WELCOME TO HELP SESSION 3: ALTERNATIVE FORMS OF ENERGY

Size: px
Start display at page:

Download "WELCOME TO HELP SESSION 3: ALTERNATIVE FORMS OF ENERGY"

Transcription

1 WELCOME TO HELP SESSION 3: ALTERNATIVE FORMS OF ENERGY The final exam is Mon, Apr 29, at 6:00 pm (same room as your midterm exams) Review sessions: Thurs, 4/25, 7:00 pm and Fri, 4/26, 1:00 pm in 2005 Smith. Drop in: Mon, Apr 29, 2:00 5:30 in 2005 Smith Be sure to bring a calculator to the exam!

2 Alternate Forms of Energy Solar energy (electromagnetic radiation from the Sun) Water energy (including tidal and geothermal) Wind energy Biomass energy

3 Radiant energy (electromagnetic radiation) Radiant energy results from vibrations of charges. As the charges vibrate, they produce waves of energy. Waves of electromagnetic radiation travel at a speed of 3 x 10 8 (300,000,000) meters/second in a vacuum.

4 Wavelength, period, and frequency The wave s period is the time it takes to complete one cycle. The wave s frequency is how often it completes a cycle. Wave Length Wave Length Distance Wave Period Wave Period Time Lower frequency Higher frequency

5 Wave speed and frequency s = f L s = speed at which radiant energy travels (meters/sec or mi/sec) f = frequency (cycles/sec, or Hertz) L = wavelength (in meters, miles, or feet) frequency = 1/period Frequency is measured in Hertz (Hz) 1 Hz = 1 cycle/second

6 Fusion in stars: the proton-proton chain Stars smaller than 1.2 times the mass of the Sun use a hydrogen-burning proton-proton chain as their primary fusion process. 1) two hydrogen nuclei (protons) fuse to form a nucleus of deuterium. 1 H + 1 H 2 H + e + + n e (+1.44 MeV) 2) Deuterium fuses with another hydrogen to form an isotope of helium called tritium. 2 H + 1 H 3 He + g ( MeV) 3) Two tritium fuse to form a stable helium nucleus plus two hydrogen nuclei. 3 He + 3 He 4 He + 1 H + 1 H ( MeV)

7 Fusion Combining of nucleons or small nuclei Exothermic Fission Breaking apart of large nuclei Exothermic Total number of nucleons

8 Energy in the early universe The Universe began with an explosion: The Big Bang. As the Universe expanded and cooled, increasingly complicated structures formed. The energy per photon can be found from the temperature: with E = 3 k T E = energy (in joules or electron volts ev) k = Boltzman s constant = 1.38 x J/K or 8.62 x 10 5 ev/k T = temperature (in kelvin)

9 Hubble s constant Hubble s Law: The speed of a galaxy increases in direct proportion to its distance from an observer. The recessional velocity of an object is the rate at which it appears to be moving away. The Hubble constant (H o ) is the slope of the graph of velocity of galaxies vs. their distance. The inverse of the Hubble constant, (1/H o ) gives an estimate of the age of the Universe.

10 Formation of chemical elements Most of the hydrogen, helium and lithium in the Universe was created during the Big Bang. Carbon is formed when two alpha particles fuse to form an unstable isotope of beryllium. 4 He + 4 He 8 Be ( 0.1 MeV) If a 3 rd alpha is added before the beryllium nucleus decays back into two alphas, carbon is formed. 8 Be + 4 He 12 C (+ 7.4 MeV)

11 Formation of heavy elements Elements through iron are formed when stars more massive than 5 times the mass of the Sun collapse violently. Increasingly massive elements are fused until iron is produced. Elements heavier than iron are formed when large stars collapse one last time and explode violently in a type II supernova. Enough energy is released to begin endothermic fusion reactions of heavy elements. These reactions require both activation energy and energy to produce the endothermic reaction.

12 Doppler effect A stationery light source emits waves of light uniformly in all directions. If the same light source moves to the right, the wavelengths are no longer evenly spaced. Light from a receding source has longer wavelengths, and the light is shifted to the red end of the spectrum. The redshift of distance stars shows they are moving away from the Earth. Spread of waves over time

13 Hertzsprung-Russell diagram of stars

14 Source:

15 Focusing radiant energy Light reflected from concave and convex mirrors. Focus A Concave Mirror Focuses Radiant Energy A Convex Mirror Spreads Radiant Energy

16 Focusing radiant energy Light passes through concave and convex lenses. Focus A Concave Lens Spreads Radiant Energy A Convex Lens Focuses Radiant Energy

17 Orientation of a solar collector In the northern hemisphere, solar collectors face south. In winter, the collector angle equals the latitude + 15 o. In summer, the collector angle equals the latitude - 10 o. 15 o 40 o Columbus, OH in winter 10 o Columbus, OH in summer

18 Features of a solar house Deciduous trees or a roof overhang on the south side of a house to shade windows from the direct sun in the summer, but allow the sun to shine in through windows in the winter when the sun is lower. Embankments and non-deciduous trees on the north side of the house to block winter winds. A thermal mass may be used to store solar energy gathered during the day for use at night when the temperature drops. Rooftop solar collectors to supplement the heating system and to generate electricity. Fiber optic light pipes to bring outside light into the interior of the house. Insulation of walls and attic to reduce heat transfer. Vents to exhaust hot air from the house.

