1.2 Description of the work performed and main results of the MEGASTACK projects

Size: px
Start display at page:

Download "1.2 Description of the work performed and main results of the MEGASTACK projects"

Transcription

1 1 PUBLISHABLE SUMMARY 1.1 Project overview The main objective of MEGASTACK is to develop a cost efficient stack design for MW sized PEM electrolysers and to construct and demonstrate a prototype of this stack. The prototype will demonstrate a capability to produce hydrogen with an efficiency of at least 75% (HHV) at a current density of 1.2 Acm -2 with a stack cost below 2,500/Nm 3 h -1 and a target lifetime in excess of 40,000 hours (< 15 μv h-1 voltage increase at constant load). In the project we aim to take advantage of the existing PEM electrolyser stack designs of ITM power as well as novel solutions in the low-cost stack design concepts developed and further refined in the FCH-JU projects NEXPEL and NOVEL. In order to successfully up-scale the design concept from a kw to a MW-sized stack, we will in the MEGASTACK project perform integrated two-phase flow and multi-physic modelling together with optimization of stack components such as MEAs, current collectors and sealings which are important for stack scale up. To reach these ambitious objectives, MEGASTACK will develop and demonstrate an enhanced stack design essential for cost-competitive, efficient and dynamic PEM electrolysis systems through the following key concepts: The stack design process will have an integrated approach, involving stack manufacturers, component and MEA suppliers as well as PEM electrolyser experts from research institutes. Evaluation and adaptation of existing solutions and commercially available components for use in large format stacks and increased ease of stack assembly by the reduction of stack part count. Advanced multiphase flow modelling coupled with multi-physics models for electrochemical kinetics, heat and momentum transport will be used as detailed design tools for cell and stack components. Implementation of quality control measures and supply chain evaluation of all components will be performed in order to reduce costs and minimise technology and manufacturing risks. 1.2 Description of the work performed and main results of the MEGASTACK projects During the final period of the MEGASTACK project, the consortium has performed a study on the cost and performance targets for large scale PEM electrolysers, including the organisation of a cost reduction strategy workshop. The technical work has involved development of multi-scale and multiphysics models for PEM electrolysers, performance and lifetime evaluation of CCMs and stack design and prototyping. Cost and performance analyses This activity has been focused on establishing cost targets for large-scale PEM electrolysers and establishing a robust cost reduction strategy. As part of this activity, the consortium organised a cost reduction strategy workshop in conjunction with the 2nd IEA ANNEX 30 Electrolysis Meeting at the Hydrogen Centre of Excellence in Herten, Germany. Within this workshop, the commonly accepted view on the market application for large scale (PEM) electrolysis systems and possible/preferred cost reduction strategies by manufactures were presented and discussed.

2 A comparative life cycle assessment on MW-sized PEM electrolysers based on i) the existing ITM stack design and ii) the cost-efficient stack design developed in the MEGASTACK project has been performed. The LCA compares in a life cycle (cradle-to-gate- plus use phase- ) perspective the environmental aspects of the two design options by following practice guidance and required provisions developed by the FCH a method that complies with the ISO and series. Mathematical modelling and verification The main objective of this activity is to develop and use multiscale and multiphase models as engineering tools for stack design and up-scaling. The models will be verified and validated using advanced experimental set ups such as distributed current mapping and flow visualization. The modelling work has been performed by the partners as follows: - SINTEF has modelled the two-phase flows occurring in the liquid/gas distributor region using ANSYS FLUENT. It has performed several calculations in single phase and twophase flows. These simulations have been compared to flow visualizations that demonstrated the good agreement between them. These simulations have been spatially averaged at large scale to derive the permeabilities requested by the Darcy-Forchheimer model used in the coarse nodalization code. - Fraunhofer has developed a submodel in Comsol of anode half-cell to describe the electrical and electrochemical behavior. Polarization curves can be calculated depending on material properties and operation conditions. Further a deep experimental analysis of the through plane and in plane flow of single flow and two phase flow in the sinter (PTL) was performed. New experimental methods were developed to measure the capillary pressure versus liquid saturation and the inner mean contact angle in PTLs, using capillary flow porometry. From these measurements, the parameters requested in the macroscopic models (in plane and through plane permeability, capillary pressure, and contact angle) have been determined. The dependence of these parameters on the liquid saturation has also been explored. Based on these results a new parameter was introduced to describe the gas transportability in through plane direction of partially saturated PTLs. This parameter helps to identify a risk of mass transport limitation due to the properties of the PTL by using only ex-situ characterization techniques. - CEA has developed an electrochemical law from various measurements. All the parameters and laws deduced from small scale simulations and experiments have been implemented in the MePHYSTO_WE code (based on Matlab/Simulink). Then a validation step using the experimental data has been driven successfully. Finally, CEA has performed several simulations of a one hundred cells stack, varying the geometry parameters and operating conditions in order to help the design.

