TGA testing of biomass char gasification Antero Moilanen

Size: px
Start display at page:

Download "TGA testing of biomass char gasification Antero Moilanen"

Transcription

1 TGA testing of biomass char gasification Antero Moilanen Finnish-Swedish Flame Days 2013 Gasification Workshop Paviljonki, Jyväskylä, 17th 18th of April 2013

2 2 Biomass fuel as feedstock Fuel is fed to the reactor Water (moisture) and volatiles are released (pyrolysis) rapidly Residual carbon reacts slower Reactions depend on the characteristics of biomass H 2 O Volatiles Char residue Ash 20 C 100 C C C

3 3 In TG, biomass char gasification is tested The achievement of total carbon conversion is influenced by the char gasification reactivity Char structure formed during pyrolysis: heating rate, temperature gaseous environment (steam, CO2, product gases) porosity Catalyst material (ash forming constituents) Chemical structure Surface area of the catalytic particulate material in contact with carbon Dispersion TG result (mass vs. time) includes all these phenomena as a summary Shape of the reaction rate vs. conversion graph (reactivity profile)

4 4 TG char gasification (cont.) Gasification studies published in literature are mainly directed to char prepared separately In the thermobalance, where fresh biomass is used as sample, the char is formed in situ and it is difficult to define the exact point, where char gasification starts (i.e char conversion = 0) The problematic point is situated in the phase where post pyrolysis and initial char gasification are overlapping.

5 5 TG char gasification (cont.) Heating rate, affects the char reactivity through char formation Various char formation reactions have more time during the slow heating leading to char having low reactivity Also the structure and chemistry of the inorganic catalytically active material is influenced by the heating rate. Heating rate should resemble the feeding to the hot gasifier Feedstock Fast heating rate: small particles and particle surfaces Slow: Cores of large particles ( pieces) In literature, it is often used separate char samples prepared with slow heating rate; the reactivity values obtained may not be usable for reactor design or modelling

6 6 TG char gasification (cont.) Other factors affecting char and its reactivity: Gaseous environment during pyrolysis Pressure Temperature Char formation mechanisms and its influence on reactivity are not actually well known

7 7 Test procedure in VTT s TG - 1 Reactivity measurements in TG are based on the sample weight change as a function of time at constant T (isothermal) and in the desired gas (pure reactants H2O, CO2, their mixture or mixed with product gas. Aiming at (pressurised) fluidised bed gasification Temperature level < 1000 ºC Pressure range 1 20 bar Sample size of mg fresh dried biomass is put into a sample holder having a good gas - solid interaction without mass transfer effects Fast heating rate of the sample to the reaction temperature is essential. In TG tests in VTT, the sample is driven fast into the reactor conditioned with the reaction environment, i.e. temperature, pressure and gas. This input is arranged with a chain winch, which lowers the sample holder fast (within few seconds (abt 7s) into the hot reactor. During the input the sample heats up, pyrolyses and char is formed. Fast heating rate can also be achieved with a special jump mode of the reactor furnace (e.g. TA-instruments at SINTEF)

8 8 Test procedure in VTT s TG - 2 When the sample holder has reached the lowest position the weight recording starts Before the start of the weight monitoring, the sample has pyrolysed partly during the input. In the tests, it has been observed that sample still has raw unpyrolysed biomass at 15 seconds from the initiation of the weight reading. At 30 seconds no fresh biomass is seen, so it takes about seconds for the completion of the pyrolysis to the char During the first 100s., there is overlapping char gasification and post-pyrolysis at 850ºC causing the sample weight loss. For this reason it is difficult read the exact point of the char conversion = 0

9 9 Sample holder Microbalance data acquisition PRESSURIZED THERMOBALANCE Pressure range 1-90 bar Temperature max = 1000 C He-flushing Ø16mm Expansion valve Filter Steam condenser Winch system Sample lock Reactor Thermocouple/ Pyrometer data acquisition Steam generator N 2 CO 2 H2 CO Water pump

10 10 Cylindrical sample holder with wire mesh Ø 16 mm reactor tube centre shaft Local gas circulation wire mesh 24 mm 17 mm Cup for comparison 11 mm Gas flow fuel sample 5 mm 10 mm View from the side View from the top (cross section)

11 11 Fast heating of sample in TG -1 Sample holder - Lowering of the sample to the reactor with a winch (abt 7 seconds) Hot reactor