19 Solar cells Solar cells use the photoelectric effect to produce electricity. When electrons in the cell absorb photons of radiant energy, some electrons have enough energy to escape from their atom and form an electric current. Light Rays + Output Voltage _

20 Photon Time 1: A photon is absorbed by an electron. Time 2: The electron escapes from the atom. When an electron in a solar cell absorbs a photon with sufficient energy, the electron can escape from the atom s electron cloud. These unbound electrons form an electric current.

21 Visible light spectrum Source:

22 Energy of a photon The energy of a photon is related to the frequency and wavelength. E = h f = (h c)/l E = energy of a photon (joules) h = is a constant = 6.63 x joule sec f = frequency (Hertz) c = speed of radiant energy = 3 x 10 8 m/s L = wavelength (meters).

23 Power from a solar cell The power generated by a solar cell depends on the amount of solar insolation striking the cell the size (area) of the cell the efficiency of the solar cell where P = I x A x Eff P = power (in watts) I = solar insolation ( in watts/meter 2 ) A = area of collector (in meters 2 ) Eff = the efficiency of the solar cell

24 Source:

25 The Earth s water cycle Water from oceans, lakes, rivers, and the soil evaporates when radiation from Sun warms the Earth s surface. Water vapor rises, is cooled, and condenses on dust particles, forming clouds. When clouds become saturated, precipitation falls as rain or snow. Precipitation eventually runs back into lakes and oceans and the cycle repeats. Latent heat of vaporization is removed from the atmosphere when water evaporates and is added when water vapor condenses. Solar energy drives the water cycle.

26 Energy from ocean tides The moon s gravitational force causes the oceans to form two bulges, one on each side of the Earth. As the Earth spins on its axis, land bordering the oceans passes through both bulges each day. This produces two high tides and two low tides per day. The gravitational attraction between the Earth and the moon causes the water on the side facing the moon to be pulled toward the moon. On the opposite side of the Earth, water tries to continue moving away from the Earth, forming a bulge. Tide_overview.svg

27 Tidal generators

28 Electricity from geothermal energy Heat in the Earth s core is the result of radioactive decay. Thermal energy is conducted from the core through the Earth s mantle. This thermal energy can produce the steam needed to turn generator turbines This type of geothermal energy is available only in geologically unstable areas, such as volcanically active Iceland. _Faithfull-pdPhoto.jpg

29 Consequences of melting glaciers Mountain glaciers will disappear, many before Billions of people depend on glacial melt water. Consequences: Glacial melt water is the primary source of the water used to generate hydropower. Other energy sources will be needed to replace this hydropower. Much irrigation water comes from lakes that are replenished by glacial melt water. Other sources of drinking water will be needed. Many glacial lake dams could fail, flooding valleys.

30 Energy from wind Wind pattern due to convection of warm air from the equator to the high latitudes. Wind pattern due to convection AND the Coriolis force of the rotating Earth. 5currents1.html

31 Daytime: Warm air rises above the land. Cool air over the water flows toward the land. Night: Warm air rises above the water. Cool air over the land flows toward the water.

32 Wind turbines The moving blades turn a shaft connected to a generator. This motion spins magnets near coils of wire. Best locations: shorelines flat plains, and mountain ridges. Advantages: A renewable resource, no atmosphere pollution Blades are fatal to birds, bats, and insects. 250 feet Objections to the noise of the spinning blades and appearance of the large towers. s/1/14/wind_turbine_holderness.jpg&imgref

33 Fuel from biomass Biomass: plant material or animal waste used as a fuel. Bioethanol is ethyl alcohol that is distilled from plant material, such as corn, sugar cane or switchgrass. Biodiesel is produced from vegetable oils and animal fats, such as used cooking oil. Adding ethanol to gasoline reduces the amount of fossil fuel needed. Alcohol combustion may produce less soot than oil. The CO 2 released by the burning biofuel is equal to the uptake of CO 2 from the atmosphere by the plants that produced the biofuel. Thus, biofuel is considered carbon neutral.

34 Carbon cycle Carbon_cycle.jpg&imgref

35 The carbon budget The carbon budget is the balance of the carbon exchanges between carbon sinks and sources. A carbon sink is a component of the carbon cycle that absorbs and stores more carbon than it releases. A carbon source emits more carbon than it absorbs. The oceans are the largest active carbon sink on the planet. Human influence on the carbon budget 1) combustion of fossil fuel 2) deforestation 3) acid rain has makes sea water more acidic 4) the manufacture of concrete

36 Energy Advantages Disadvantages Fossil Plentiful (at least for now) and inexpensive greenhouse gases, acid rain, soot. Non-renewable Biomass Wind Tidal plentiful, inexpensive, renewable Inexpensive to operate, renewable Renewable. No atmospheric pollution Renewable. No atmospheric pollution Soot. (No net carbon dioxide is released.) Expensive to install, noisy, affects scenic vistas, can harm birds Limited locations. Can change aquatic ecosystem Dams can change the aquatic ecosystem Nuclear Hydroelectric Geothermal Solar No atmospheric pollution Thermal pollution. Possible nuclear accidents. Storage of radioactive waste. Limited atmospheric pollution. No atmospheric pollution. Renewable Large quantities available only in areas with hot rock close to the surface. Low efficiency, expensive, not always available.

