Compact liquefied gas expander technological advances

Size: px
Start display at page:

Download "Compact liquefied gas expander technological advances"

Transcription

1 Compact liquefied gas expander technological advances Joel V. Madison President Ebara International Corporation SYNOPSIS LNG expanders are now an important part of every new LNG liquefaction plant. The paper presents a concise overview of the process and plant control benefits brought by the latest generation of Expanders which are able to expand partially into the vapour phase. Before 1996 conventional liquefaction processes for natural gas operated with the high pressure condensation phase flow of liquefied natural gas expanding across a Joule-Thomson valve. Replacing the JT-valve with a cryogenic LNG liquid turbine substantially increased the thermodynamic efficiency of the refrigeration process resulting in a total LNG output increase of 3 to 5%. The development of Two Phase Expanders improves the process yet further. Two Phase Expanders present significant mechanical design challenges in order to handle the increasing volumetric flow and change in density whilst providing flexibility of operating range. Avoiding unstable flow within the machine and resultant vibration further increases the range of problems to be solved. Improving the thermodynamic efficiency of the expander when handling both liquid and vapour raises some interesting problems. The novel concepts used to overcome these problems and mechanical design are dealt with. 1.0 INTRODUCTION In 1895 Carl von Linde, a German engineer, invented the first continuous process for gas liquefaction. Linde's liquefaction process was based on repeating cycles of gas compression, pre-cooling of the compressed gas in a heat exchanger and expansion of the compressed pre-cooled gas across a Joule-Thomson throttling valve. This process yielded the desired result but unfortunately had a high energy consumption that made it commercially unattractive. In 1902 the French engineer George Claude developed a piston expansion engine to replace the Joule-Thomson valve to extract mechanical work from the gas expansion process, thus increasing the efficiency and reducing the high energy consumption. To further reduce the cost of gas liquefaction the first turbo-gas expander was introduced in 1964 by the Elliott turbomachinery company. The comparatively high efficiency of radial inflow turbo-gas expanders compared to piston expanders allowed more work to be extracted from the compressed gas, resulting in a further reduction in power consumption and net increase in process efficiency. Whilst the inefficient expansion process across a Joule-Thomson valve was already eliminated for the gaseous phase in 1902, for many years it remained the only solution to

2 expand the liquefied cryogenic gas in the liquid phase. For the particular case of liquefied gases used as a fuel, like propane, ethane and methane, it was not until 1995 that the first generation of LNG liquid expanders was available to be installed at a liquefaction plant in Malaysia [1]. The engineering challenges associated with the design of engines operating at cryogenic temperatures coupled with the stringent safety and hazard rules for explosive fluids prevented the technology from being commercially available prior to this installation. The ten years following the initial concept for cryogenic LNG expanders saw many developments and technological advances that dramatically improved the performance, reliability and efficiency of the machines. In addition, the size and complexity of the devices were greatly reduced. The increase in overall process plant efficiency and resultant increase in product liquid were well established during this period. As a result every new LNG liquefaction plant that has been built around the world since 1995 has been equipped with liquid expanders in place of the Joule-Thomson valves. The liquefaction of gas is in principle a Carnot refrigeration process that was first described by the French physicist Sadi Carnot in Carnot discovered that the efficiency of a heat engine is dependant only upon its input and output temperatures. For such a refrigeration process the lower the final resultant temperature, the lower the Carnot efficiency will be as more energy input is necessary to achieve the end temperature. The energy input approaches infinity for the case of an output temperature of absolute zero. In summary this entails that more energy input is required to reduce the temperature of a fluid by one degree at a relatively lower temperature than is required to achieve the same reduction at a relatively higher temperature. When applied to a gas liquefaction process, the end result is that the Carnot efficiency of the process is proportionally lower for fluids having a lower liquefaction temperature since more energy input is required. The purpose of liquid expanders in gas liquefaction processes is to further reduce the temperature of the liquefied gas beyond the typically very low cryogenic liquefaction temperature without going through the Carnot refrigeration process. The cryogenic liquid expander directly extracts the heat energy from the liquefied gas by expanding the liquid from a high pressure level to a low pressure level, converting the static pressure energy into kinetic fluid energy and further into mechanical torque and electrical energy where it is ultimately removed from the system. By extracting work in the form of electrical energy from the cryogenic fluid, the thermodynamic internal energy, the enthalpy, is reduced and with it the temperature is reduced. The efficiency of this refrigeration process by means of direct enthalpy reduction across an expansion machine at the low liquefaction temperature is independent of the low Carnot efficiency that would normally be expected. In an ideal isentropic expansion machine the enthalpy reduction is equal to the static differential pressure energy reduction, while in actual expansion machines the achievable energy reduction is between 80% and 90% of this value. The purpose of liquid expanders is very similar to that of gas expanders: Gas expanders reduce the enthalpy of the natural gas in its gaseous state Liquid expanders reduce the enthalpy of the natural gas in its liquefied state

3 Reduced enthalpy corresponds to a reduction in temperature and is effectively a refrigeration of the natural gas. Liquid expanders reduce the pressure, the temperature and the enthalpy of the cryogenic liquefied gas stream. Therefore in the liquefaction process they can be modelled as a heat exchanger combined with a Joule-Thomson valve. 2.0 DESIGN OF LIQUEFIED GAS EXPANDERS Habets and Kimmel [2] described in detail the basic design of cryogenic liquid expanders in the proceedings of the IMechE 7 th European Congress on Fluid Machinery in The Hague Figure 1 shows a three stage liquid expander for LNG installed in 2002 at the LNG liquefaction plant in Ras Laffan, Qatar. Figure 1. Three-stage liquid expander for Ras Laffan LNG Figure 2 shows a cross section of the three stage liquid expander. The high pressure liquid stream at the end of the traditional liquefaction process enters on the top passing through the expander and exits under low pressure at the bottom of the engine. The hydraulic assembly consists of three stages, each with fixed geometry inlet guide vanes and a radial inflow reaction turbine runner. The inlet guide vanes convert the static pressure energy into kinetic rotational energy and the runner converts the resulting rotational energy into shaft

