 ll of Earth's water, land, and atmosphere within which life exists is known as a Population ommunity iome iosphere Slide 2 / 40 2 ll the plants, animals, fungi living in a pond make up a

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter Chapter 2 Chapter 2 Cycles of Matter 2.1 The Role of Water in Cycles of Matter 2.2 Biogeochemical Cycles 2.3 the Balance of the Matter and Energy Exchange 2.1 The Role of Water in Cycles of Matter In this

More information

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area

Climate: describes the average condition, including temperature and precipitation, over long periods in a given area Ch. 6 - Biomes Section 6.1: Defining Biomes Biome: a group of ecosystems that share similar biotic and abiotic conditions, large region characterized by a specific type of climate, plants, and animals

More information

Multiple Choice. Name Class Date

Multiple Choice. Name Class Date Chapter 3 The Biosphere Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following descriptions about the

More information

Chapter 22: Energy in the Ecosystem

Chapter 22: Energy in the Ecosystem Chapter 22: Energy in the Ecosystem What is ecology? Global human issues Physical limits Ecosystems Organisms Populations Species Interactions Communities Energy flows and nutrients cycle C, H 2 0, P,

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions.

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Ecology What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Biotic Factors Living things in the environment. Animals Plants Fungi Protists Bacteria Abiotic

More information

Biology Ecology Unit Chapter 2 Study Guide

Biology Ecology Unit Chapter 2 Study Guide Name: Date: Block: Biology Ecology Unit Chapter 2 Study Guide 1. Directions: Use each of the terms below just once to complete the passage. Ecology Biotic factors Nonliving Environments Atmosphere Humans

More information

Dynamics of Ecosystems. Chapter 57

Dynamics of Ecosystems. Chapter 57 Dynamics of Ecosystems Chapter 57 1 The Water Cycle Nutrient Cycles Trophic Levels Primary Productivity Outline The Energy in Food Chains Ecological Pyramids Interactions Among Trophic Levels Species Richness

More information

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16 NOTEBOOK Table of Contents: 9. Properties of Water 9/20/16 10. Water & Carbon Cycles 9/20/16 NOTEBOOK Assignment Page(s): Agenda: Tuesday, September 20, 2016 Properties of Water Water & Carbon Cycles 1.

More information

Keystone Biology Remediation B4: Ecology

Keystone Biology Remediation B4: Ecology Keystone Biology Remediation B4: Ecology Assessment Anchors: to describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1) to describe

More information

Food web Diagram that shows how food chains are linked together in a complex feeding relationship

Food web Diagram that shows how food chains are linked together in a complex feeding relationship Energy Flow Food web Diagram that shows how food chains are linked together in a complex feeding relationship The food web has a number of advantages over a food chains including: More than one producer

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

The Cycling of Matter

The Cycling of Matter Section 2 Objectives Describe the short-term and long-term process of the carbon cycle. Identify one way that humans are affecting the carbon cycle. List the three stages of the nitrogen cycle. Describe

More information

Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move!

Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move! The Carbon Cycle Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move! Carbon moves from the atmosphere to plants.

More information

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS:

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS: CHAPTER 2 BLM 1-19 The Carbon Cycle Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-20 The Carbon Cycle Concept Map Goal Use this page to make a concept map about the carbon cycle. What

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

Unsaved Test, Version: 1 1

Unsaved Test, Version: 1 1 Name: Key Concepts Select the term that best completes the statement. A. abiotic B. light C. biotic D. organisms E. ecology F. soil G. ecosystem H. temperature I. factors J. water Date: 1. A(n) is made

More information

BIOMES. Living World

BIOMES. Living World BIOMES Living World Biomes Biomes are large regions of the world with distinctive climate, wildlife and vegetation. They are divided by terrestrial (land) or aquatic biomes. Terrestrial Biomes Terrestrial

More information

Aquatic Communities Aquatic communities can be classified as freshwater

Aquatic Communities Aquatic communities can be classified as freshwater Aquatic Communities Aquatic communities can be classified as freshwater or saltwater. The two sets of communities interact and are joined by the water cycle. Gravity eventually returns all fresh water

More information

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System.

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System. Earth as a System Table of Contents Section 1 Earth: A Unique Planet Section 2 Energy in the Earth System Section 3 Ecology Section 1 Earth: A Unique Planet Objectives Describe the size and shape of Earth.