37 Heat flow energy transferred time OR E t E t K A ( Thot Tcold ) L A ( T hot Tcold ) R K = the thermal conductivity (J/s m o C or BTU inch/hour foot 2 o F) A = the cross sectional area (meters 2 or feet 2 ) T = temperature ( o C or o F) L = thickness (meters or inches) R = insulation value = L/K T hot Heat flow L Area T cold

38 The cost of using electricity Electric companies charge for electricity in units of kilowatt hours (kwh). One kilowatt hour = 1,000 watts of power provided for one hour. To find the number of kilowatt hours, 1) divide watts by 1,000 to find kilowatts 2) multiply kilowatt by the number of hours of use. To find the cost of using electricity, multiply the kilowatt hours by the cost per kilowatt-hour

39 Payback time How long it takes to recover the cost of purchasing a more expensive appliance from the savings in energy. The total cost of using an appliance is the purchase price plus the cost of operation: Total cost = purchase price + (cost/year x # of years) An energy-efficient dishwasher costs $80 more than a less efficient dishwasher. The energy-efficient dishwasher saves $20 each year in operating costs. What is the payback time for the dishwasher? additional cost = $80 x 1 year = 4 years savings each year $20

40 FOR THE FINAL EXAM The final exam is Mon, Apr 29, at 6:00 pm (same room as your midterm exams) Review sessions: Thurs, 4/25, 7:00 pm and Fri, 4/26, 1:00 pm in 2005 Smith. Drop in: Mon, Apr 29, 2:00 5:30 in 2005 Smith Be sure to bring a calculator to the exam!

Work, Energy and Power.

Work, Energy and Power. Work, Energy and Power. Work - Definition Of Work Work is the transfer of energy. If you put energy into an object, then you do work on that object. If an object is standing still, and you get it moving,

More information

Chapter 13 Renewable Energy and Conservation

Chapter 13 Renewable Energy and Conservation Chapter 13 Renewable Energy and Conservation Overview of Chapter 13 Direct Solar Energy Indirect Solar Energy Wind Biomass Hydropower Geothermal Tidal High and Low Technology Energy Solution Direct Solar

More information

Chapter 13 Renewable Energy and Conservation

Chapter 13 Renewable Energy and Conservation Chapter 13 Renewable Energy and Conservation Overview of Chapter 13 Direct Solar Energy Indirect Solar Energy Wind Biomass Hydropower Geothermal Tidal High and Low Technology Energy Solutions Direct Solar

More information

AQA GCSE Physics Unit 1 Specification

AQA GCSE Physics Unit 1 Specification P1.1 The transfer of energy by heating processes and the factors that affect the rate at which that energy is transferred Energy can be transferred from one place to another by work or by heating processes.

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then

More information

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis:

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis: Biomass Description of biomass: Description of photosynthesis: Ways we turn biomass into energy we can use: Who uses biomass and for what purposes: Effect of using biomass on the environment: Important

More information

What type of radiation transmits heat energy? Complete this sentence. Hotter objects emit infrared radiation than cooler objects.

What type of radiation transmits heat energy? Complete this sentence. Hotter objects emit infrared radiation than cooler objects. Page 1 What type of radiation transmits heat energy? Complete this sentence Hotter objects emit infrared radiation than cooler objects. What type of surfaces are good absorbers and good emitters of infrared

More information

Ch. 9 RTB - Energy Sources & Conversions

Ch. 9 RTB - Energy Sources & Conversions Ch. 9 RTB - Energy Sources & Conversions A. Types of Energy Sources 1. There are many different types of sources for energy 2. Energy comes from plants & Animals when living & Digested by another life

More information

Conduction and Convection

Conduction and Convection Conduction and Convection Convection Currents Definition Convection is the transfer of heat in liquids and gases. The hotter the liquid/gas the particles move faster and spread out. This means the gas/liquid

More information

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation Renewable Energy All renewable energy sources derive from the Sun. The Sun provides the energy that drives our weather systems and water cycle. It is the prime source of all energy on Earth and it is essential

More information

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

Is the greenhouse effect good or bad?

Is the greenhouse effect good or bad? NAME 1. The diagram below represents energy being absorbed and reradiated by the Earth. Is the greenhouse effect good or bad? 5. Equal areas of which surface would most likely absorb the most insolation?

More information

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 7 Earth s Natural Resources Section 1 Electricity and Your Community What Do You See? Learning Outcomes In this section, you will Compare energy resources used to generate electricity in the United

More information

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings.

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings. 2.2 Notes Objectives Compare an open system with a closed system. List the characteristics of Earth s four major spheres. Identify the two main sources of energy in the Earth system. Identify four processes

More information

Topic 1 - energy transfers

Topic 1 - energy transfers Physics Topic 1 - energy transfers Conduction Conduction is the transfer of heat through solids The metal is heated up, particles gain energy and start to vibrate, bumping into their neighboring particles.