4 torque. The electric generator and the hydraulic assembly are mounted on a common shaft and the generator converts the shaft torque into electrical power. The electrical power is transported by cryogenic power cable to the external power grid. Generator Stator Generator Rotor Thrust Equalization Mechanism (TEM) Fixed Geometry Inlet Guide Vanes Runners Figure 2. Ras Laffan three stage liquid expander The expander extracts enthalpy directly from the fluid by converting the static pressure energy of the fluid into electrical energy to be exported to the power grid. This design constitutes a very efficient refrigeration engine despite the low inlet and exit temperatures. It should be noted that the cryogenic fluid temperature at the exit of the expander is lower than at the inlet. However, in this case it is not necessary to use the Carnot refrigeration process for this final cooling step. The total savings in energy input for the same resultant

5 output temperature are approximately five times the power output of the expander generator when an expander is used in lieu of continued Carnot refrigeration cycles. In a comparison of liquefaction plants with and without liquid expanders, the following statements describe the main differences: In a new plant for a given liquefied gas output production the liquid expander allows installation of less power generation, smaller gas compressors, smaller gas expanders and smaller heat exchangers. In an existing plant or a new plant with given sizes of power generation, gas compressors, gas expanders and heat exchangers the liquid expander increases the liquefied gas output production. The production costs for liquefied gas are invariably lower with a liquid expander than without. 3.0 TWO-PHASE LIQUEFIED GAS EXPANDERS Since the early days of gas liquefaction technology it has been known that two-phase cryogenic expanders would improve the thermodynamic efficiency of gas liquefaction processes. Carl von Linde described the advantages of two-phase expansion engines more than a century ago. Unfortunately only in recent years has the technology been made available to design and manufacture liquid-vapour cryogenic expanders suitable for reliable operation [3]. Two-phase expanders expand the static energy in the form of the available pressure differential from the liquid phase into the liquid-vapour phase across the saturation line of the fluid. The enthalpy of the liquefied gas is reduced significantly more than it would be with single phase expanders due to the vaporisation heat extracted from the liquid portion of the two-phase fluid. Figure 3 shows the design of a single stage two-phase expander. In contrast to the original expander design [2] the pressurised fluid enters radially from the side of the turbine runner and passes through the hydraulic assembly in a predominantly upward flow direction. As a result of the change in density the buoyancy forces of the liquid-vapour mixture support and stabilize the fluid mixture in the upward flow direction. Figure 4 details the hydraulic assembly for a two-phase expander. The pressurized fluid enters the fixed inlet guide vane nozzle ring in the radial direction, converting the static pressure energy into high velocity rotational kinetic energy. The guide vane channels are converging in the axial and radial directions, thus accelerating the fluid to a high angular velocity which creates a high component of angular momentum. The fluid enters the radial inflow reaction turbine runner with this high angular momentum and passes through the runner, which converts the angular momentum into mechanical torque while thereby reducing the pressure of the fluid. At the exit of the runner the pressure of the fluid reaches the saturation point and begins to partially vaporise. Immediately downstream of the runner discharge the fluid enters a two-phase exducer to further vaporize the liquid. Due to the partial vaporisation the specific volume of the twophase fluid is increasing and further acceleration of the fluid occurs. At the exit of the

6 Two Phase Exducer Runner Fixed Geometry Inlet Guide Vanes Generator Stator Generator Rotor Figure 3. Single stage two-phase expander exducer the two-phase fluid reaches a high exit velocity approaching the speed of sound, forming a jet-like fluid stream exiting the exducer. This jet-like fluid stream exerts a reaction force on the exducer, which causes additional torque to be generated As a result the total power extracted from the fluid is significantly increased due to this additional expansion step. Two-phase expanders utilising this principle have been operating reliably and economically since 2003 [4]. Two Phase Exducer Runner Fixed Geometry Inlet Guide Vanes

7 The Carnot refrigeration process requires several cooling cycles to reach the liquefaction temperature of natural gas and similar cryogenic gases. For natural gas liquefaction the cooling cycle uses heavier hydrocarbons such as propane and ethane as a mixture with methane to pre-cool the processed final methane rich natural gas. These cooling cycles include liquid expanders as well due to the advantages for the refrigeration process. Typical LNG liquefaction plants therefore make use of two liquid expanders, one for heavy hydrocarbon mixtures in the pre-cooling cycle and one for final methane rich product LNG. To optimize the refrigeration process, increasing the overall liquefaction efficiency and reducing the unit liquefaction costs, the compact two-cycle expander represents the most advanced solution in gas liquefaction process technology available today[5]. Figure 4. Two-phase hydraulic assembly 4.0 COMPACT TWO-CYCLE LIQUEFIED GAS EXPANDERS Runner Upper 2-Phase 2-Stage LNG Expander LNG Inlet Vessel Seal Arrangement Generator Single Shaft MR Inlet Vessel Lower 2-Stage MR Expander Figure 5 Compact two-cycle expander Figure 5 shows the design of the Compact Two-Cycle Expander for the application as a two-phase LNG expander combined with the mixed refrigerant (HMR) expander for the pre-cooling cycle. The Compact Two-Cycle Expander utilizes a single shaft and generator driven by two separate expanders. The upper LNG expander is separated from the generator by a seal and is directionally opposed to the lower expander. The bearings are