More information

Cycles in the Biosphere MiniLab: Test for Nitrates Assessment. Essential Questions. Review Vocabulary. Reading Preview

Cycles in the Biosphere MiniLab: Test for Nitrates Assessment. Essential Questions. Review Vocabulary. Reading Preview Cycles in the Biosphere MiniLab: Test for Nitrates Assessment 11 Reading Preview Essential Questions How do nutrients move through biotic and abiotic parts of an ecosystem? Why are nutrients important

More information

Downloaded from

Downloaded from Class X: Biology Chapter 15: Our environment Chapter Notes Key learning: 1) Our environment is composed of various biotic and abiotic factors which interact with each other. 2) Human activities have a

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Skills Worksheet Directed Reading Section: What Is an Ecosystem? In the space provided, write the letter of the description that best matches the term or phrase. 1. ecology 2. habitat 3. community 4. ecosystem

More information

The nitrogen cycle is an example of a. carbohydrate cycle c. hydrologic cycle b. atmospheric cycle d. sedimentary cycle

The nitrogen cycle is an example of a. carbohydrate cycle c. hydrologic cycle b. atmospheric cycle d. sedimentary cycle Environmental Science Semester Exam Study Guide Chapter 4: Ecology 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Ecology is the study of how a. organisms interact with each other and their nonliving environment b.

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE Water Vapor: A GHG Lesson 3 page 1 of 2 Water Vapor: A GHG Water vapor in our atmosphere is an important greenhouse gas (GHG). On a cloudy day we can see evidence of the amount of water vapor in our atmosphere.

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Ecology Study of interactions that take place between organisms and their environments Living things are affected by nonliving and living parts of the environment Abiotic factors:

More information

Centerville Sr. High School Curriculum Mapping Environmental Science, Advanced (submitted by Matt Osborne) 1 st Nine Weeks

Centerville Sr. High School Curriculum Mapping Environmental Science, Advanced (submitted by Matt Osborne) 1 st Nine Weeks Days Unit 1, Unit 1, Unit 1, Indiana Standard(s) Env 1.22 Env 2.2 Env 1.17 Env 1.10 Centerville Sr. High School Curriculum Mapping Environmental Science, Advanced (submitted by Matt Osborne) 1 st Nine

More information

What is Ecology? ECOLOGY is a branch of biology that studies ecosystems.

What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. 4.2 Energy Flow Through an Ecosystem Food Chains, Food Webs, and Ecological Pyramids What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. Ecological Terminology Environment Ecology

More information

Climate and Biodiversity

Climate and Biodiversity LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 7 Climate and Biodiversity Core Case Study: A Temperate Deciduous Forest Why do forests grow in some areas and not others? Climate Tropical

More information

Water cycles through ecosystems.

Water cycles through ecosystems. Water cycles through ecosystems. Water is stored on Earth s surface in lakes, rivers, and oceans. Water is found underground, filling the spaces between soil particles and cracks in rocks. Large amounts

More information

Principles of Ecology

Principles of Ecology Principles of Ecology 1 Keystone Anchors Describe ecological levels of organization in the biosphere. o Describe the levels of ecological organization (i.e., organism, population, community, ecosystem,

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

15.1 Life in the Earth System. KEY CONCEPT The biosphere is one of Earth s four interconnected systems.

15.1 Life in the Earth System. KEY CONCEPT The biosphere is one of Earth s four interconnected systems. 15.1 Life in the Earth System KEY CONCEPT The biosphere is one of Earth s four interconnected systems. 15.1 Life in the Earth System The biosphere is the portion of Earth that is inhabited by life. The

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

Chapter 34. The Biosphere: An introduction to Earth s Diverse Environments

Chapter 34. The Biosphere: An introduction to Earth s Diverse Environments Chapter 34 The Biosphere: An introduction to Earth s Diverse Environments PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009

More information

Energy Transfer p

Energy Transfer p Energy Transfer 22-1 p. 415-419 Essential Questions 1. Identify and describe the main types of producers and consumers in an ecosystem. 2. Calculate the amount of energy stored in biomass transferred from

More information

1/2/2015. Is the size of a population that can be supported indefinitely by the resources of a given ecosystem

1/2/2015. Is the size of a population that can be supported indefinitely by the resources of a given ecosystem Review Video Is the size of a population that can be supported indefinitely by the resources of a given ecosystem Beyond this carrying capacity, no additional individuals of a population can be supported

More information

Biosphere & Biogeochemical Cycles

Biosphere & Biogeochemical Cycles Biosphere & Biogeochemical Cycles Biosphere Sphere of living organisms All the regions of the earth and its atmosphere in which living organisms are found or can live. Interacts with all the other spheres