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

Science 30 Unit D: Energy and the Environment

Science 30 Unit D: Energy and the Environment Science 30 Unit D: Energy and the Environment Chapter 2 Assignment Summary Science 30 Unit D: Energy And The Environment Chapter 2 Assignment Total Possible Marks 52 For Teacher s Use Only Your Mark Teacher

More information

Planetary Energy Balance

Planetary Energy Balance Planetary Energy Balance Overview of Planetary Energy Balance Energy coming into the Earth s atmosphere from the sun is always in balance with the energy leaving Earth s atmosphere going back out into

More information

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System.

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System. Earth as a System Table of Contents Section 1 Earth: A Unique Planet Section 2 Energy in the Earth System Section 3 Ecology Section 1 Earth: A Unique Planet Objectives Describe the size and shape of Earth.

More information

Energy Junior Science. Easy to read Version

Energy Junior Science. Easy to read Version Energy Junior Science Easy to read Version 1 1a Energy makes things happen Energy is not a substance or an object that you can touch or hold, but substances and objects can possess energy Energy is something

More information

UNIT 1 - ENERGY SECTION 1 - ENERGEIA. What Is Energy? Vocabulary. Energeia Energy is the ability or capacity to do work.

UNIT 1 - ENERGY SECTION 1 - ENERGEIA. What Is Energy? Vocabulary. Energeia Energy is the ability or capacity to do work. UNIT 1 - ENERGY SECTION 1 - ENERGEIA Vocabulary atom chemical energy compound electrical energy electricity electromagnetic radiation electron energy energy conversion exothermic reaction friction gamma

More information

Energy, Power and Climate Change

Energy, Power and Climate Change Energy, Power and Climate Change Thermal energy can be completely converted to work in a single process. Example: isothermal expansion Q = ΔU + W ΔU = 0 so Q = W A continuous conversion of thermal energy

More information

Fusion Reactions 3/18/2016. Exam #2 Results. Nuclear Fusion (not Fission) Clicker Question. U n Te Zr n

Fusion Reactions 3/18/2016. Exam #2 Results. Nuclear Fusion (not Fission) Clicker Question. U n Te Zr n Clicker Question What do you think? A) We should increase our nuclear fission energy facilities. B) We should continue to run only the facilities we currently have. C) We should shut down all existing

More information

Energy Flow and Conversion

Energy Flow and Conversion Energy Flow and Conversion PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo February 4, 2014 Some near-term topics Energy conversion Need for

More information

Characteristics of source of energy

Characteristics of source of energy Energy Sources Characteristics of source of energy Provide adequate amount of useful energy at a steady rate over a long period of time. It should be safe & convenient to use economical & easy to store

More information

FUNDAMENTALS OF SOLAR ENERGY

FUNDAMENTALS OF SOLAR ENERGY Introduction FUNDAMENTALS OF SOLAR ENERGY Energy from the sun is available at every place on the earth. People do not realize that daily life would not be possible without the presence of the sun. In ancient

More information

Renewable Energy Sources. Lesson Plan: NRES F1-2

Renewable Energy Sources. Lesson Plan: NRES F1-2 Renewable Energy Sources Lesson Plan: NRES F1-2 1 Anticipated Problems 1. What are renewable energy sources? 2. What are advantages and disadvantages of renewable energy sources? 2 Terms biomass biopower

More information

Alternative Energy. 1. Solar 2. Biofuels (biomass) 3. Nuclear. 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power)

Alternative Energy. 1. Solar 2. Biofuels (biomass) 3. Nuclear. 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power) Alternative Energy 1. Solar 2. Biofuels (biomass) 3. Nuclear a. Fusion b. Fission 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power) Solar Energy Solar energy uses energy from the

More information

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable.

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable. Energy Solar Energy Energy Resource A natural resource that humans use to generate energy. Can be renewable are nonrenewable. energy sources are replaced by natural processes at least as quickly as they

More information

Renewable Energy Sources Solar and Wind

Renewable Energy Sources Solar and Wind Energy Resources Activity 8 Renewable Energy Sources Solar and Wind Goals In this activity you will: Construct a solar water heater and determine its maximum energy output. Construct a simple anemometer

More information

5 th Grade Science Vocabulary Unit: Investigations and Safety

5 th Grade Science Vocabulary Unit: Investigations and Safety recycle dispose reuse goggles conservation data conclusion predict describe observe record identify investigate evidence analyze descriptive investigation comparative investigation experimental investigation

More information

Energy & Power Unit 5, Lesson 1 Explanation

Energy & Power Unit 5, Lesson 1 Explanation Energy & Power 5.1.1 Unit 5, Lesson 1 Explanation The Unit Big Idea The designed world is the product of a design process, which provides ways to turn resources - materials, tools and machines, people,

More information

Introduction to Environmental Physics

Introduction to Environmental Physics Introduction to Environmental Physics Planet Earth, Life and Climate Nigel Mason Department of Physics and Astronomy University College, London, UK. Peter Hughes Kingsway College, London, UK. with Randall

More information

Name Class Date. The statements below are false. For each statement, replace the underlined term to make a true statement.