8 lubricated and the generator cooled by the HMR fluid so that the heat of the generator is sent to the MR circuit with the consequent increase in process efficiency on the LNG expander as the fluid stream is not exposed to any parasitic losses that will reduce the total heat removed. A single TEM (Thrust Equalisation Mechanism) is sufficient to balance the residual thrust from both upper and lower expanders, further reducing the internal recirculation and improving efficiency. The bypass fluid stream required to balance the thrust in this configuration is significantly lower when compared to a single machine due to the opposed orientation of the two expanders. Figure 6 shows the design of the compact two-cycle expander for the same application but with the improvement in the efficiency by completely separating the generator cooling from the hydrocarbon cooling cycles. The High-Efficiency Compact Two-Cycle Expander retains the single shaft and generator concept with the upper expander and lower expander opposed to balance the majority of the hydraulic thrust. The lower single phase HMR expander is also separated from the generator by a seal in this configuration. The generator and generator bearings are cooled by a third liquid available in the process. By removing the generator inefficiency, the heat of the generator is completely removed from the LNG/MR circuits with a resultant increase in process efficiency. Figure 7 highlights the dramatic reduction in overall size offered by the High-Efficiency Compact Two-Cycle Expander when compared to the first generation expanders. It can be seen that a single compact machine is used to replace two separate machines. The benefits related to the reduction in scale are apparent, with the associated reduction in complexity and improvements in performance making this solution even more attractive. 5.0 CONCLUSION The process efficiency, size and complexity of equipment utilised in liquefaction plants will have even more importance in the future. The concepts discussed allow for significant increases in process efficiency and dramatic reductions in the physical size and complexity of the systems. These improvements are important for all new and existing plants, and are particularly critical for applications in which space is limited, such as offshore liquefaction facilities. Retro-fitting of existing liquefaction plants that are based on older technology also benefit as lower production costs will enable such plants to remain competitive with the new installations currently operating or under construction. REFERENCES 1. Verkoehlen, J., "Initial Experience with LNG/MCR Expanders in MLNG-Dua" Proceedings GASTECH 96, Volume 2, Vienna, Austria, Dec 1996, ISBN Habets, G.L.G.M. and Kimmel, H.E., "Development of a Hydraulic Turbine in Liquefied Natural Gas" IMechE 7 th European Congress on Fluid Machinery for the Oil, Petrochemical, and Related Industries, April 1999, The Hague, The Netherlands, ISBN Kikkawa, Y. and Kimmel, H.E., "Interaction between Liquefaction Process and LNG Expanders", Proceedings 2001 AICHE Spring National Meeting, Natural Gas Utilization Topical Conference, Houston, Texas, April 2001

9 4. Cholast, K.; Kociemba, A. and Heath, J., "Two-Phase Expanders Replace Joule- Thomson Valves at Nitrogen Rejection Plants", 5 th World LNG Summit, Rome, December Madison, J. V. Comprehensive Applications for LNG Expanders 6 th World LNG Summit, Rome, November Seal Arrangement Generator coolant flow Generator Seal Arrangement Figure 6. High-Efficiency Compact Two-Cycle Expander

10 Figure 7. High-Efficiency Compact Two-Cycle Expander size compared to first generation expanders

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications

Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications Paper 4d Magnetically Coupled Submerged Cryogenic Pumps and Expanders for Ammonia Applications Liquefied Ammonia, or Liquid NH3, is (like LNG or liquefied natural gas) a cryogenic fluid and production

More information

POWER RECOVERY IN FLOATING LNG REGASIFICATION PLANTS

POWER RECOVERY IN FLOATING LNG REGASIFICATION PLANTS POWER RECOVERY IN FLOATING LNG REGASIFICATION PLANTS Arindom Goswami Senior Principal Engineer M. W. Kellogg Ltd Greenford, UB6 0JA, U.K. arindom.goswami@mwkl.co.uk Hans E. Kimmel Executive Director R&D

More information

Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants

Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants Two-Phase Expanders Replace Joule-Thomson Valves at Nitrogen Rejection Plants 5 th World LNG Summit, 1 st to 3 rd December 2004 Katarzyna Cholast and Andrzej Kociemba Process Advisors Ostrów Wielkopolski

More information

NOVEL SCHEME FOR SMALL SCALE LNG PRODUCTION in POLAND. W.H. Isalski

NOVEL SCHEME FOR SMALL SCALE LNG PRODUCTION in POLAND. W.H. Isalski NOVEL SCHEME FOR SMALL SCALE LNG PRODUCTION in POLAND W.H. Isalski Presentation Overview The history of gas de-nitrogenation in Poland Changes in feed gas Changes in market conditions Expanding market

More information

Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine?

Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine? Kalina & Organic Rankine Cycles: How to Choose the Best Expansion Turbine? Dr Frédéric Marcuccilli, Senior Process Engineer Hervé Mathiasin, Sales Engineer Electricity generation from Enhanced Geothermal

More information

6/11/2014 Fwd: that article in OGJ - - Ebara International Corporation Mail

6/11/2014 Fwd: that article in OGJ - - Ebara International Corporation Mail Two-phase expanders manage feed-gas changes 03/03/2014 Katarzyna Chołast PGNiG SA Odolanow, Poland John C. Heath Ebara International Corp. Sparks, Nev. Based on a presentation to GPA Europe 30th Annual

More information

MLNG DUA DEBOTTLENECKING PROJECT

MLNG DUA DEBOTTLENECKING PROJECT MLNG DUA DEBOTTLENECKING PROJECT Yahya Ibrahim Senior General Manager Malaysia LNG Malaysia yahyai@petronas.com.my Tariq Shukri LNG Consultant Foster Wheeler Energy Limited Reading, U.K. Tariq_shukri@fwuk.fwc.com