12 12 Fast heating of sample in TG -2 - Jump mode in the heating of the furnace, example TA Instruments of SINTEF Real mass, mg Mass Temperature T,ºC Time, s 100

13 13 Slow heating rate, usual in TG Spruce bark N2 + CO2, 850ºC K/min Mass, mg T ºC CO 2 on Time, s 0

14 14 TG curve, isothermal test VTT Real mass, mg Pine wood 1 bar H 2 O, 850 C Devolatilization, pyrolysis - In the same gas as the char reactivity is measured Char gasification T, ºC Real mass,mg Spline mass, mg T,C Time, s

15 15 WEIGHT AS A FUNCTION OF TIME, isothermal test Devolatilization - In the same gas as the char reactivity Weight, mg char gasification ash Reaction rate is calculated from the weight-time curve Time

16 16 Fuel conversion Fuel conversion, ash free = 100* Sample weight m2 % Sample weight ash weight Weight, mg m2 Ash Time, seconds

17 17 Reactivity: rate vs. conversion Weight, mg Char gasification rate m1- m2 t2 - t1 mg seconds m1 m2 Instantaneous char gasification rate m1- m2 1 ( t2 - t1) m2 s t1 t2 Time, seconds

18 18 Result:Instantaneous reaction as a function of fuel conversion; reactivity profile Instantaneous reaction rate %/min char gasification pyrolysis Fuel conversion, %

19 19 Char conversion zero, i.e. the starting point for char gasification Bark pellet Mönsterås 1 bar H2O 850 C mass, mg Area of the simultaneous post pyrolysis and char gasification time, s

20 20 Char sample at 15 seconds at 850ºC Fresh biomass 500 m

21 Selection of the point where char conversion = 0 Instantaneous reaction rate, 1/s Time from the beginning 30s 60s 100s Char conversion, -

22 22 TG curve Mass- time curve obtained in TG includes all the phenomena of gasification Development of pore structure Char carbon properties Catalysis Changes in catalytic active material Reactions, evaporation, mobility Characteristic TG curve Different biomass (species) but also plant parts (bark, heart wood, stump)

23 23 Reaction rate vs. char conversion reactivity profile Instantaneous Reaction rate 0 1 Conversion Reactivity profile biomassspecific - increasing and decreasing trends - minimum rate

24 24 Reactivity profile - model Ref.:Umeki, K., Moilanen, A., Gómez-Barea, A., Konttinen, J., A model of biomass char gasification describing the change in catalytic activity of ash. Chemical Engineering Journal vol (2012) works for CO2 gasification, steam needs to be developed

25 25 Gasification reactivity of various biomasses and tree parts Ref: Antero Moilanen & Muhammad Nasrullah. Fundamental studies of synthesis-gas pro-duction based on the fluidized bed gasification of biomass Project UCGFunda. Gasification reactivity and ash behaviour. Espoo VTT Publications 769.

26 26 Conditions in the fluidised bed gasification affecting char conversion and to be tested in TG Temperature C Pressure 1 20 bar (abs) H2 CO CO2 H2O H2 CO CO2 H2O (Fragmented and attrited char) Product gas -H 2,CO, CH 4 - tar -CO 2, H 2 O, N 2 - unreacted char In the reactor, there is char material (particles) at different conversion degree having different gasification reaction rates Fuel O 2 /H 2 O Accumulated char

27 27 Effect of temperature spruce bark, 1 bar, 100% H2O Instantaneous reaction rate, %/min C C C Fuel conversion (Ash free), %

28 28 Temperature dependence of gasification (steam) rates of various fuel chars Ea= ca. 210 kj/mol

29 29 Effect of pressure Spruce bark T = 850 C, 100% steam Instantaneous reaction rate, %/min Fuel conversion (Ash free), % 10 bar 5 bar 1 bar

30 30 Effect of pressure (cont.) on steam and CO2 gasification r" min. (%/min) Pine sawdust Pine bark Forest residue (pine) Salix Wheat straw Barley straw Reed canary grass Miscanthus Sweet sorghum Kenaf 30 bar H2O 1 bar H2O 30 bar CO2 1 bar CO2 Under pressure the reactivity higher in steam Biomass