3 Figure 1: Simulated bubble flow in PEM electrolyser (left). Figure 2: Multi-physic stack model framework (right) and simulated polarization curve (left). Membranes and MEAs In the period, full scale MEAs were developed to reduce the overlap of sealing area. Through experimental work we were also able to reduce the dry catalyst coated areas resulting in a reduction of ink required. The supplied CCMs were successfully integrated into the cell and proved to withstand the required temperature and pressures set out in the project. The low cost manufacturing of the MEA is based on three methods: Increasing the coated area versus uncoated surface area of the membrane. The improvement seen in the MEGASTACK project is quantified versus ITM current technology. Reduction of catalyst coated area in line with expected membrane expansion (distortion printing)

4 Less catalyst wastage (during manufacturing) by moving from circular design to a rectangular design Stack design and manufacturing strategies The main objective of this activity was the development of a large-scale stack design for PEM water electrolysis based on an upscaling of existing stack concepts from 415 cm² to approx cm². The stack design approach and methodology was set up in the first period of the project and followed a process used by ITM in previous system designs including: (1) Cell component layout, (2) Material choices, (3) Structural analysis of sealing faces and pressure bearing components, (4) Contact pressure across active area, (5) Cooling and flow distribution, and (6) Manufacturing strategy. In terms of cell components testing a set of 4 porous transport layers (PTL) has been investigated with respect to their stability against anodic oxidation. For comparison, also a titanium sheet and a commercial Ti sinter were tested in the same way. Large scale stack prototype construction and testing A prototype electrolyser system for testing of MEGASTACK short stacks has been designed and constructed. The system consists of a stack skid, balance of plant equipment and programmable power supplies. The cell plates is housed in structural frame (called the stack skid) which is a patented ITM design. This allows the variation of cell sealing pressure without the need to use spanners and Bellville washers. ED goals devised using petro chemical gasket maintenance factor values and empirical data from previous systems to set a sealing Figure 2: MEGASTACK stack skid force requirement. Based on these values the skid has been designed and analysed against EN13445 and EN using long hand calculations and 3D nonlinear FEA contact analysis. The BoP design has been based around existing ITM product knowledge. Certain control aspects were developed from understanding gained from the previous FCHJU PEM project Phaedrus Vessel and pumps were selected based on theoretical flow rates required for an up scaled system of this size. A bespoke Siemens S7 1200PLC control system was developed to allow accurate control, safe operation and data logging capabilities.

5 Figure 3: Completed prototype electrolyzer system. 1.3 Expected final results and potential impacts and use The results obtained in the MEGASTACK project are very promising, with a functioning large-scale PEM electrolyser stack and balance of plant designed, constructed and tested. The MEGASTACK system is now part of ITMs commercial offerings. The main expected outcomes from the technological developments are: In addition, performed market analyses of the utilization of PEM electrolysers in different application areas (micro wind & PV for telecom, green H2 stations and large scale H2 production from renewable energy sources), will give a better understanding of the role of PEM electrolysers in a future hydrogen economy. More information can be obtained by contacting the project coordinator (magnus.s.thomassen@sintef.no )

PEM Water Electrolysis - Present Status of Research and Development

PEM Water Electrolysis - Present Status of Research and Development PEM Water Electrolysis - Present Status of Research and Development Review Lecture Session HP.3d Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE 18 th World Hydrogen Energy Conference 2010

More information

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology STAYERS Stationary PEM fuel cells with lifetimes beyond five years FCH-JU 256721 Programme Review Day 2011 Brussels, 28 November Jorg Coolegem Nedstack fuel cell technology 0. Project description Stationary

More information

SCALING PEM ELECTROLYSIS TO 100MW HANNOVER MESSE APRIL 2017 SIMON BOURNE CTO

SCALING PEM ELECTROLYSIS TO 100MW HANNOVER MESSE APRIL 2017 SIMON BOURNE CTO SCALING PEM ELECTROLYSIS TO 100MW HANNOVER MESSE APRIL 2017 SIMON BOURNE CTO SCALING PEM ELECTROLYSIS TO 100MW HANNOVER MESSE APRIL 2017 SIMON BOURNE CTO Presentation Contents: Company Snapshot Markets

More information

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis Yong Yang Austin Power David Hart E4tech November 10, 2014 Austin Power Engineering LLC 1 Cameron ST Wellesley, MA 02482 USA www.austinpowereng.com

More information

A Novel Concept for Modular High Pressure Water Electrolyser Systems

A Novel Concept for Modular High Pressure Water Electrolyser Systems A Novel Concept for Modular High Pressure Water Electrolyser Systems for Generation of Hydrogen from Excess Energy by Renewables U. Rost, J. Roth, M. Brodmann Westphalian Energy Institute Department: Hydrogen

More information

Low Cost Bipolar Plates for Large Scale PEM Electrolyzers

Low Cost Bipolar Plates for Large Scale PEM Electrolyzers 1 Low Cost Bipolar Plates for Large Scale PEM Electrolyzers A. S. Gago, A. S. Ansar, P. Gazdzicki, N. Wagner, J. Arnold, K. A. Friedrich Electrochemical Energy Technology Institute of Engineering Thermodynamics

More information

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ;

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ; IV.H Electrolysis IV.H.1 Low-Cost, High-Pressure Hydrogen Generator Cecelia Cropley (Primary Contact), Tim Norman Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0506;

More information

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets By Everett Anderson Symposium on Water Electrolysis and Hydrogen as Part of the Future Renewable Energy System 10-11

More information

STAMPEM (GA #303449) Anders Ødegård SINTEF Click to add title

STAMPEM (GA #303449) Anders Ødegård SINTEF  Click to add title STAMPEM (GA #303449) Anders Ødegård SINTEF www.stampem.eu Click to add title PROJECT OVERVIEW STAble and low cost Manufactured bipolar plates for PEM Fuel Cells - STAMPEM Call topic: SP1-JTI-FCH.2011.1.7