More information

EBARA INTERNATIONAL CORPORATION Cryodynamics Division CRYODYNAMICS SUBMERGED CRYOGENIC PUMPS & EXPANDERS

EBARA INTERNATIONAL CORPORATION Cryodynamics Division CRYODYNAMICS SUBMERGED CRYOGENIC PUMPS & EXPANDERS EBARA INTERNATIONAL CORPORATION Cryodynamics Division CRYODYNAMICS SUBMERGED CRYOGENIC PUMPS & EXPANDERS WHO WE ARE EBARA INTERNATIONAL CORPORATION, CRYODYNAMICS DIVISION (EIC CRYO) For over forty years,

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING COURSE COURSE 134 1 - Level 3 - Equipment & System Principles 4 - TURBINE, GENERATOR & AUXILIARIES Index 134.00-0 Objectives

More information

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas H.M. Chang 1, J.H. Park 1, K.S. Cha 2, S. Lee 2 and K.H. Choe 2 1 Hong Ik University, Seoul, Korea 121-791 2 Korea Gas Corporation,

More information

Efficacité supérieure Coût inférieur Plus grande fiabilité et robustesse. PO-6.1

Efficacité supérieure Coût inférieur Plus grande fiabilité et robustesse. PO-6.1 AN ADVANCED CRYOGENIC EXPANDER FOR NATURAL GAS LIQUEFACTION PLANTS AMELIORATION DES PROCEDES DE LIQUEFACTION DE GAZ NATUREL PAR UTILISATION DE TURBINES HYDRAULIQUES S. Gopalakrishnan Pump Division Flowserve

More information

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Chemical Engineering Thermodynamics Lab

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Chemical Engineering Thermodynamics Lab DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Chemical Engineering Thermodynamics Lab Introduction The application of thermodynamics to any real problem starts with

More information

Process Compressors. Designed to optimize your business. Answers for energy.

Process Compressors. Designed to optimize your business. Answers for energy. Process Compressors Designed to optimize your business Answers for energy. Turbocompressors from Siemens covering the complete spectrum Siemens offers a full range of turbocompressors to meet the needs

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

Improved efficiency and lifetime reliability with new hydraulic energy recovery design for CO2 removal in ammonia plants

Improved efficiency and lifetime reliability with new hydraulic energy recovery design for CO2 removal in ammonia plants Improved efficiency and lifetime reliability with new hydraulic energy recovery design for CO2 removal in ammonia plants PREM KRISH, JEREMY MARTIN, JOHN SIENKIEWICZ, ANDREA GAINS-GERMAIN Energy Recovery

More information

Course 0101 Combined Cycle Power Plant Fundamentals

Course 0101 Combined Cycle Power Plant Fundamentals Course 0101 Combined Cycle Power Plant Fundamentals Fossil Training 0101 CC Power Plant Fundamentals All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

More information

LNG UNIT (ENGINEERING DESIGN GUIDELINE)

LNG UNIT (ENGINEERING DESIGN GUIDELINE) Page : 1 of 60 Guidelines for Processing Plant www.klmtechgroup.com Rev 01 KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia (ENGINEERING DESIGN GUIDELINE)

More information

Optimising. the LNG process. The rapidly expanding global LNG industry continues. Projects

Optimising. the LNG process. The rapidly expanding global LNG industry continues. Projects Optimising the LNG process John Baguley, Liquefied Natural Gas Ltd, Australia, outlines the benefits of an innovative liquefaction process technology for mid scale LNG projects. The rapidly expanding global

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

There are many cryogenic

There are many cryogenic Tray revamp for demethaniser ethane recovery As a first step in an ethane extraction plant s operational improvement plan, a tray revamp was performed to improve both tray efficiency and ethane recovery

More information

ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE

ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE ADVANCED PROCESS CONTROL QATAR GAS ONE YEAR EXPERIENCE Bouchebri El-Hadi Senior Process Engineer Benmouley Abdelkader Head of Process Qatar Liquefied Gas Company Limited. Ras Laffan Industrial Area, Doha,

More information

We will incorporate life cycle strategic partnering to achieve operational efficiency and economically effective programs. Low-Carbon, Low-Cost Energy

We will incorporate life cycle strategic partnering to achieve operational efficiency and economically effective programs. Low-Carbon, Low-Cost Energy Our mission To become a world leader of innovative solutions for financing by partnering, designing, installing & operating low carbon technologies in the power sector. We will incorporate life cycle strategic

More information

Improving Natural Gas Liquefaction Plant Performance with Process Analyzers

Improving Natural Gas Liquefaction Plant Performance with Process Analyzers Process Analytics Improving Natural Gas Liquefaction Plant Performance with Process Analyzers LNG is natural gas in its liquid state with high energy density, which makes it useful for storage and transportation

More information

A new cryogenic high-pressure H2 test area: First results

A new cryogenic high-pressure H2 test area: First results Proceedings of the 12th IIR International Conference: Dresden, Germany, September 11-14, 2012. A new cryogenic high-pressure H2 test area: First results J. Klier *, M. Rattey *,**, G. Kaiser *, M. Klupsch

More information

LNG LIQUEFIED NATURAL GAS TECHNOLOGIES

LNG LIQUEFIED NATURAL GAS TECHNOLOGIES LNG LIQUEFIED NATURAL GAS TECHNOLOGIES Air Liquide Group Air Liquide Engineering & Construction The world leader in gases, technologies and services for Industry and Health Air Liquide is present in 80