More information

AP Environmental Science

AP Environmental Science AP Environmental Science Types of aquatic life zones MARINE Estuaries coral reefs mangrove swamps neritic zone pelagic zone FRESHWATER lakes and ponds streams and rivers wetlands Distribution of aquatic

More information

Ecology is the study of interactions among organisms and between organisms and their physical environment

Ecology is the study of interactions among organisms and between organisms and their physical environment Chapter 3 and 4 Study Guide Ecology is the study of interactions among organisms and between organisms and their physical environment This includes both biotic and abiotic factors- biotic factors are living

More information

12. How could forest fire change populations in the ecosystem? Populations could be destroyed or have to relocate,

12. How could forest fire change populations in the ecosystem? Populations could be destroyed or have to relocate, Name: Ecology Review Sheet 15-16 Directions: This review should be completed by using your Interactive Notebook (IAN). This review is worth +5 points on your Ecology test, if it is completed and turned

More information

Overview of Climate Science

Overview of Climate Science 1 Overview of Climate Science This overview of climate science is written to support the development of a K- 14 climate education plan for the Pacific Islands Climate Education Partnership (PCEP). It aims

More information

2018 ECOLOGY YEAR 2 (2018) PART ONE GENERAL PRINCIPLES OF ECOLOGY

2018 ECOLOGY YEAR 2 (2018) PART ONE GENERAL PRINCIPLES OF ECOLOGY 2018 ECOLOGY YEAR 2 (2018) PART ONE GENERAL PRINCIPLES OF ECOLOGY KAREN L. LANCOUR National Rules Committee Chairman Life Science DISCLAIMER - This presentation was prepared using draft rules. There may

More information

Ecosystem Ecology. Community (biotic factors) interacts with abiotic factors

Ecosystem Ecology. Community (biotic factors) interacts with abiotic factors Ecosystem Ecology Community (biotic factors) interacts with abiotic factors Objectives Compare the processes of energy flow and chemical cycling as they relate to ecosystem dynamics. Define and list examples

More information

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings.

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings. 2.2 Notes Objectives Compare an open system with a closed system. List the characteristics of Earth s four major spheres. Identify the two main sources of energy in the Earth system. Identify four processes

More information

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

MLA Header: coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed MLA Header: s worksheet Please answer the following using the words in the text box. Carbon coal oil natural gas burning of fossil fuels volcanoes photosynthesis respiration ocean sugar greenhouse decayed

More information

Principles of Terrestrial Ecosystem Ecology

Principles of Terrestrial Ecosystem Ecology E Stuart Chapin III Pamela A. Matson Harold A. Mooney Principles of Terrestrial Ecosystem Ecology Illustrated by Melissa C. Chapin With 199 Illustrations Teehnische Un.fversitSt Darmstadt FACHBEREIGH 10

More information

79. Cone- bearing trees are characteristic of the a) taiga. b) tropical rain forest. c) temperate deciduous forest. d) savanna.

79. Cone- bearing trees are characteristic of the a) taiga. b) tropical rain forest. c) temperate deciduous forest. d) savanna. 73. The portion of a species resource (biological, chemical, and physical) which a particular species actually utilizes is known as the: a) Reserve niche b) Conservation niche c) Basic niche d) Fundamental

More information

The Earth s Ecosystems: Biomes, Energy Flow, and Change. I. Biomes and Ecosystems are divisions of the biosphere.

The Earth s Ecosystems: Biomes, Energy Flow, and Change. I. Biomes and Ecosystems are divisions of the biosphere. The Earth s Ecosystems: Biomes, Energy Flow, and Change I. Biomes and Ecosystems are divisions of the biosphere. A. Biomes: Biomes are the largest divisions of the biosphere. in other words biomes have

More information

Food Chains, Food Webs, and Bioaccumulation Background

Food Chains, Food Webs, and Bioaccumulation Background Food Chains, Food Webs, and Bioaccumulation Background Introduction Every living organism needs energy to sustain life. Organisms within a community depend on one another for food to create energy. This

More information

SCIENCE 1206 UNIT 1 Sustainability of Ecosystems. NAME: Corner Brook Regional High

SCIENCE 1206 UNIT 1 Sustainability of Ecosystems. NAME: Corner Brook Regional High SCIENCE 1206 UNIT 1 Sustainability of Ecosystems NAME: Corner Brook Regional High SCIENCE 1206 Unit 1 Handout 1 SUSTAINABILITY and PARADIGM SHIFTS ECOLOGY: What are some natural resources, both RENEWABLE