More information

COBRA COating for BipolaR plates

COBRA COating for BipolaR plates COBRA COating for BipolaR plates Fabrice Micoud CEA http://www.cobra-fuelcell.eu/ fabrice.micoud@cea.fr Programme Review Days 2016 Brussels, 21-22 November Click to add title Call topic PROJECT OVERVIEW

More information

Cost Reduction Strategies for PEM Electrolysis

Cost Reduction Strategies for PEM Electrolysis Cost Reduction Strategies for PEM Electrolysis E Anderson IEA-AFC ANNEX 30 MEGAPEM Workshop 21 April 2015 Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen

More information

High Efficiency Large PEM Electrolyzers

High Efficiency Large PEM Electrolyzers High Efficiency Large PEM Electrolyzers Monjid Hamdan Director of Engineering Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466 Outline Giner, Inc. Overview Advancements in Efficiency New Membranes Coming

More information

Alkaline Electrolysers Wind and Photovoltaic Power Sources. Hannover Messe 2013 Hydrogen and Fuel cell

Alkaline Electrolysers Wind and Photovoltaic Power Sources. Hannover Messe 2013 Hydrogen and Fuel cell Alkaline Electrolysers Wind and Photovoltaic Power Sources Hannover Messe 2013 Hydrogen and Fuel cell Committed to excellence and innovation since its creation, H2Nitidor offers high efficiency Pressurized

More information

HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER

HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER Contents Introduction The Challenge ITM s Suite of Materials Results Snapshot Durability

More information

Second Act Simulation, statistics and Experiments Coupled to develop Optimized and Durable µchp systems using ACcelerated Tests (GA )

Second Act Simulation, statistics and Experiments Coupled to develop Optimized and Durable µchp systems using ACcelerated Tests (GA ) Second Act Simulation, statistics and Experiments Coupled to develop Optimized and Durable µchp systems using ACcelerated Tests (GA 621216) Sylvie Escribano CEA Liten, Grenoble, France www.second-act.eu

More information

PEMFC Lifetime and Durability an overview. Thessaloniki, September Frank de Bruijn

PEMFC Lifetime and Durability an overview. Thessaloniki, September Frank de Bruijn PEMFC Lifetime and Durability an overview Thessaloniki, September 21 2011 Frank de Bruijn PEMFC in real life 2007 Passenger vehicle: 2,375 hrs operated on 1 stack Daimler in DoE programme 2011 City Bus

More information

2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece

2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece Overview of the FP7 Project Results and Recommendations K. Andreas Friedrich 2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece Degradation Workshop, Thessaloniki, 21

More information

Fuel Cell R&D at VTT Technical Research Centre of Finland

Fuel Cell R&D at VTT Technical Research Centre of Finland Fuel Cell R&D at VTT Technical Research Centre of Finland VTT Fuel Cells Fuel cells can be applied anywhere where electricity is needed. Typical applications are replacement of batteries in the W-power

More information

Hydrogen and Fuel Cell Technology

Hydrogen and Fuel Cell Technology Fraunhofer Institute for Solar Energy Systems ISE Hydrogen and Fuel Cell Technology comitted to hydrogen»hydrogen technology and fuel cells are key players in a sustainable, solar energy economy.«dr. Christopher

More information

Hydrogen Contaminant Risk Assessment

Hydrogen Contaminant Risk Assessment VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Hydrogen Contaminant Risk Assessment IEA Annex 31 meeting Graz, Austria 15.5.2017 Jaana Viitakangas VTT Fuel Cells & H 2 VTT Technical Research Centre of Finland

More information

Power to Gas within Uniper. Dr. Peter Klingenberger, Senior Advisor

Power to Gas within Uniper. Dr. Peter Klingenberger, Senior Advisor Power to Gas within Uniper Dr. Peter Klingenberger, Senior Advisor St. Petersburg, 09.11.2017 Uniper: reliable energy provider and co-creator of the energy future We are Uniper, an international energy

More information

Hydrogenics Selected References. Grid Balancing, Power to Gas (PtG)

Hydrogenics Selected References. Grid Balancing, Power to Gas (PtG) Hydrogenics Selected References Grid Balancing, Power to Gas (PtG) 2016 In a nutshell Global provider of On-site hydrogen water electrolysers Energy Storage systems H 2 fueling stations Fuel cells systems

More information

Fuel Cell Initiatives in Europe

Fuel Cell Initiatives in Europe Outreach Event of the IEA Advanced Fuel Cell Implementing Agreement April 23rd, 2015, Zurich, Switzerland Fuel Cell Initiatives in Europe Laurent ANTONI CEA - France laurent.antoni@cea.fr H 2 & FUEL CELLS:

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

MATISSE Manufacturing improved stack with textured surface electrodes for stationary and CHP applications (GA )

MATISSE Manufacturing improved stack with textured surface electrodes for stationary and CHP applications (GA ) MATISSE Manufacturing improved stack with textured surface electrodes for stationary and CHP applications (GA 621195) Sylvie Escribano CEA Liten, Grenoble, France http://matisse.zsw-bw.de/general-information.html

More information

Project information 0. Project & Partnership description

Project information 0. Project & Partnership description Enhanced performance and cost-effective materials for long-term operation of PEM water electrolysers coupled to renewable power sources- ELECTRYPEM (Contract number 300081) Antonino S. Aricò CNSIGLI NAZINALE

More information

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions Progress in the Understanding of PEFC Degradation related to Liquid Water interactions K. Andreas Friedrich, German Aerospace Center (DLR), Institute of Technical Thermodynamics Outline Introduction to