More information

Mobile Nitrogen Vaporizer Skid

Mobile Nitrogen Vaporizer Skid A NEWSLETTER FROM CRYOGENIC INDUSTRIES WINTER 2013 Mobile Nitrogen Vaporizer Skid ryoquip Europe recently C designed and manufactured a mobile nitrogen ISO container vaporizer skid for large flow rate

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad,

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, 500014. MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : THERMAL ENGINEERING II Course Code : A50326- Class : III B. Tech I Semester

More information

Ejector Expansion Refrigeration Systems

Ejector Expansion Refrigeration Systems Research Inventy: International Journal Of Engineering And Science Vol.5, Issue 2 (February 2015), PP 25-29 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Ejector Expansion Refrigeration

More information

Heat Effects in Gas Systems

Heat Effects in Gas Systems Heat Effects in Gas Systems Günter Wagner, LIWACOM and Zdeněk Vostrý, Simone Research Group Paper presented at the 9 th SIMONE Congress, Dubrovnik, Croatia, 15.-17. October 2008 Introduction This paper

More information

GTI Small-Scale Liquefier Technology. March 2013

GTI Small-Scale Liquefier Technology. March 2013 GTI Small-Scale Liquefier Technology March 2013 GTI Liquefier System > Proven technology in use at 13,000-30,000 gpd > Optimized for energy efficiency > System well suited to rapid start-up and frequent

More information

Air Cycle Refrigeration Systems Nagendra M CBM Engineer, Hindusthan Zink.Ltd The specific objectives of the lesson This lesson discusses various gas cycle refrigeration systems based on air, namely: 1.

More information

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra

CONTROL VOLUME ANALYSIS USING ENERGY. By Ertanto Vetra CONTROL VOLUME ANALYSIS USING ENERGY 1 By Ertanto Vetra Outlines Mass Balance Energy Balance Steady State and Transient Analysis Applications 2 Conservation of mass Conservation of mass is one of the most

More information

Gastech Singapore October Capital Cost and Efficiency Data for the ZR-LNG Dual Methane Expander Liquefaction Technology

Gastech Singapore October Capital Cost and Efficiency Data for the ZR-LNG Dual Methane Expander Liquefaction Technology Gastech Singapore October 2015 Capital Cost and Efficiency Data for the ZR-LNG Dual Methane Expander Liquefaction Technology Authors: GW Howe, GF Skinner, AD Maunder Presenter: GW Howe Introduction LNG

More information

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki)

Chapter 5 1. Hydraulic Pumps (pp , Gorla & Khan; Wiki) Chapter 5 1. Hydraulic Pumps (pp. 47 90, Gorla & Khan; Wiki) 1. Two Basic Categories of Pumps Positive Displacement (PD) Pumps A positive displacement pump causes a fluid to move by trapping a fixed amount

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

UNIQUE DESIGN CHALLENGES IN THE AUX SABLE NGL RECOVERY PLANT

UNIQUE DESIGN CHALLENGES IN THE AUX SABLE NGL RECOVERY PLANT UNIQUE DESIGN CHALLENGES IN THE AUX SABLE NGL RECOVERY PLANT Presented at the 81 st Annual Convention of the Gas Processors Association March 11, 2002 Dallas, Texas Joe T. Lynch, P.E. Ortloff Engineers,

More information

Linde Kryotechnik AG. Effects of oil contamination on cryogenic plants. Ionic Liquids.

Linde Kryotechnik AG. Effects of oil contamination on cryogenic plants. Ionic Liquids. Linde Kryotechnik AG. Effects of oil contamination on cryogenic plants. Ionic Liquids. Andreas Rüegge Coventry, 6 th September 2017 Contents 1. Company Profile 2. Oil contamination in cryogenic systems

More information

OVERALL EFFICIENCY CONSIDERATION OF PNEUMATIC SYSTEMS INCLUDING COMPRESSOR, DRYER, PIPE AND ACTUATOR

OVERALL EFFICIENCY CONSIDERATION OF PNEUMATIC SYSTEMS INCLUDING COMPRESSOR, DRYER, PIPE AND ACTUATOR OVERALL EFFICIENCY CONSIDERATION OF PNEUMATIC SYSTEMS INCLUDING COMPRESSOR, DRYER, PIPE AND ACTUATOR Toshiharu KAGAWA*, Maolin CAI*, Hirotaka KAMEYA** *P recision and Intelligence Laboratory, Tokyo Institute

More information

G. Spazzafumo Department of Industrial Engineering, University of Cassino, Italy

G. Spazzafumo Department of Industrial Engineering, University of Cassino, Italy STORAGE OF HYDROGEN G. Spazzafumo Department of Industrial Engineering, University of Cassino, Italy Keywords: Hydrogen, Storage, Gaseous Hydrogen, Liquid Hydrogen, Hydrogen Slush, Cylinder, Cryogenic

More information

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector Proceedings of the International Conference on Heat Transfer and Fluid Flow Prague, Czech Republic, August 11-12, 2014 Paper No. 171 Numerical Investigation of the Flow Dynamics of a Supersonic Fluid Ejector

More information

Elliott Engineered Solutions SERVICES

Elliott Engineered Solutions SERVICES Elliott Engineered Solutions SERVICES Engineered Solutions Elliott Engineered Solutions has one clear focus to help customers derive additional value from their critical turbomachinery. Elliott has more

More information

NGL NATURAL GAS LIQUIDS TECHNOLOGIES

NGL NATURAL GAS LIQUIDS TECHNOLOGIES NGL NATURAL GAS LIQUIDS TECHNOLOGIES Air Liquide Group Air Liquide Engineering & Construction The world leader in gases, technologies and services for Industry and Health Air Liquide is present in 80 countries