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

REVIEW 8: ECOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 8: ECOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 8: ECOLOGY UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. Populations group of individuals of same species living in same area (size, density, distribution/dispersion)

More information

Autotrophs (producers) Photosynthetic Organisms: Photosynthesis. Chemosynthe*c bacteria

Autotrophs (producers) Photosynthetic Organisms: Photosynthesis. Chemosynthe*c bacteria ALL living things need energy for growth, reproduction, metabolic reactions. Energy can t be created or destroyed only changed into different forms. SUN is source of all energy. Autotrophs (producers):

More information

09/11/2013 LEARNING OBJECTIVES BIOMES TOPIC 27 WE LIVE IN ECOSYSTEMS

09/11/2013 LEARNING OBJECTIVES BIOMES TOPIC 27 WE LIVE IN ECOSYSTEMS Elevation (ft) 09/11/2013 TOPIC 27 WE LIVE IN ECOSYSTEMS LEARNING OBJECTIVES CEB Textbook Chapter 18, pages 380-391 and Chapter 20, pages 437-443 Mastering Biology, Chapters 18 and 20 Define the term biome

More information

Cycling and Biogeochemical Transformations of N, P and S

Cycling and Biogeochemical Transformations of N, P and S Cycling and Biogeochemical Transformations of N, P and S OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 6 1. Nitrogen cycle Soil nitrogen cycle Nitrification Emissions of N gases from soils

More information

Foundation Course. Semester 3 THREATS TO THE ENVIRONMENT

Foundation Course. Semester 3 THREATS TO THE ENVIRONMENT Foundation Course Semester 3 THREATS TO THE ENVIRONMENT INTRODUCTION Atmosphere, water and soil are the most important components of environment in which we live. Atmospheric factors like rainfall, humidity,

More information

Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical, & biological processes

Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical, & biological processes OPEN Wetland Ecology Lectures 14-15-16 Wetland Biogeochemistry What is biogeochemical cycling? Transport & Transformation of chemicals in an ecosystem, involving numerous interrelated physical, chemical,

More information

Unit 6: Ecosystems Module 15: Ecological Principles

Unit 6: Ecosystems Module 15: Ecological Principles Unit 6: Ecosystems Module 15: Ecological Principles NC Essential Standard: 2.1 Analyze the interdependence of living organisms within their environments Did you know The water you poop in today is the

More information

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi. ITROGE CYCLE Big Question Why Are Biogeochemical Cycles Essential to Long-Term Life on Earth? Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.a

More information

Vocabulary An organism is a living thing. E.g. a fish

Vocabulary An organism is a living thing. E.g. a fish Organisms in their Environment Vocabulary An organism is a living thing. E.g. a fish Vocabulary A habitat is where an organism lives E.g. a pond Vocabulary A group of the same kind of organisms living

More information

Production vs Biomass

Production vs Biomass Patterns of Productivity OCN 201 Biology Lecture 5 Production vs Biomass Biomass = amount of carbon per unit area (= standing stock * C/cell) Units (e.g.): g C m -2 Primary Production = amount of carbon

More information

HUMAN IMPACT on the BIOSPHERE part 4

HUMAN IMPACT on the BIOSPHERE part 4 HUMAN IMPACT on the BIOSPHERE part 4 Charting a course for the Future http://www.claybennett.com/pages2/mistletoe.html ENVIRONMENTAL PROBLEMS DEAD ZONES OZONE DEPLETION ACID RAIN GLOBAL WARMING WASTE http://www.acmecompany.com/stock_thumbnails/13808.greenhouse_effect_2.jpg

More information

EUTROPHICATION. Student Lab Workbook

EUTROPHICATION. Student Lab Workbook EUTROPHICATION Student Lab Workbook THE SCIENTIFIC METHOD 1. Research Background literature research about a topic of interest 2. Identification of a problem Determine a problem (with regards to the topic)

More information

Air & Water Lesson 2. Chapter 6 Conserving Our Resources

Air & Water Lesson 2. Chapter 6 Conserving Our Resources Air & Water Lesson 2 Chapter 6 Conserving Our Resources Objectives Summarize the importance of air. Describe the water cycle. Main Idea Living things use air and water to carry out their life processes.

More information

Name: Class: Date: 6. Most air pollution is produced by a. thermal inversions. c. ozone layer depletion. b. fuel burning. d. volcanic eruptions.