More information

Hydrogen & Renewable Energy

Hydrogen & Renewable Energy HELION HELION HYDROGEN POWER Hydrogen & Renewable Energy DERBI 2009 Conference, Perpignan, June 11th 2009 Jean-Christophe HOGUET HELION HELION Subsidiary of AREVA R, renewable energy Business Unit Wind

More information

Power-to-Gas demonstration plant Ibbenbüren

Power-to-Gas demonstration plant Ibbenbüren Power-to-Gas demonstration plant Ibbenbüren Project description and background information Ulrich Bohn, Florian Lindner September 2015 RWE Deutschland AG SEITE 1 Renewable power generation grew significantly

More information

Optimization Strategies of PEM Electrolyser as Part of Solar PV System

Optimization Strategies of PEM Electrolyser as Part of Solar PV System Optimization Strategies of PEM Electrolyser as Part of Solar PV System Antti Kosonen Joonas Koponen, Kimmo Huoman, Jero Ahola, Vesa Ruuskanen, Tero Ahonen (LUT) Thomas Graf (IRD) 7.9.16 Introduction: Why

More information

UCLM and CISTEM. CISTEM: Cogeneration with PEM fuel cells. Role of UCLM. Justo Lobato, Pablo Cañizares, Sara Mateo, Héctor Zamora, Manuel A.

UCLM and CISTEM. CISTEM: Cogeneration with PEM fuel cells. Role of UCLM. Justo Lobato, Pablo Cañizares, Sara Mateo, Héctor Zamora, Manuel A. UCLM and CISTEM CISTEM: Cogeneration with PEM fuel cells. Role of UCLM. Justo Lobato, Pablo Cañizares, Sara Mateo, Héctor Zamora, Manuel A.Rodrigo Construction of Improved HT-PEM MEAs and Stacksfor Long

More information

Efficient Use of Energy Converting Applications. Nadine Jacobs

Efficient Use of Energy Converting Applications. Nadine Jacobs Efficient Use of Energy Converting Applications Agenda Introduction NEXT ENERGY EURECA Principal objectives Research areas Test protocols Stacktest Stadardisation DEMMEA Degradation Mechanisms in HT-PEM

More information

The Hydrogen Society A National Feasibility Study

The Hydrogen Society A National Feasibility Study The Hydrogen Society A National Feasibility Study [Hydrogensamfunnet en nasjonal mulighetsstudie] May 2000 A report prepared by SINTEF Energy Research, Trondheim Institute for Energy Technology, Kjeller

More information

Field Experience with Hydrogenics' Prototype Stack and System for MW PEM electrolysis

Field Experience with Hydrogenics' Prototype Stack and System for MW PEM electrolysis Field Experience with Hydrogenics' Prototype Stack and System for MW PEM electrolysis Jan Vaes, February 17th, 2nd int. workshop on Durability and Degradation Issues in PEM Electrolysis Cells and their

More information

Dynamic Water Management Studies by means of Perforated GDLs and In-situ ESEM Observations

Dynamic Water Management Studies by means of Perforated GDLs and In-situ ESEM Observations Dynamic Water Management Studies by means of Perforated GDLs and In-situ ESEM Observations Robert Alink, Dietmar Gerteisen, Christian Sadeler, Christopher Hebling Fraunhofer Institute for Solar Energy

More information

Modeling and analysis of electrochemical hydrogen compression

Modeling and analysis of electrochemical hydrogen compression Modeling and analysis of electrochemical hydrogen compression N.V. Dale 1,*, M. D. Mann 1, H. Salehfar 2, A. M. Dhirde 2, T. Han 2 Abstract One of the challenges to realizing the hydrogen economy is hydrogen

More information

Development of Phosphoric Acid Fuel Cell Stack

Development of Phosphoric Acid Fuel Cell Stack Development of Phosphoric Acid Fuel Cell Stack Akitoshi Seya Takashi Harada 1. Introduction For the practical use of phosphoric acid fuel cells, it is necessary to develop economical and high reliable

More information

Programme Review Day Brussels, 28 & 29 November. Premium Act

Programme Review Day Brussels, 28 & 29 November. Premium Act /1 PREdictive Modelling for Innovative Unit Management and ACcelerated Testing procedures of PEFC (256776) Sylvie Escribano CEA Duration: from 3/211 to 2/214 Total budget: 5 37 19 - FCH contribution: 2

More information

Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units. NEXT ENERGY EWE Forschungszentrum für Energietechnologie e.v.

Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units. NEXT ENERGY EWE Forschungszentrum für Energietechnologie e.v. FCH JU Grant Agreement number: 325262 Project acronym: CISTEM Project title: Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units Work package: 2 - Materials beyond State

More information

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. Off-grid power

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. Off-grid power Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities Off-grid power Brussels, Fall 2017 This compilation of application-specific information forms part of the study

More information

Dr FuelCell Solar Hydrogen and

Dr FuelCell Solar Hydrogen and Dr FuelCell Solar Hydrogen and Educational Products for Schools Fuel Solar Cell Hydrogen Technology Educational products for physics and chemistry lessons 2 Dr FuelCell Renewable energies as well as their

More information

Iron Cation Contamination Effect on the Performance and Lifetime of the MEA

Iron Cation Contamination Effect on the Performance and Lifetime of the MEA Iron Cation Contamination Effect on the Performance and Lifetime of the MEA Dr Ahmad El-kharouf Centre for Hydrogen and Fuel Cells Research www.fuelcells.bham.ac.uk Hydrogen Days 2016, Prague Content Motivation

More information

Commercial Optimization of a 100kg/day PEM based Hydrogen Generator For Energy and Industrial Applications.