More information

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY

ES Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY ES 202 - Fluid & Thermal Systems Page 1 of 6 STEAM TURBINE LABORATORY Objective The objective of this laboratory experience is to demonstrate how mechanical power can be generated using a steam turbine

More information

STUDY OF CRYOGENIC CYCLES WITH ASPEN - HYSYS SIMULATIONS

STUDY OF CRYOGENIC CYCLES WITH ASPEN - HYSYS SIMULATIONS STUDY OF CRYOGENIC CYCLES WITH ASPEN - HYSYS SIMULATIONS A PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Mechanical Engineering By SUNIL

More information

DRIVING EXPANDER TECHNOLOGY. Atlas Copco Gas and Process Solutions

DRIVING EXPANDER TECHNOLOGY. Atlas Copco Gas and Process Solutions DRIVING EXPANDER TECHNOLOGY Atlas Copco Gas and Process Solutions Overview Driving Expander Technology Atlas Copco Gas and Process is continuously working to improve and extend the capabilities and performance

More information

Precooling strategies for efficient natural gas liquefaction

Precooling strategies for efficient natural gas liquefaction Originally appeared in: September/October 217, pgs 19-29. Used with permission. SPECIAL FOCUS: LNG TECHNOLOGY Precooling strategies for efficient natural gas liquefaction G. KRISHNAMURTHY, M. J. ROBERTS

More information

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

More information

Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi )

Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi ) Teknologi Pemrosesan Gas (TKK 564) Instructor: Dr. Istadi (http://tekim.undip.ac.id/staf/istadi ) Email: istadi@undip.ac.id id Instructor s t Background BEng. (1995): Universitas Diponegoro Meng. (2000):

More information

Revue des Energies Renouvelables Spécial ICT3-MENA Bou Ismail (2015) Numerical study of a single effect ejector-absorption cooling system

Revue des Energies Renouvelables Spécial ICT3-MENA Bou Ismail (2015) Numerical study of a single effect ejector-absorption cooling system Revue des Energies Renouvelables Spécial ICT3-MENA Bou Ismail (2015) 71-77 Numerical study of a single effect ejector-absorption cooling system D. Sioud 1*, M. Bourouis 2 et A. Bellagi 1 1 Unité de Recherche

More information

Brazed aluminium heat exchangers (BAHXs), also referred to

Brazed aluminium heat exchangers (BAHXs), also referred to Brazed aluminium heat exchangers (BAHXs), also referred to as plate fin heat exchangers, are at the heart of many of the processes used for the liquefaction of natural gas. They are deployed across the

More information

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS

MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS MECHANICAL ENGINEERING THERMAL AND FLUID SYSTEMS STUDY PROBLEMS PRINCIPLES: THERMODYNAMICS & ENERGY BALANCES 1 Copyright 2018. All rights reserved. How to use this book The exam specifications in effect

More information

700-m 400-MW Class Ultrahigh-head Pump Turbine

700-m 400-MW Class Ultrahigh-head Pump Turbine 7-m 4-MW Class Ultrahigh-head Pump Turbine Hitachi Review Vol. 49 (2), No. 2 81 Kozo Ikeda Morihito Inagaki Kazuo Niikura Katsuhiro Oshima OVERVIEW: The first unit of the world-leading ultrahigh-head pump

More information

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+,

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+, Power Plant Overview Training Module ALSTOM (Switzerland) Ltd )*+, We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Latest Simulation Technologies for Improving Reliability of Electric Power Systems

Latest Simulation Technologies for Improving Reliability of Electric Power Systems Latest Simulation Technologies for Improving Reliability of Electric Power Systems 386 Latest Simulation Technologies for Improving Reliability of Electric Power Systems Kiyoshi Segawa Yasuo Takahashi

More information

Turbomachinery Aerodynamics

Turbomachinery Aerodynamics Lect- 1 1 Turbomachinery Aerodynamics A Video course by Bhaskar Roy A M Pradeep Aerospace Engineering Department I.I.T., Bombay 2 Course Outline Introduction to Turbomachineries: Axial flow compressors

More information

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas Chun Hsiang Yang, Cheng Chia Lee and Chiun Hsun Chen Abstract In this study, the effects of biogas s on the performance

More information

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile Contents Power Plants Steam Power plants Binary Power plants Geothermal Power Plants Single flash systems Binary systems 1 Equipment Well head Gathering piping system Steam separators and moisture separators

More information

The Development of a Small High Speed Steam Microturbine Generator System

The Development of a Small High Speed Steam Microturbine Generator System IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The Development of a Small High Speed Steam Microturbine Generator System To cite this article: Adrian Alford et al 2015 IOP Conf.

More information

A new re-liquefaction system of MRS-F (Methane Refrigeration System Full re-liquefaction) for LNG Carriers

A new re-liquefaction system of MRS-F (Methane Refrigeration System Full re-liquefaction) for LNG Carriers A new re-liquefaction system of MRS-F (Methane Refrigeration System Full re-liquefaction) for LNG Carriers DongKyu Choi *, Hyunjun Shin DAEWOO SHIPBUILDING AND MARINE ENGINEERING Co., Ltd. Dual fuel slow-speed

More information

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR

SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR SIMULATION AND SENSITIVITY ANALYSIS OF A MIXED FLUID CASCADE LNG PLANT IN A TROPICAL CLIMATE USING A COMMERCIAL SIMULATOR Gianfranco Rodríguez 1, Fabiana Arias 1, Maria G. Quintas 1, Alessandro Trigilio