Name Class Date. The statements below are false. For each statement, replace the underlined term to make a true statement. Skills Worksheet Chapter Review USING KEY TERMS The statements below are false. For each statement, replace the underlined term to make a true statement. 1. A liquid mixture of complex hydrocarbon compounds

More information

Ch 21. New Renewable Energy Alternatives. Part 2: Environmental Issues and the Search for Solutions

Ch 21. New Renewable Energy Alternatives. Part 2: Environmental Issues and the Search for Solutions Ch 21 New Renewable Energy Alternatives Part 2: Environmental Issues and the Search for Solutions PowerPoint Slides prepared by Jay Withgott and Heidi Marcum Copyright 2006 Pearson Education, Inc., publishing

More information

A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1

A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1 A student investigated the efficiency of a motor using the equipment in Figure. Figure He used the motor to lift a weight of.5 N a height of.0 m. He measured the speed at which the weight was lifted and

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

FUNDAMENTALS OF SOLAR ENERGY

FUNDAMENTALS OF SOLAR ENERGY FUNDAMENTALS OF SOLAR ENERGY by Radiantec Company What is Solar Energy? What is the Sun? The sun is a star, not much different from the billions of others in the universe. The main difference to us is

More information

Alternative Fuels. Reduce our dependence on the fossil fuels.

Alternative Fuels. Reduce our dependence on the fossil fuels. Alternative Fuels Reduce our dependence on the fossil fuels. News Article http://news.nationalgeographic.com/ne ws/2009/09/090904-farm-energy.html Alternatives to Fossil Fuels 80% of our energy comes from

More information

There would be a lot more. (600 times as much)

There would be a lot more. (600 times as much) 21. If we were able to convert all of the sun s energy that reaches the surface of the US into electricity, would this be more, less or about the same amount of electricity as we currently generate? There

More information

GREENHOUSE GASES 3/14/2016. Water Vapor, CO 2, CFCs, Methane and NO x all absorb radiation Water vapor and CO 2 are the primary greenhouse gases

GREENHOUSE GASES 3/14/2016. Water Vapor, CO 2, CFCs, Methane and NO x all absorb radiation Water vapor and CO 2 are the primary greenhouse gases GREENHOUSE EFFECT The earth is like a greenhouse The atmosphere acts like the glass which lets the sun s rays pass through. The earth absorbs this as heat energy and keeps it in, only letting a little

More information

KS4 Physics. Renewable Energy. 1 of 44. Boardworks Ltd 2005

KS4 Physics. Renewable Energy. 1 of 44. Boardworks Ltd 2005 1 of 44 KS4 Physics Renewable Energy 2 of 44 Contents Renewable Energy Solar power Wind power Water power Thermal power Summary activities 3 of 44 Solar cells Solar cells (or photocells) turn light energy

More information

and animals that lived in the sea. Energy stored inside the particles that things are made out of. Fossil fuel formed from the remains of dead plants

and animals that lived in the sea. Energy stored inside the particles that things are made out of. Fossil fuel formed from the remains of dead plants Energy Word Sheets Fuelled by fossils chemical energy The kind of energy stored in chemicals. Food, fuels and cells (batteries) all contain chemical energy. coal A fossil fuel made from the remains of

More information

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc 1 of 12 1/24/2013 9:01 AM Science Generating electricity Electricity is a convenient source of energy and can be generated in a number of different ways. You will need to weigh up the advantages and disadvantages

More information

ENERGY. 1. Non-renewable or finite energy resources are. 2. Renewable or infinite energy resources are source of

ENERGY. 1. Non-renewable or finite energy resources are. 2. Renewable or infinite energy resources are source of Energy is the ability to do work. Energy cannot be created or destroyed: it can only be transformed, from one type into another. Energy can be either potential or kinetic. Kinetic energy is found in anything

More information

Your Renewable Energy World Teacher s Guide

Your Renewable Energy World Teacher s Guide Your Renewable Energy World Teacher s Guide Introduction Your Renewable Energy World is an activity booklet that teaches basic principles about the main renewable energy resources used in the world today,

More information

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science

CLIMATE CHANGE AND ACID RAIN. Mr. Banks 7 th Grade Science CLIMATE CHANGE AND ACID RAIN Mr. Banks 7 th Grade Science COMPOSITION OF AIR? COMPOSITION OF AIR? 78% Nitrogen 21% Oxygen 0.93% Argon and other noble gases 0.04% carbon dioxide Variable amounts of water

More information

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS THE SCIENCE BEHIND ENERGY TRANSFORMATIONS Q1 GENERATING ELECTRICITY AT A POWER PLANT Unit Essential Question: How are Earth s energy resources used to generate electricity What are the advantages and disadvantages

More information

Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS

Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 2 ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS Copyright The McGraw-Hill Companies,

More information

ENVIRONMENTAL SCIENCE

ENVIRONMENTAL SCIENCE Advanced Placement ENVIRONMENTAL SCIENCE Renewable Energy STUDENT 2014 Renewable Energy The worldwide demand for energy has soared. Human population is increasing exponentially with the emergence of large