Commercial Optimization of a 100kg/day PEM based Hydrogen Generator For Energy and Industrial Applications. Commercial Optimization of a 100kg/day PEM based Hydrogen Generator For Energy and Industrial Applications L. Moulthrop a, E. Anderson b, O. Chow c, R. Friedland d, T. Maloney e, M. Schiller f Hydrogen

More information

Power-to-Gas Project Energiepark Mainz

Power-to-Gas Project Energiepark Mainz Power-to-Gas Project Energiepark Mainz Grid scale hydrogen energy storage Energy transition from nuclear to renewable what can Japan and Germany learn from each other Tokyo, 2014-07-12 1 Stadtwerke Mainz

More information

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. Hydrogen injection into the natural gas grid

Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. Hydrogen injection into the natural gas grid Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities Hydrogen injection into the natural gas grid Brussels, Fall 2017 This compilation of application-specific information

More information

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach and My Research in General Martin Andersson Division of Heat Transfer, Department of Energy Sciences, Faculty of Engineering (LTH),

More information

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO)

Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) EFFIPRO Efficient and robust fuel cell with novel ceramic proton conducting electrolyte (EFFIPRO) FP7-Energy-NMP-2008-1 227560 Truls Norby University of Oslo 1. Project achievements EFFIPRO partnership

More information

PEMFC system and low-grade bioethanol processor unit development for back-up and off-grid power applications

PEMFC system and low-grade bioethanol processor unit development for back-up and off-grid power applications PEMFC system and low-grade bioethanol processor unit development for back-up and off-grid power applications Project coordinator: Henri Karimäki, VTT Henri.karimaki@vtt.fi +358 40 724 1858 http://pembeyond.eu/

More information

HySTAT ON SITE HYDROGEN Infomoment Waterstof 28/06/2017. Roel De Maeyer, Director Sales & Marketing

HySTAT ON SITE HYDROGEN Infomoment Waterstof 28/06/2017. Roel De Maeyer, Director Sales & Marketing HySTAT ON SITE HYDROGEN Infomoment Waterstof 28/06/2017 Roel De Maeyer, Director Sales & Marketing Hydrogenics Europe NV Location : Oevel, Belgium 75 employees +4.500 m² workshop ISO 9001 certified since

More information

SILYZER 200 (PEM electrolysis system)

SILYZER 200 (PEM electrolysis system) 2016-09-27 SEV Conference 100/2030 Siemens AG - PD LD HY erik.wolf@siemens.com SILYZER 200 (PEM electrolysis system) Germany is by far the largest EU exporter of energy Energy Charts 2011 56TWh exp. 13TWh

More information

ESFUELCELL MAXIMIZING THE USE OF PLATINUM CATALYST BY ULTRASONIC SPRAY APPLICATION

ESFUELCELL MAXIMIZING THE USE OF PLATINUM CATALYST BY ULTRASONIC SPRAY APPLICATION PROCEEDINGS OF ASME 2011 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY & 9TH FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY CONFERENCE ESFUELCELL2011 AUGUST 7-10, 2011, WASHINGTON, DC, USA ESFUELCELL2011-54369

More information

Thermoset Solutions for Fuel Cell Seals

Thermoset Solutions for Fuel Cell Seals Thermoset Solutions for Fuel Cell Seals Daniel Ramrus, Sr. Research Scientist, PhD. Daniel.Ramrus@ballard.com* Paul Kozak, R&D Manager, P. Eng., MBA. Paul.Kozak@ballard.com* Date of presentation: September

More information

An Investigation of GDL Porosity on PEM Fuel Cell Performance

An Investigation of GDL Porosity on PEM Fuel Cell Performance 37 A publication of VOL. 42, 2014 CHEMICAL ENGINEERING TRANSACTIONS Guest Editors: Petar Sabev Varbanov, Neven Duić Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-33-4; ISSN 2283-9216 The Italian

More information

CREATING TOMORROW S SOLUTIONS MOBILITY. e-novation FOR FUEL CELLS POWERED BY SILICONES

CREATING TOMORROW S SOLUTIONS MOBILITY. e-novation FOR FUEL CELLS POWERED BY SILICONES CREATING TOMORROW S SOLUTIONS MOBILITY e-novation FOR FUEL CELLS POWERED BY SILICONES PUTTING FUEL CELLS IN THE FAST LANE A fuel-cell vehicle (FCV) or fuel-cell electric vehicle (FCEV) is an electric vehicle

More information

ELECTRA High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy

ELECTRA High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy ELECTRA High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy Truls Norby University of Oslo Project website: http://www.mn.uio.no/smn/english/research/projects/chemistry/electra/

More information

HYDROGEN GENERATION FOR THE ENHANCED INTEGRATION OF RENEWABLE ENERGY. Dr.ir. Jan Vaes Technology Director Hydrogenics Europe NV Oevel

HYDROGEN GENERATION FOR THE ENHANCED INTEGRATION OF RENEWABLE ENERGY. Dr.ir. Jan Vaes Technology Director Hydrogenics Europe NV Oevel HYDROGEN GENERATION FOR THE ENHANCED INTEGRATION OF RENEWABLE ENERGY Dr.ir. Jan Vaes Technology Director Hydrogenics Europe NV Oevel BMG Lustrum 19 September, Mechelen 1 Hydrogenics in Brief 3 production

More information

Solar and wind hydrogen energy systems for standalone power supply

Solar and wind hydrogen energy systems for standalone power supply Solar and wind hydrogen energy systems for standalone power supply Project leader: Associate Professor John Andrews Presented by: Dr Bahman Shabani School of Aerospace, Mechanical and Manufacturing Engineering

More information

DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY

DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY 15 th Annual U.S. Hydrogen Conference, Los Angeles, CA, April 26-30, 2004 DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY R.A. Engel 1, G.S. Chapman 1, C.E.