Name: Class: Date: 6. Most air pollution is produced by a. thermal inversions. c. ozone layer depletion. b. fuel burning. d. volcanic eruptions. Name: Class: Date: Air Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is often used to remove poisonous gases from industrial

More information

WARM UP. What can make up a population?

WARM UP. What can make up a population? WARM UP What can make up a population? 1 ECOSYSTEMS: Cycles www.swpc.noaa.gov/ 2 Biochemical Cycling Cycling of nutrients called biogeochemical cycling Move nutrients from nonliving world to living organisms

More information

Interactions Within Ecosystems. Date: P. in ILL

Interactions Within Ecosystems. Date: P. in ILL Interactions Within Ecosystems Date: P. in ILL Ecology the scientific study of interactions between different organisms their environment An ecologist would study organisms that live in an ecosystem. Ecosystems

More information

Ecology. - Air pollutants (Sulfur and Nitrogen) mix with water in the atmosphere - This rain destroys wildlife and habitats

Ecology. - Air pollutants (Sulfur and Nitrogen) mix with water in the atmosphere - This rain destroys wildlife and habitats Ecology Study online at quizlet.com/_2dqy57 1. Acid Rain 7. Ozone Layer Depletion - Air pollutants (Sulfur and Nitrogen) mix with water in the atmosphere - This rain destroys wildlife and habitats 2. Exotic

More information

Chapter 16 Human Impact on Ecosystems DAY ONE

Chapter 16 Human Impact on Ecosystems DAY ONE Chapter 16 Human Impact on Ecosystems DAY ONE Earth s resources As the human population grows, the demand for resources increases. Our population continues to grow. Earth s carrying capacity is actually

More information

GE Industry and the Environment Chapter I Introduction to Environment, Ecosystems, Environmental Components, Natural Cycles, and Development

GE Industry and the Environment Chapter I Introduction to Environment, Ecosystems, Environmental Components, Natural Cycles, and Development GE 302 - Industry and the Environment Chapter I Introduction to Environment, Ecosystems, Environmental Components, Natural Cycles, and Development GE 302 Second Semester 1433/1434 (2012/2013) - Chapter

More information

Master 5.1, Newspaper Articles. Special Edition December 14. Special Edition March 17

Master 5.1, Newspaper Articles. Special Edition December 14. Special Edition March 17 Master 5.1, Newspaper Articles THE DAILY HERALD Special Edition December 14 Study Forecasts Future Food Shortage A new study published in the Journal of World Agriculture raises concerns that in the future

More information

4. (Mark all that apply) Which one(s) of these are predators of the desert? a. Grizzly Bears b. Coyotes c. Road runners d. Badgers

4. (Mark all that apply) Which one(s) of these are predators of the desert? a. Grizzly Bears b. Coyotes c. Road runners d. Badgers School: Team Number: Competitor s Names: Score: /59 Ecology Test 1. (Mark all that apply) Which are limiting factors in a logistic growth model that results in a decreased biotic potential? a. Light, temperature,

More information

Material Cycles in Ecosystems. Total Recall: What happens to energy with increasing levels of a food chain?

Material Cycles in Ecosystems. Total Recall: What happens to energy with increasing levels of a food chain? Material Cycles in Ecosystems Total Recall: What happens to energy with increasing levels of a food chain? Available energy decreases with increasing levels of a food chain. *What must occur for there

More information

AP and IB Biology Ecology Summer Work Albert Einstein High School

AP and IB Biology Ecology Summer Work Albert Einstein High School AP and IB Biology Ecology Summer Work Albert Einstein High School 2010-2011 Dr. Judy Small judy_a_small@mcpsmd.org AP and IB Biology 2010-2011 Dr. Small Dear AP or IB Biology Student: Attached is your

More information

buried in the sediment; the carbon they contain sometimes change into fossil fuels; this process takes millions of years

buried in the sediment; the carbon they contain sometimes change into fossil fuels; this process takes millions of years STUDY GUIDE CHAPTER 8 - ANSWERS 1) THE CARBON CYCLE - Describe the transformations related to the circulation of carbon. DEFINITION: the carbon cycle is a set of processes by which the essential element

More information

Climates and Ecosystems

Climates and Ecosystems Chapter 2, Section World Geography Chapter 2 Climates and Ecosystems Copyright 2003 by Pearson Education, Inc., publishing as Prentice Hall, Upper Saddle River, NJ. All rights reserved. Chapter 2, Section

More information