31 31 Effect of product gas: Different biomasses in gas mixtures T= 875 C & total pressure 1 bar ( 0.3 bar H2O, 0.2 bar H2, 0.25 bar CO2, 0.15 bar Instantaneous reaction rate, %/min CO & 0.1 bar N2) Fuel conversion (Ash free), % = spruce bark 1 bar steam (100%) at 875 C for comparison Bark: Aspen Moilanen, A., Nasrullah, M. Variation in fuel Reactivity and ash characteristics of biomass feedstock for large-scale gasification. Pres. in 17th European Biomass Conference and Exhibition. 29 June - 3 July 2009, Hamburg, Germany Aspen bark (o) Spruce Spruce bark (o) Birch Birch bark (o) Pine Pine bark (o)

32 32 Product gases also inside the char pores char H 2 O H 2 O CO CO CO 2 CO 2 H 2 H 2 H 2 O CO H 2 CO 2

33 Formulas Steam hydrogen : CO 2 - CO: Gas mixture: Temperature dependence H2O 1 1 P H O H P r P r r R CO PCO r P r r R CO2 4 1 P CO CO H O H P r P r P r P r r r R CO2 4 H2O 1 1 P P RT E ke r i i /

34 34 Gasification reactivity of various biomasses steam 850 C 1 bar 30 bar Instantaneous Reaction Rate,%/min 150 Sawdust 100 (pine) Wheat straw Salix Reed canary grass Pine bark Barley straw Miscanthus Sweet sorghum Kenaf Fuel conversion, % Fuel conversion, %, % Fuel conversion, %, % 3 bar H bar H 2 O

35 35 Classification of ash sintering/melting after a TG test under microscope powder o molten *** sintered * - **

36 36 TGA testing of biomass char gasification Summary Fast heating rate In the determination of the kinetic parameters for gasification reactions, the suitable testing conditions shoud be sought for each biomass The effect of pyrolysis conditions on char reactivity Temperature pressure - gaseous environment need to be studied and fixed for testing Char gasification tests in steam, CO 2, and their mixtures and product gas components H 2 and CO

37 37 TGA testing of biomass char gasification Acknowledgements: Financing 1. Nordic Energy Research Top-Level Research Initiative (Nordsyngas) 2. The Academy of Finland (GASIFREAC-project) Collaboration Prof. Kentaro Umeki LTU; Prof. Alberto Gómez-Barea Univ. Seville; Prof. Jukka Konttinen JYU; Mr. Jasob Kramb JYU; Dr. Liang Wang SINTEF; Prof. Rainer Backman UMU; Dr. Nikolai DeMartini ÅA; Mr. Jere Lehtinen VTT; Ms. Mirja Muhola VTT

VTT PUBLICATIONS 769. Antero Moilanen & Muhammad Nasrullah. Gasification reactivity and ash sintering behaviour of biomass feedstocks

VTT PUBLICATIONS 769. Antero Moilanen & Muhammad Nasrullah. Gasification reactivity and ash sintering behaviour of biomass feedstocks VTT PUBLICATIONS 769 Antero Moilanen & Muhammad Nasrullah Gasification reactivity and ash sintering behaviour of biomass feedstocks VTT PUBLICATIONS 769 Gasification reactivity and ash sintering behaviour

More information

Principles of Pyrolysis

Principles of Pyrolysis Lecture- 10 Principles of Pyrolysis Pyrolysis Pyrolysis is the one of the most common methods in thermal conversion technology of biomass. In pyrolysis, biomass is heated to moderate temperatures, 400-600

More information

The Role of Solid Fuel Conversion in Future Power Generation

The Role of Solid Fuel Conversion in Future Power Generation The Role of Solid Fuel Conversion in Future Power Generation Hartmut Spliethoff FINNISH-SWEDISH FLAME DAYS 2013 Focus on Combustion and Gasification Research Jyväskylä, April, 17th and 18th 2013 Content

More information

Biomass gasification gas cleaning by reforming Energy Lab 2.0 meets Neo-Carbon Energy Noora Kaisalo

Biomass gasification gas cleaning by reforming Energy Lab 2.0 meets Neo-Carbon Energy Noora Kaisalo VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Biomass gasification gas cleaning by reforming Energy Lab 2.0 meets Neo-Carbon Energy Noora Kaisalo Biomass gasification Autothermal reforming Hot-filtration

More information

Mikko Hupa Åbo Akademi Turku, Finland

Mikko Hupa Åbo Akademi Turku, Finland Åbo Akademi Chemical Engineering Department Course The Forest based Biorefinery Chemical and Engineering Challenges and Opportunities May 3-7, 2010 Thermal conversion of biomass Mikko Hupa Åbo Akademi

More information

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers

Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Coal and Biomass Char Reactivity Investigators: R. E. Mitchell, Associate Professor, Mechanical Engineering Department; P. A. Campbell and L. Ma, Graduate Researchers Project Overview: There is considerable