More information

US Department of Energy s Hydrogen Program. Catherine Grégoire Padró Hydrogen Program Manager National Renewable Energy Laboratory

US Department of Energy s Hydrogen Program. Catherine Grégoire Padró Hydrogen Program Manager National Renewable Energy Laboratory US Department of Energy s Hydrogen Program Catherine Grégoire Padró Hydrogen Program Manager National Renewable Energy Laboratory Hydrogen and U.S. National Energy Policy Hydrogen can play a unique role

More information

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics

Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Modeling of HTPEM Fuel Cell Start-Up Process by Using Comsol Multiphysics Y. Wang *1,2, J. Kowal 1,2 and D. U. Sauer 1,2,3 1 Electrochemical Energy Conversion and Storage Systems Group, Institute for Power

More information

The Power of Ethanol. Fraunhofer Team Direct Ethanol Fuel Cell

The Power of Ethanol. Fraunhofer Team Direct Ethanol Fuel Cell The Power of Ethanol Fraunhofer Team Direct Ethanol Fuel Cell Direct Ethanol Fuel Cell The Power of Ethanol Fuel cells are the technology of the future for the supply of power to electrical appliances.

More information

AREVA H 2 Gen. A PEM Electrolyser Manufacturer. H2BZ-Initiative Hessen e.v., 09. November 2015

AREVA H 2 Gen. A PEM Electrolyser Manufacturer. H2BZ-Initiative Hessen e.v., 09. November 2015 AREVA H 2 Gen A PEM Electrolyser Manufacturer Pascal Pewinski, Geschäftsführer, AREVA H2Gen GmbH Carsten Krause, Geschäftsführer, AREVA H2Gen GmbH H2BZ-Initiative Hessen e.v., 09. November 2015 AREVA H

More information

Stationary Power and CHP. 15 th October 2008

Stationary Power and CHP. 15 th October 2008 Stationary Power and CHP Session 15 th October 2008 , - October 2008 Agenda Introduction and Welcome Background, MAIP and AIP overview MAIP 1 to 4, AIP 2008 1 and 4 MAIP 5 to

More information

CONVERSION OF WIND POWER TO HYDROGEN

CONVERSION OF WIND POWER TO HYDROGEN Proceedings of the 2004/2005 Spring Multi-Disciplinary Engineering Design Conference Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York 14623 May 13, 2005 Project

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

RE/H 2 Production Micro-System Based on Standard Alkaline Electrolytic Technology

RE/H 2 Production Micro-System Based on Standard Alkaline Electrolytic Technology RE/H 2 Production Micro-System Based on Standard Alkaline Electrolytic Technology A. Moschetto a, M. Ferraro b, N. Briguglio b, G. M. Tina a, V. Antonucci b a UNICT DIEES University of Catania Electric,

More information

Degradation of PEM Fuel Cells

Degradation of PEM Fuel Cells MINUTES FCH JU Projects Workshop Degradation of PEM Fuel Cells - experience exchange and discussions April 3 rd + 4 th 2013 at SINTEF, Oslo, Norway Photos: Nedstack and IRD Objective As part of the FCH

More information

National Innovation Program on Hydrogen and Fuel Cell Technology in Germany From Research and Development to Market Launch Support

National Innovation Program on Hydrogen and Fuel Cell Technology in Germany From Research and Development to Market Launch Support National Innovation Program on Hydrogen and Fuel Cell Technology in Germany From Research and Development to Market Launch Support IEA EGRD Workshop, Washington DC, 26.10.2016 Johannes Tambornino Project

More information

ITM POWER PLC COMPANY PRESENTATION MARCH 2017 MANUFACTURER OF PEM ELECTROLYSERS ENERGY STORAGE CLEAN FUEL

ITM POWER PLC COMPANY PRESENTATION MARCH 2017 MANUFACTURER OF PEM ELECTROLYSERS ENERGY STORAGE CLEAN FUEL ITM POWER PLC COMPANY PRESENTATION MARCH 2017 MANUFACTURER OF PEM ELECTROLYSERS ENERGY STORAGE CLEAN FUEL COMPANY PRESENTATION MARCH 2017 Presentation Contents: Transitioning From Grants to Sales Power-to-Gas

More information

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT Ceramic Microchannel Devices for Thermal Management C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT The Right Size for The Right Physics centi milli micro 2 Multiscale Structure

More information

Programme Review Day 2011 Brussels, 22 November

Programme Review Day 2011 Brussels, 22 November http://www.fch-ju.eu/ Programme Review Day 2011 Brussels, 22 November Development of an Internal Reforming Alcohol igh Temperature PEM Fuel Cell Stack IRAFC 245202 FC-JU-2008-1 Stylianos G. Neophytides

More information

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc.