More information

Unit 3 Lesson 1 Earth s Support of Life. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 1 Earth s Support of Life. Copyright Houghton Mifflin Harcourt Publishing Company Living It Up What do living things need to survive? Earth is covered in living things. The basic necessities of life are air, water, a source of energy, and a habitat to live in. How do Earth and the sun

More information

Introduction to Engineering

Introduction to Engineering Introduction to Engineering Lecture 36: Alternate Energy Sources Approximate Runtime: 38 minutes Copyright Baylor University 006 1 Introduction Steven Eisenbarth, Ph.D. Associate Dean of Engineering and

More information

Plastic cap. Silvered surfaces. Vacuum

Plastic cap. Silvered surfaces. Vacuum Unit P1, P1.1 The transfer of energy by heating processes 1. A vacuum flask is designed to reduce the rate of heat transfer. Plastic cap Silvered surfaces Vacuum (a) (i) Complete the table to show which

More information

GCSE BITESIZE Examinations

GCSE BITESIZE Examinations GCSE BITESIZE Examinations General Certificate of Secondary Education AQA SCIENCE A Unit Physics P1a AQA Chemistry Unit Physics P1a PHY1A (Energy and Electricity) (Energy and Electricity) FOUNDATION TIER

More information

Unit 5 Lesson 1 What Is the Water Cycle? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 1 What Is the Water Cycle? Copyright Houghton Mifflin Harcourt Publishing Company Water on the Move warm up 1 Water on the Move About three-fourths of Earth s surface is covered by water. Water on the Move Video!!! Water on the Move Water moves between Earth s surface and the atmosphere

More information

I ve Got the Power! Types of Energy and how it affects our lives.

I ve Got the Power! Types of Energy and how it affects our lives. I ve Got the Power! Types of Energy and how it affects our lives. Categories Energy is broken down into 2 categories RENEWABLE And NON-RENEWABLE RENEWABLE Energy that comes from a source that can be replenished

More information

RENEWABLE ENERGY RESOURCES. Prepared by Engr. JP Timola Reference: Renewable Energy Resources by J Twidell

RENEWABLE ENERGY RESOURCES. Prepared by Engr. JP Timola Reference: Renewable Energy Resources by J Twidell RENEWABLE ENERGY RESOURCES Prepared by Engr. JP Timola Reference: Renewable Energy Resources by J Twidell History of Energy Usage 1700 s - almost all our energy came from wind, water, firewood, or muscle

More information

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work the ability to cause an object to 1. move, change, or work 2. trade-off something that you do not want, but have to accept in order to have something that you want (disadvantage) 3. variable a changing

More information

Grade Level Expectations for the Sunshine State Standards

Grade Level Expectations for the Sunshine State Standards for the Sunshine State Standards FLORIDA DEPARTMENT OF EDUCATION http://www.myfloridaeducation.com/ The Nature of Matter uses a variety of measurements to compare and contrast the physical properties of

More information

FIFTH GRADE Course of Study (COS)

FIFTH GRADE Course of Study (COS) Curriculum Guide Science Use with Harcourt FIFTH GRADE Course of Study (COS) In Grade 5, concrete experiences remain important to students as they conduct scientific inquiries and include evidence of abstract

More information

Energy, Power and Climate Change

Energy, Power and Climate Change Energy, Power and Climate Change Thermal energy can be completely converted to work in a single process. A continuous conversion of thermal energy into work requires a cyclical process. Example: isothermal

More information

Define fuel. List any two characteristics that you would look for in a good fuel. Answer.

Define fuel. List any two characteristics that you would look for in a good fuel. Answer. SOURCES OF ENERGY 1. List two nutrients that the slurry left behind in the biogas plant contain. Nitrogen and phosphorous. 2. Biogas is also known as gobar gas. Justify. Starting material for biogas is

More information

20 Global Climate Change

20 Global Climate Change 20 Global Climate Change Overview of Chapter 20 Introduction to Climate Change Causes of Global Climate Change Effects of Climate Change Melting Ice and Rising Sea Level Changes in Precipitation Patterns

More information

5th Grade Science 2nd Nine Weeks Assessment. Name

5th Grade Science 2nd Nine Weeks Assessment. Name 5th rade Science 2nd Nine Weeks ssessment Name irections: The photograph below shows several sand dunes in a desert. Use the photograph and your knowledge of science to answer any questions that follow.