More information

Natural Gas Processing

Natural Gas Processing Natural Gas Processing Technology and Engineering Design Alireza Bahadori, Ph.D. School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia AMSTERDAM BOSTON HEIDELBERG

More information

A NOVEL DESIGN FOR MTPA LNG TRAINS

A NOVEL DESIGN FOR MTPA LNG TRAINS A NOVEL DESIGN FOR 10-12 MTPA TRAINS Sander Kaart Wiveka Elion Barend Pek Rob Klein Nagelvoort Shell Global Solutions International B.V. P.O. Box 541, 2501 CM The Hague, The Netherlands ABSTRACT Shell

More information

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core

Qualitative Phase Behavior and Vapor Liquid Equilibrium Core 2/22/2017 Qualitative Phase Behavior and Qualitative Phase Behavior Introduction There are three different phases: solid, liquid, and gas (vapor) Energy must be added to melt a solid to form liquid If

More information

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination No. of Printed Pages : 5 ET-201(B) B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) B.Tech. (Aerospace Engineering) Term-End Examination 007: 7 8 December, 2013 ET-201(B)

More information

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits POWER-GEN Asia 2011 Kuala-Lumpur, Malaysia September 27-29, 2011 Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits Leonid Moroz, Kirill Grebennik 15 New England Executive Park,

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc.

CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc. CFD Analysis of a Low Head Propeller Turbine with Comparison to Experimental Data By: Artem Ivashchenko, Mechanical Solutions, Inc. Edward Bennett, Mechanical Solutions, Inc. CFD Analysis of a Low Head

More information

Size reduction equipment for processing dry bulk materials. How to operate an air classifier mill to meet your fine grinding goals

Size reduction equipment for processing dry bulk materials. How to operate an air classifier mill to meet your fine grinding goals As appeared in June 2013 PBE Copyright CSC Publishing www.powderbulk.com How to operate an air classifier mill to meet your fine grinding goals Rob Voorhees Hosokawa Micron Powder Systems An air classifier

More information

COMPRESSORS: DESIGN, OPERATION AND MAINTENANCE

COMPRESSORS: DESIGN, OPERATION AND MAINTENANCE OPERATION AND MAINTENANCE Enhancing compressor uptime and reducing operating costs through best practices and effective maintenance Presenter: Fred Geitner ABOUT THE PRESENTER: FRED GEITNER P.ENG Mr. Geitner

More information

White Rose Research Online URL for this paper: Version: Accepted Version

White Rose Research Online URL for this paper:  Version: Accepted Version This is a repository copy of Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR). White

More information

Contributing to society, industry and people s livelihoods through leading-edge technologies and superior services

Contributing to society, industry and people s livelihoods through leading-edge technologies and superior services 6 3 In-house Companies 7 Fluid Machinery and Systems Company Pumps Business This business supplies a wide range of different kinds of pumps, including pump units and standard pumps used in office buildings,

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Khader, M. A. (2017). Development of a micro gas turbine for concentrated solar power applications. (Unpublished Doctoral

More information

High Bridge Combined Cycle Plant

High Bridge Combined Cycle Plant High Bridge Combined Cycle Plant Location: Down town St. Paul, on the Mississippi River Plant Description: High Bridge is a combined cycle generating facility. A combined cycle plant produces electricity

More information

Chemistry of Petrochemical Processes

Chemistry of Petrochemical Processes Chemistry of Petrochemical Processes ChE 464 Instructor: Dr. Ahmed Arafat, PhD Office: building 45 room 106 E-mail: akhamis@kau.edu.sa www.kau.edu.sa.akhamis files Book Chemistry of Petrochemical Processes

More information

Fuel cell gas turbine hybrids a key part of a clean future

Fuel cell gas turbine hybrids a key part of a clean future Fuel cell gas turbine hybrids a key part of a clean future The Rolls-Royce development programme for pressurised hybrid fuel cell systems Robert Cunningham Fuel Cells Group 2001 Rolls-Royce plc The information

More information

Compressors for the compression of biogas and biomethane Gas meters for the metering of biogas and biomethane

Compressors for the compression of biogas and biomethane Gas meters for the metering of biogas and biomethane AERZEN BIOGAS solutions Compressors for the compression of biogas and biomethane Gas meters for the metering of biogas and biomethane You can expect a lot from us. Premium technologies for the biogas sector

More information

National Maritime Center

National Maritime Center National Maritime Center Providing Credentials to Mariners U.S.C.G. Merchant Marine Exam (Sample Examination) Page 1 of 17 Choose the best answer to the following Multiple Choice Questions. 1. The circle

More information

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young

Pumps, Turbines, and Pipe Networks, part 2. Ch 11 Young Pumps, Turbines, and Pipe Networks, part 2 Ch 11 Young Pump and Turbine Dimensional Analysis (11.5 Young) Say we want to replace turbines on the Hoover Dam Want to have a good design Essentially impossible

More information

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature

Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature International Journal of Technology Enhancements and Emerging Engineering Research, VOL 1, ISSUE 1 20 Performance Evaluation Of Gas Turbine By Reducing The Inlet Air Temperature V. Gopinath 1, G. Navaneethakrishnan

More information

Simple Dew Point Control HYSYS v8.6

Simple Dew Point Control HYSYS v8.6 Simple Dew Point Control HYSYS v8.6 Steps to set up a simulation in HYSYS v8.6 to model a simple dew point control system consisting of: Gas chiller Flash separator Liquid stabilizer with gas recycle &

More information

Optimization Of Pattern Factor Of The Annular Gas Turbine Combustor For Better Turbine Life