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. 1 AFC Energy Plc: An Introduction Vision To develop and produce a reliable alkaline

More information

The Fuel Cells and Hydrogen Joint Undertaking Past, Present and Future

The Fuel Cells and Hydrogen Joint Undertaking Past, Present and Future The Fuel Cells and Hydrogen Joint Undertaking Past, Present and Future http://www.fch-ju.eu/ P. Moretto (JRC) for the FCH JU 2 1st part received from V. Ferreira Vasco.Ferreira@fch.europa.eu Contents 1.

More information

LARGE-SOFC. Publishable Executive Summary: M13-M24

LARGE-SOFC. Publishable Executive Summary: M13-M24 Project no. 019739 LARGE-SOFC Towards a Large SOFC Power Plant Instrument: Thematic Priority: Integrated Project 6.1 Sustainable Energy Systems Publishable Executive Summary: M13-M24 Period covered: from

More information

Hydrogen Generation From Electrolysis

Hydrogen Generation From Electrolysis Final Report for DOE Award DE-FC36-04GO13030 March 1, 2004 to April 30 2008 By Steven Cohen, Stephen Porter Oscar Chow, David Henderson Principal Investigator: Stephen Porter (203) 678-2305 sporter@protonenergy.com

More information

Fuel Cells as Part of our Future Energy Landscape. Kevin Colbow Director, Product Management & Solutions Engineering

Fuel Cells as Part of our Future Energy Landscape. Kevin Colbow Director, Product Management & Solutions Engineering Fuel Cells as Part of our Future Energy Landscape Kevin Colbow Director, Product Management & Solutions Engineering B A L L A R D P O W E R S Y S T E M S A CLEAN ENERGY GROWTH COMPANY TSX: BLD NASDAQ:

More information

Fitting regression model and experimental validation for a high pressure PEM electrolyzer

Fitting regression model and experimental validation for a high pressure PEM electrolyzer European Association for the Development of Renewable Energies, Environment and Power Quality International Conference on Renewable Energies and Power Quality (ICREPQ 09) Valencia (Spain), 15th to 17th

More information

wind2hydrogen first results

wind2hydrogen first results wind2hydrogen first results Dr. Dipl.-Ing. Helga Pražak-Reisinger OMV Refining & Marketing New Technologies A3PS-Conference 2016 Vienna, October 17th, 2016 OMV Gas & Power wind2hydrogen Transforming renewable

More information

Power-to-Gas. Rob Harvey Director, Energy Storage. IEA Hydrogen Technology Roadmap North American Workshop Bethesda, Maryland January 29, 2014

Power-to-Gas. Rob Harvey Director, Energy Storage. IEA Hydrogen Technology Roadmap North American Workshop Bethesda, Maryland January 29, 2014 Power-to-Gas Rob Harvey Director, Energy Storage IEA Hydrogen Technology Roadmap North American Workshop Bethesda, Maryland January 29, 2014 1 Hydrogenics is a leader in water electrolysers and hydrogen

More information

HyPM-HD POWER MODULES. for light and heavy duty mobility. HyPM. The industry benchmark for durable, zero emission mobility

HyPM-HD POWER MODULES. for light and heavy duty mobility. HyPM. The industry benchmark for durable, zero emission mobility HyPM The industry benchmark for durable, zero emission mobility HyPM-HD POWER MODULES for light and heavy duty mobility THE HYDROGENICS ADVANTAGE At Hydrogenics, we are committed to safety and reliability

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Power to Gas (& liquids) Peter Holtappels Head of Section Fundamental Electrochemistry peho@dtu.dk Contributors: DTU Energy Conversion Mogens Mogensen Fabrizio Salvati Jonathan Hallinder Frank Allebrod

More information

SPIRAL-WOUND PEM FUEL CELLS FOR PORTABLE APPLICATIONS. T.J. Blakley, K.D. Jayne, and M.C. Kimble

SPIRAL-WOUND PEM FUEL CELLS FOR PORTABLE APPLICATIONS. T.J. Blakley, K.D. Jayne, and M.C. Kimble SPIRAL-WOUND PEM FUEL CELLS FOR PORTABLE APPLICATIONS T.J. Blakley, K.D. Jayne, and M.C. Kimble MicroCell Technologies, LLC, 410 Great Rd, C-2, Littleton, MA 01460 Lighter weight and compact fuel cells

More information

A spirit of innovation is in the air! Storing renewable energy using hydrogen

A spirit of innovation is in the air! Storing renewable energy using hydrogen A spirit of innovation is in the air! Storing renewable energy using hydrogen Unique research plant Can a car be refueled with wind energy? Can renewable energies help us to become more independent from

More information

The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the Nonlinear Material

The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the Nonlinear Material Int. J. Electrochem. Sci., 10 (2015) 2564-2579 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org The flow-field pattern Optimization of the Bipolar Plate for PEMFC Considering the

More information

wind2hydrogen Dr. Dipl.-Ing. Walter Böhme MSc. MBA OMV Aktiengesellschaft 10th A3PS-Conference Eco-Mobility 2015 Vienna, November 9 th, 2015

wind2hydrogen Dr. Dipl.-Ing. Walter Böhme MSc. MBA OMV Aktiengesellschaft 10th A3PS-Conference Eco-Mobility 2015 Vienna, November 9 th, 2015 wind2hydrogen Dr. Dipl.-Ing. Walter Böhme MSc. MBA OMV Aktiengesellschaft 10th A3PS-Conference Eco-Mobility 2015 Vienna, November 9 th, 2015 OMV Gas & Power Due to Climate Change Change is necessary General