More information

STEAM GASIFICATION OF LOW RANK COAL CHARS IN A THERMOBALANCE REACTOR AND A FLUIDIZED BED REACTOR

STEAM GASIFICATION OF LOW RANK COAL CHARS IN A THERMOBALANCE REACTOR AND A FLUIDIZED BED REACTOR Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 STEAM GASIFICATION OF LOW RANK COAL CHARS

More information

Biomass Gasification IEA Task 33 Country Report - Finland Piteå, Sweden

Biomass Gasification IEA Task 33 Country Report - Finland Piteå, Sweden Biomass Gasification IEA Task 33 Country Report - Finland ESA KURKELA 18.10.2011 Piteå, Sweden 2 OIL COAL BIOMASS WASTE/SRF GASIFICATION 800-1400 o C A I R S T E A M G A S C L E A N I N G SYNGAS (CO +

More information

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass. Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Reginald Mitchell, Paul Campbell and Liqiang Ma High Temperature Gasdynamics Laboratory Group Mechanical Engineering

More information

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II: Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio

More information

Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept

Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Intermediate Pyrolysis: A Sustainable Biomass-to-Energy Concept Sudhakar Sagi 23 rd Nov 2010 Aston University Birmingham The scale of the UK CO 2 challenge Pyrolysis is a thermochemical decomposition

More information

Available online at ScienceDirect. 9th International Conference on Applied Energy, ICAE2017, August 2017, Cardiff, UK

Available online at  ScienceDirect. 9th International Conference on Applied Energy, ICAE2017, August 2017, Cardiff, UK Available online at www.sciencedirect.com ScienceDirect Energy Procedia 142 (2017) 932 937 www.elsevier.com/locate/procedia 9th International Conference on Applied Energy, ICAE2017, 21-24 August 2017,

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc. MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.

More information

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR

PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR PRODUCTION OF SYNGAS BY METHANE AND COAL CO-CONVERSION IN FLUIDIZED BED REACTOR Jinhu Wu, Yitain Fang, Yang Wang Institute of Coal Chemistry, Chinese Academy of Sciences P. O. Box 165, Taiyuan, 030001,

More information

STUDIES ON NUCLEAR COAL GASIFICATION IN ARGENTINA

STUDIES ON NUCLEAR COAL GASIFICATION IN ARGENTINA STUDIES ON NUCLEAR COAL GASIFICATION IN ARGENTINA D. Nassini (1), G.G. Fouga (1,2), G. De Micco (1,2) H.E. Nassini (2) and A.E. Bohé (1,2) (1) Consejo Nacional de Investigaciones Científicas y Técnicas

More information

Simultaneously boosting the mass and fixed-carbon yields of charcoal from forest residue via atmospheric carbonization

Simultaneously boosting the mass and fixed-carbon yields of charcoal from forest residue via atmospheric carbonization Available online at www.sciencedirect.com ScienceDirect Energy Procedia 105 (2017 ) 787 792 The 8 th International Conference on Applied Energy ICAE2016 Simultaneously boosting the mass and fixed-carbon

More information

Catalytic gasification of biomass for hydrogen production with in-situ CO 2 absorption using novel bi-functional Ni-Mg-Al-CaO catalyst

Catalytic gasification of biomass for hydrogen production with in-situ CO 2 absorption using novel bi-functional Ni-Mg-Al-CaO catalyst School Energy of Research something Institute OTHER Catalytic gasification of biomass for hydrogen production with in-situ CO 2 absorption using novel bi-functional CaO catalyst Mohamad Anas Nahil, Chunfei

More information

Carbon To X. Processes

Carbon To X. Processes World CTX Carbon To X Processes Processes and Commercial Operations World CTX: let s Optimize the Use of Carbon Resource Carbon To X Processes Carbon To X technologies are operated in more than 50 plants

More information

Andre Bezanson Mech 4840

Andre Bezanson Mech 4840 Andre Bezanson Mech 4840 Introduction Pyrolysis is the decomposition of biomass in the absence of oxidizing agents. Usually at around 300-650⁰C Torrefaction is similar to Pyrolysis but occurs at lower

More information

Biocharproduction: Basics, Facilities and Potentials

Biocharproduction: Basics, Facilities and Potentials Biocharproduction: Basics, Facilities and Potentials Biochar: Climate Savior or Bluff Package Symposium October 5th and 6th 2011 Winfried Sehn Contents: Introduction Charcoal pits Retort pits Gasification