Optimization Of Pattern Factor Of The Annular Gas Turbine Combustor For Better Turbine Life Optimization Of Pattern Factor Of he Annular Gas urbine Combustor For Better urbine Life 1 Ambrish babu D, 2 K.K.Arun, 3 Anandanarayanan R 1, 2 (Mechanical Engineering, Kumaraguru College of echnology/anna

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine

More information

Waste Heat Recovery at Compressor Stations

Waste Heat Recovery at Compressor Stations Waste Heat Recovery at Compressor Stations The path towards novel and high-impact technologies and their implementation Gas Electric Partnership Houston, TX Feb 10-11 2010 Presented by Southwest Research

More information

Kolmetz Handbook of Process Equipment Design STEAM TURBINE SYSTEMS (ENGINEERING DESIGN GUIDELINE)

Kolmetz Handbook of Process Equipment Design STEAM TURBINE SYSTEMS (ENGINEERING DESIGN GUIDELINE) Guidelines for Processing Plant KLM Technology #03-12 Block Aronia, Jalan Sri Perkasa 2 Taman Tampoi Utama 81200 Johor Bahru Malaysia, Standards and Software www.klmtechgroup.com Kolmetz Handbook of Process

More information

energytech.at energytech.at [ energy technology austria ] Cogeneration (CHP) TechnologyPortrait

energytech.at energytech.at [ energy technology austria ] Cogeneration (CHP) TechnologyPortrait energytech.at [ energy technology austria ] energytech.at The internet-platform for innovative energy technologies in the area of renewable energy sources and energy efficiency http://energytech.at TechnologyPortrait

More information

Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded Low Pressure Gas Turbine of Aircraft Engine

Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded Low Pressure Gas Turbine of Aircraft Engine International Journal of Gas Turbine, Propulsion and Power Systems December 2008, Volume 2, Number 1 Advanced Gas Turbine Concept, Design and Evaluation Methodology. Preliminary Design of Highly Loaded

More information

NUMERICAL INVESTIGATION OF AN R744 LIQUID EJECTOR FOR SUPERMARKET REFRIGERATION SYSTEMS

NUMERICAL INVESTIGATION OF AN R744 LIQUID EJECTOR FOR SUPERMARKET REFRIGERATION SYSTEMS THERMAL SCIENCE: Year 2016, Vol. 20, No. 4, pp. 1259-1269 1259 NUMERICAL INVESTIGATION OF AN R744 LIQUID EJECTOR FOR SUPERMARKET REFRIGERATION SYSTEMS by Michal HAIDA a, Jacek SMOLKA a*, Michal PALACZ

More information

Exergy in Processes. Flows and Destruction of Exergy

Exergy in Processes. Flows and Destruction of Exergy Exergy in Processes Flows and Destruction of Exergy Exergy of Different Forms of Energy Chemical Energy Heat Energy Pressurised Gas Electricity Kinetic Energy Oxidation of Methane ΔH = -890.1 kj/mol ΔS

More information

LNG Facts A Primer. Presentation before US Department of Energy, Office of Fossil Energy, LNG Forums. March 10, Kristi A. R.

LNG Facts A Primer. Presentation before US Department of Energy, Office of Fossil Energy, LNG Forums. March 10, Kristi A. R. LNG Facts A Primer Presentation before US Department of Energy, Office of Fossil Energy, LNG Forums March 10, 2006 Kristi A. R. Darby Center for Louisiana State University Overview What is Natural Gas?

More information

FLOWSERVE CORPORATION Guardian Pumps. Centrifugal ANSI Pumps Product Training Program

FLOWSERVE CORPORATION Guardian Pumps. Centrifugal ANSI Pumps Product Training Program FLOWSERVE CORPORATION Guardian Pumps Centrifugal ANSI Pumps Product Training Program April 2017 Sealless Pumps Definition A pump that is designed with no externally actuated shaft penetrating the pump

More information

CONVERTING DOMINION COVE POINT LNG INTO BIDIRECTIONAL FACILITY

CONVERTING DOMINION COVE POINT LNG INTO BIDIRECTIONAL FACILITY CONVERTING DOMINION COVE POINT LNG INTO BIDIRECTIONAL FACILITY Pascal Bocherel, Jim Strohman, Juan Martinez Dominion Cove Point LNG, LP Brett Wink, Kamal Shah, John Ray IHI E & C International Corporation

More information

Performance of an Open Ducted Type Very Low Head Cross- Flow Turbine

Performance of an Open Ducted Type Very Low Head Cross- Flow Turbine Performance of an Open Ducted Type Very Low Head Cross- Flow Turbine Zhenmu Chen, Van Thanh Tien Nguyen, Morihito Inagaki, and Young-Do Choi * Abstract Cross Flow Turbine (CFT) known as a Banki turbine

More information

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate GTC Technology White Paper GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column Engineered to Innovate GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column

More information

Liquefied natural gas

Liquefied natural gas Liquefied natural gas Liquefied natural gas or LNG is natural gas, consisting primarily of methane (CH 4 ), that has been converted into liquid form for ease of transport and storage. More simply put,

More information

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett Faculté de génie Génie mécanique Faculty of Engineering Mechanical Engineering MCG2131 - THERMODYNAMICS II 22 April 2008 Page 1 of 7 Prof. W. Hallett Closed book. Non-programmable calculators only allowed.

More information

PROCESS MOISTURE ANALYZERS Measuring moisture in gas or HC liquids in hazardous areas

PROCESS MOISTURE ANALYZERS Measuring moisture in gas or HC liquids in hazardous areas PROCESS MOISTURE ANALYZERS Measuring moisture in gas or HC liquids in hazardous areas EExd Construction Safety by containment PROCESS MOISTURE ANALYZER Channel 1 dew-point & pressure sensor Through-glass

More information