More information

Hydroelectric Power. Renewable Energy Sources

Hydroelectric Power. Renewable Energy Sources Renewable Energy Sources Hydroelectric power ~ 5% - 10% Solar energy - not large scale here Geothermal Energy - used in CA Wind Energy - various places (~1.3% of CA use) Tidal Power - not in US (used in

More information

Energy, Electricity and the Waves, 3days

Energy, Electricity and the Waves, 3days This course links most of the content from Unit 1 Physics into a progressive and practical course in the outdoors. Students will undertake practical and out-of-classroom activities based on: P1.1 The Transfer

More information

Alternative Sources of Energy

Alternative Sources of Energy Alternative Sources of Energy In this chapter you will find a brief introduction on various alternative sources of energy available in the world. 11.1 Passive solar Passive solar refers to using solar

More information

Chapter 9 Forms of Energy

Chapter 9 Forms of Energy Chapter 9 Forms of Energy 9.1 What is energy? Energy is the ability to make things move. It is all around us but sometimes we don t recognize it. In order to properly describe energy, we classify it according

More information

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate 1 Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Extra Resources Website: http://waa-science.weebly.com Module 1: The Mechanics of Change 1. What

More information

How Will We Power Our Future? In this introduction to the ejourney, students begin to gain an understanding

How Will We Power Our Future? In this introduction to the ejourney, students begin to gain an understanding How Will We Power Our Future? Overview LESSON ONE In this introduction to the, students begin to gain an understanding of the importance of energy (especially electricity) in our lives through relevant

More information

Coal is obtained from mines. It's a black solid material that must be transported by ships, trains or big trucks to the power plants where it's burnt

Coal is obtained from mines. It's a black solid material that must be transported by ships, trains or big trucks to the power plants where it's burnt Energy Sources Fossil Fuels Coal, Oil and Gas are called "fossil fuels" because they have been formed from the fossilized remains of prehistoric plants and animals. They provide most of the world's total

More information

Lesson Plan Time Requirements: Objectives: Materials: Methods: Lesson Information: Clean, Green Power (Target: Grades 1-4)

Lesson Plan Time Requirements: Objectives: Materials: Methods: Lesson Information: Clean, Green Power (Target: Grades 1-4) Lesson Plan 050106 Clean, Green Power (Target: Grades 1-4) Time Requirements: 1. 30-minutes during science or reading time Objectives: 1. Create awareness for alternative energies 2. Create awareness for

More information

Electricity SEVERAL COMMON ELEMENTS

Electricity SEVERAL COMMON ELEMENTS Electricity ELECTRICITY: THE MYSTERIOUS FORCE What exactly is the mysterious force we call electricity? It is simply moving electrons. And what exactly are electrons? They are tiny particles found in atoms.

More information

RENEWABLE SOURCES OF ENERGY. Ajay Kumar Jakhar

RENEWABLE SOURCES OF ENERGY. Ajay Kumar Jakhar RENEWABLE SOURCES OF ENERGY Ajay Kumar Jakhar Renewable energy is energy that comes from resources which are continually replenished such as sunlight, wind, rain, tides, waves and geothermal heat. In

More information

Composition and Energy AOSC 200 Tim Canty

Composition and Energy AOSC 200 Tim Canty Composition and Energy AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Atmospheric composition cont. Energy transfer Lecture 03 Sept 5 2017 1 Today s Weather

More information

Energy Sources: The Pros and Cons. Glossary. Index. Written by David L. Dreier.

Energy Sources: The Pros and Cons. Glossary. Index. Written by David L. Dreier. Energy Sources: The Pros and Cons A Reading A Z Level Z Leveled Book Word Count: 1,803 LEVELED BOOK Z Energy Sources: The Pros and Cons Written by David L. Dreier Visit www.readinga-z.com for thousands

More information

NUCLEAR ENERGY. Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref

NUCLEAR ENERGY. Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref NUCLEAR ENERGY Prepared by Engr. JP Timola Reference: Nuclear Energy by Dr. Lana Aref How is Nuclear Energy Produced? Nuclear energy is produced when an atom's nucleus is split into smaller nuclei by the

More information

Answer Test Questions Finish Climate Discussion

Answer Test Questions Finish Climate Discussion NREM 301 Forest Ecology & Soils Day 30 December 4, 2008 Answer Test Questions Finish Climate Discussion Take-Home Test Due Dec 11 5 pm No Final Exam Lab Today Finish & e-mail all materials to Dick Class

More information

Electricity Generation and Greenhouse Gas Emissions

Electricity Generation and Greenhouse Gas Emissions Page 1 of 6 Ontario Grade Course Name and Number Strand 9 Science, Grade 9 (SNC1D) 9 Science, Grade 9 (SNC1D) 9 Science, Grade 9 (SNC1D) 9 Science, Grade 9 (SNC1D) E. Physics: The Characteristics of Electricity

More information

Global Warming and Climate Change

Global Warming and Climate Change Global Warming and Climate Change Weather vs. Climate Weather refers to short term conditions (e.g. 24 hrs.) in meteorological conditions such as temperature, pressure and rainfall Climate is average weather

More information

Air & Water Lesson 2. Chapter 6 Conserving Our Resources

Air & Water Lesson 2. Chapter 6 Conserving Our Resources Air & Water Lesson 2 Chapter 6 Conserving Our Resources Objectives Summarize the importance of air. Describe the water cycle. Main Idea Living things use air and water to carry out their life processes.

More information

The Earth s Global Energy Balance

The Earth s Global Energy Balance The Earth s Global Energy Balance Electromagnetic Radiation Insolation over the Globe World Latitude Zones Composition of the Atmosphere Sensible Heat and Latent Heat Transfer The Global Energy System

More information

Measuring School Electronics Energy at Work 1

Measuring School Electronics Energy at Work 1 1 GRADE LEVEL 6-12 TIME NEEDED FOR COMPLETION 2 class periods or 1.5-2 hours STANDARDS LA GLEs and NGSS alignments are found in the Appendix starting on page A-1 MATERIALS 6 energy monitoring devices.