More information

THE CHALMERS GASIFIER

THE CHALMERS GASIFIER ASSESSMENT OF THE MASS AND ENERGY FLOWS IN THE CHALMERS GASIFIER Anton Larsson 1,2*, Martin Seemann 1,3, Henrik Thunman 1,4 1 Division of Energy Technology, Chalmers University of Technology, SE-412 96

More information

Biomass to fuels! R.Stahl Institut für Technische Chemie IFC 2010 Mai 3 rd 6 th 2009 Dresden, Germany

Biomass to fuels! R.Stahl Institut für Technische Chemie IFC 2010 Mai 3 rd 6 th 2009 Dresden, Germany Biomass to fuels! Pressurised Entrained Flow Gasification of Slurries from Biomass Thermo chemical biomass conversion to Fuels, Chemicals and Energy R.Stahl, E.Henrich, K.Raffelt M.Schingnitz KIT, Institut

More information

Application of activated process char for gas treatment of biomass gasification producer gases

Application of activated process char for gas treatment of biomass gasification producer gases Application of activated process char for gas treatment of biomass gasification producer gases York Neubauer and Omid-Henrik Elhami Institute of Energy Engineering NWG-TCKON Chicago 03.11.2015 Thermo-chemical

More information

Green Fuel Nordic The Smart Way. Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks

Green Fuel Nordic The Smart Way. Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks Green Fuel Nordic The Smart Way Utilising RTP TM technology to produce sustainable 2 nd generation bio-oil from local feedstocks Abstract Transitioning to a low-carbon economy is one of the major global

More information

INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION. IEA Biomass Task 34 Meeting in Chicago Jani Lehto, Metso Pekka Jokela, UPM

INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION. IEA Biomass Task 34 Meeting in Chicago Jani Lehto, Metso Pekka Jokela, UPM INTEGRATED HEAT, ELECTRICITY AND BIO-OIL PRODUCTION IEA Biomass Task 34 Meeting in Chicago 15-09-2009 Jani Lehto, Metso Pekka Jokela, UPM Contents Metso Metso and UPM Bio-oil Development Project Joint

More information

Emissions from wood-fuelled equipment. Senior research scientist Heikki Oravainen Technical Research Centre of Finland

Emissions from wood-fuelled equipment. Senior research scientist Heikki Oravainen Technical Research Centre of Finland Emissions from wood-fuelled equipment Senior research scientist Heikki Oravainen Technical Research Centre of Finland VTT IN BRIEF 2007 9 Key Customer Sectors: Biotechnology, pharmaceutical and food industries

More information

HYBRID STAGED THERMOLYSIS TO VALORISE BIOMASS Paul de Wild, March 11, 2009

HYBRID STAGED THERMOLYSIS TO VALORISE BIOMASS Paul de Wild, March 11, 2009 HYBRID STAGED THERMOLYSIS TO VALORISE BIOMASS Paul de Wild, March 11, 2009 Bioenergy - II: Fuels and Chemicals from Renewable Resources March 8-13, 2009, Rio de Janeiro, Brazil INTRODUCTION Lignocellulosic

More information

Applications of the constrained Gibbs energy method in modelling thermal biomass conversion.

Applications of the constrained Gibbs energy method in modelling thermal biomass conversion. VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Applications of the constrained Gibbs energy method in modelling thermal biomass conversion GTT-Technologies' 7th Annual Users' Meeting, Herzogenrath, Germany,

More information

COMPARATIVE BEHAVIOUR OF AGRICULTURAL BIOMASS RESIDUES DURING THERMOCHEMICAL PROCESSING

COMPARATIVE BEHAVIOUR OF AGRICULTURAL BIOMASS RESIDUES DURING THERMOCHEMICAL PROCESSING Global NEST Journal, Vol 14, No 2, pp 111-117, 2012 Copyright 2012 Global NEST Printed in Greece. All rights reserved COMPARATIVE BEHAVIOUR OF AGRICULTURAL BIOMASS RESIDUES DURING THERMOCHEMICAL PROCESSING

More information

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00.