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Programme Review Day 2012 Brussels, 28 & 29 November

Programme Review Day 2012 Brussels, 28 & 29 November http://www.fch-ju.eu/ Programme Review Day 2012 Brussels, 28 & 29 November Fuel Cells and ydrogen Joint Undertaking DEMMEA (245156) Understanding the Degradation Mechanisms of Membrane Electrode Assembly

More information

COMPUTATIONAL FLUID DYNAMICS MODEL OF HIGH PERFORMANCE PROTON EXCHANGE MEMBRANE FUEL CELL WITHOUT EXTERNAL HUMIDIFICATION

COMPUTATIONAL FLUID DYNAMICS MODEL OF HIGH PERFORMANCE PROTON EXCHANGE MEMBRANE FUEL CELL WITHOUT EXTERNAL HUMIDIFICATION COMPUTATIONAL FLUID DYNAMICS MODEL OF HIGH PERFORMANCE PROTON EXCHANGE MEMBRANE FUEL CELL WITHOUT EXTERNAL HUMIDIFICATION Željko Penga, Frano Barbir Faculty of electrical engineering, mechanical engineering

More information

HANNOVER MESSE, 2012 ITM POWER DESIGNS HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND. Dr Simon Bourne, Chief Technology Officer April, 2012

HANNOVER MESSE, 2012 ITM POWER DESIGNS HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND. Dr Simon Bourne, Chief Technology Officer April, 2012 HIGH POWER DENSITY FUEL CELLS HANNOVER MESSE, 2012 ITM POWER DESIGNS AND MANUFACTURES HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION Dr Simon Bourne, Chief Technology Officer April,

More information

GenHyPEM : an EC-supported STREP program on high pressure PEM water electrolysis

GenHyPEM : an EC-supported STREP program on high pressure PEM water electrolysis GenHyPEM : an EC-supported STREP program on high pressure PEM water electrolysis P. Millet Laboratoire de Physico-Chimie de l Etat Solide, Institut de Chimie Moléculaire et des Matériaux d Orsay, UMR n

More information

Flow and Heat Transfer Characteristics in High Porosity Metal Foams

Flow and Heat Transfer Characteristics in High Porosity Metal Foams Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 333 Flow and Heat Transfer Characteristics in High Porosity Metal

More information

MONTHLY TECHNICAL PROGRESS REPORT. Product Design Improvement

MONTHLY TECHNICAL PROGRESS REPORT. Product Design Improvement 9 ~.:, -, /23$ MONTHLY TECHNICAL PROGRESS REPORT DOE CONTRACT: DE-FC21-95MC31184 TITLE: MCFC Product Design Improvement DATE: January 1999 INTRODUCTION This contract is supported by DOE and DOD/DARPA

More information

High-pressure efficiency in the megawatt range siemens.com/hydrogen-electrolyzer

High-pressure efficiency in the megawatt range siemens.com/hydrogen-electrolyzer SILYZER 200 High-pressure efficiency in the megawatt range siemens.com/hydrogen-electrolyzer Using hydrogen: Powering ahead into the future Hydrogen is one of the best answers to the question of how to

More information

Green Ammonia. September 2015

Green Ammonia. September 2015 September 2015 Green Ammonia Tim Hughes 1, Ian Wilkinson 1, Edman Tsang 2, Ian McPherson 2, Tim Sudmeier 2, Josh Fellowes 2 Fenglin Liao 2, Simson Wu 2,,Augustin Valera-Medina 3, Sebastian Metz 4 1 Siemens

More information

A NOVEL REACTANT DELIVERY SYSTEM FOR PEM FUEL CELLS

A NOVEL REACTANT DELIVERY SYSTEM FOR PEM FUEL CELLS Proceedings of FuelCell2008 6th International Fuel Cell Science, Engineering & Technology Conference June 16 18, 2008, Denver, USA FuelCell2008-65142 A NOVEL REACTANT DELIVERY SYSTEM FOR PEM FUEL CELLS

More information

Production and use of low grade hydrogen for fuel cell telecom applications

Production and use of low grade hydrogen for fuel cell telecom applications Production and use of low grade hydrogen for fuel cell telecom applications Fuel cells and hydrogen in transportation applications 9.10.2017, Espoo, Finland Pauli Koski, VTT Outline 1. On-site hydrogen

More information

Hydrogen-based electric power unit for domestic applications

Hydrogen-based electric power unit for domestic applications Hydrogen-based electric power unit for domestic applications Arnaud Deschamps 1, Guillaume Doucet 1, Claude Etiévant 1, Pierre Millet 2, Christophe Puyenchet 1 1. Compagnie Européenne des Technologies

More information

Solid State Ammonia Synthesis NHThree LLC

Solid State Ammonia Synthesis NHThree LLC Solid State Ammonia Synthesis NHThree LLC Jason C. Ganley John H. Holbrook Doug E. McKinley Ammonia - A Sustainable, Emission-Free Fuel October 15, 2007 1 Inside the Black Box: Steam Reforming + Haber-Bosch

More information

Power to Gas (& liquids)

Power to Gas (& liquids) Downloaded from orbit.dtu.dk on: Jan 28, 2018 Power to Gas (& liquids) Holtappels, Peter Publication date: 2013 Link back to DTU Orbit Citation (APA): Holtappels, P. (2013). Power to Gas (& liquids) [Sound/Visual

More information