More information

Water cycles through ecosystems.

Water cycles through ecosystems. Water cycles through ecosystems. Water is stored on Earth s surface in lakes, rivers, and oceans. Water is found underground, filling the spaces between soil particles and cracks in rocks. Large amounts

More information

Hydro Energy and Geothermal Energy

Hydro Energy and Geothermal Energy Hydro Energy and Geothermal Energy Content Hydro Energy Hydroelectric Energy Run of the river Hydroelectric Pumped storage Hydroelectric Ocean Energy Tidal Energy Marine Current Energy Wave Energy Ocean

More information

Climate Change and Ozone Loss

Climate Change and Ozone Loss Climate Change and Ozone Loss During the past 900,000 years, the earth has undergone a series of cold glacial periods followed by warmer interglacial periods. The past 10,000 years has been an interglacial

More information

3.1 Energy exists in different forms

3.1 Energy exists in different forms Ch 3 Energy 1 3.1 Energy exists in different forms Energy ability to cause a change; different forms of energy cause different changes 1. Mechanical energy involves the position & motion of objects (may

More information

World Energy Sources, Fossil Fuel Power Production, and Nuclear Power. By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss

World Energy Sources, Fossil Fuel Power Production, and Nuclear Power. By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss World Energy Sources, Fossil Fuel Power Production, and Nuclear Power By Henry Aoki, Nathan Carroll, Cameron Fudeh and Casey Lee-Foss Part 1: World Energy Sources and Fossil Fuel Power Production Different

More information

Energy in Agricultural Systems

Energy in Agricultural Systems Energy in Agricultural Systems MODULE 4: INTRODUCTION TO RENEWABLE ENERGY Funding provided by The Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission

More information

Global warming. Models for global warming Sand analogy

Global warming. Models for global warming Sand analogy 8.10 Global warming Assessment statements 8.6.1 Describe some possible models of global warming. 8.6. State what is meant by the enhanced greenhouse effect. 8.6.3 Identify the increased combustion of fossil

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

Hydroelectric power. Made by: Kekoa, Sara, Kupaa and Bree

Hydroelectric power. Made by: Kekoa, Sara, Kupaa and Bree Hydroelectric power Made by: Kekoa, Sara, Kupaa and Bree How it s produced General: Hydroelectric power creates kinetic energy by using water to turn a propeller turbine which turns a metal shaft in a

More information

Q1. (a) The student is using a microphone connected to a cathode ray oscilloscope (CRO).

Q1. (a) The student is using a microphone connected to a cathode ray oscilloscope (CRO). Q. (a) The student is using a microphone connected to a cathode ray oscilloscope (CRO). The CRO displays the sound waves as waves on its screen. What does the microphone do? (b) The amplitude, the frequency

More information

Renewable Energy Options Solar Photovoltaic Technologies. Lecture-1. Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay

Renewable Energy Options Solar Photovoltaic Technologies. Lecture-1. Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay Renewable Energy Options Solar Photovoltaic Technologies Lecture-1 Prof. C.S. Solanki Energy Systems Engineering, IIT Bombay chetanss@iitb.ac.in Contents Energy Energy Conversion processes Direct and indirect

More information

Name: Class: Date: 6. Most air pollution is produced by a. thermal inversions. c. ozone layer depletion. b. fuel burning. d. volcanic eruptions.

Name: Class: Date: 6. Most air pollution is produced by a. thermal inversions. c. ozone layer depletion. b. fuel burning. d. volcanic eruptions. Name: Class: Date: Air Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is often used to remove poisonous gases from industrial

More information

Energy Principles. AJ A.J. Both Dept. of Environmental Sciences Rutgers University

Energy Principles.  AJ A.J. Both Dept. of Environmental Sciences Rutgers University Energy Principles http://www.nasa.gov AJ A.J. Both Dept. of Environmental Sciences Rutgers University Preamble Energy can exist in different forms Energy can be transferred from one form to another Each

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore NU CL EAR ENERGY For the complete encyclopedic entry with media resources,

More information

THE PROMISE OF FUSION ENERGY. General Atomics

THE PROMISE OF FUSION ENERGY. General Atomics THE PROMISE OF FUSION ENERGY General Atomics The following slide show is a compilation of slides from many previous similar slide shows that have been produced by different members of the fusion and plasma

More information

Energy Source: Biomass. Textbook Resource: Biomass Fuels. Environmental Science: Prentice Hall-Science Explorer, 2005, p. 169.

Energy Source: Biomass. Textbook Resource: Biomass Fuels. Environmental Science: Prentice Hall-Science Explorer, 2005, p. 169. Energy Source: Biomass Textbook Resource: Biomass Fuels. Environmental Science: Prentice Hall-Science Explorer, 2005, p. 169. Edited excerpt from http://www.energyquest.ca.gov/story/chapter10.html Biomass

More information