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00. C10J PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES (synthesis gas from liquid or gaseous hydrocarbons C01B; underground gasification

More information

PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil

PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil www.ecn.nl PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil Paul de Wild, Ron van der Laan, Raghu Sumbharaju, Herman Bodenstaff, Edwin Brouwer, Christiaan van der Meijden Catalytic

More information

The synthesis of novel carbon-based materials from

The synthesis of novel carbon-based materials from Effects of Pyrolysis Conditions on Yield of Bio-Chars from Pine Chips Qiangu Yan Hossein Toghiani Fei Yu Zhiyong Cai Jilei Zhang Abstract The influences of temperature, heating rate, purge gas type, and

More information

Thermochemical Studies of Relevance for Black Liquor Combustion and Gasification - The System Na 2 CO 3 -Na 2 S

Thermochemical Studies of Relevance for Black Liquor Combustion and Gasification - The System Na 2 CO 3 -Na 2 S Thermochemical Studies of Relevance for Black Liquor Combustion and Gasification - The System CO 3 - S Mathias Råberg Anders Larsson, Gustav Lindberg, Anders Nordin, Dan Boström, Björn Warnqvist, Erik

More information

We accept the challenge!

We accept the challenge! Synthesis Gas Generation for Transportation Fuel Production Gasification Technologies Conference 2014, October 26-29 Washington, DC Andras I. Horvath / ANDRITZ Oy, Niels R. Udengaard /Haldor Topsoe Inc.

More information

Flowsheet Modelling of Biomass Steam Gasification System with CO 2 Capture for Hydrogen Production

Flowsheet Modelling of Biomass Steam Gasification System with CO 2 Capture for Hydrogen Production ISBN 978-967-5770-06-7 Proceedings of International Conference on Advances in Renewable Energy Technologies (ICARET 2010) 6-7 July 2010, Putrajaya, Malaysia ICARET2010-035 Flowsheet Modelling of Biomass

More information

Lectio Praecursoria. Lappeenranta University of Technology. From the SelectedWorks of Kari Myöhänen

Lectio Praecursoria. Lappeenranta University of Technology. From the SelectedWorks of Kari Myöhänen Lappeenranta University of Technology From the SelectedWorks of Kari Myöhänen December, 2011 Lectio Praecursoria Kari Myöhänen, Lappeenranta University of Technology Available at: https://works.bepress.com/kari_myohanen/7/

More information

Modeling chemical and physical processes of wood and biomass pyrolysis

Modeling chemical and physical processes of wood and biomass pyrolysis Progress in Energy and Combustion Science 34 (2008) 47 90 www.elsevier.com/locate/pecs Modeling chemical and physical processes of wood and biomass pyrolysis Colomba Di Blasi Dipartimento di Ingegneria

More information

Modeling Biomass Gasification in a Fluidized Bed Reactor

Modeling Biomass Gasification in a Fluidized Bed Reactor Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Modeling Biomass Gasification in a Fluidized Bed Reactor R. Fatoni

More information

Pyrolysis for Biochar Production

Pyrolysis for Biochar Production Pyrolysis for Biochar Production Ondřej Mašek Peter Brownsort, Juan Turrion Gomez, Kyle Crombie, Saran Sohi, Andrew Cross, Simon Shackley University of Edinburgh Ondřej Mašek, Nordic Biochar Workshop,

More information

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS CFD MODELLING OF THE STEEL BELT SINTERING PROCESS J. Keihäs, P. Mäkelä, J. Ollila 1 and L. Hekkala 2 Outokumpu Technology Research Centre, P.O. Box 60, FIN-28101 Pori, Finland 1 Outokumpu Technology Oy,

More information

Synthetic fuels and chemical from biomass by the bioliq-process

Synthetic fuels and chemical from biomass by the bioliq-process Synthetic fuels and chemical from biomass by the bioliq-process Nicolaus Dahmen Institute for Catalysis Research and Technology KIT University of the State of Baden-Wuerttemberg and National Research Center

More information

Fluidised Bed Methanation Technology for Improved Production of SNG from Coal

Fluidised Bed Methanation Technology for Improved Production of SNG from Coal Fluidised Bed Methanation Technology for Improved Production of SNG from Coal International Conference on Clean Coal Technologies, Dresden, 18 May 2009 T.J. Schildhauer, S. Biollaz Paul Scherrer Institut

More information

STUDIES ON NUCLEAR HYDROGEN PRODUCTION BY STEAM COAL GASIFICATION IN ARGENTINA

STUDIES ON NUCLEAR HYDROGEN PRODUCTION BY STEAM COAL GASIFICATION IN ARGENTINA Technical Meeting to Examine the Role of Nuclear Hydrogen Production in the Context of Hydrogen Economy STUDIES ON NUCLEAR HYDROGEN PRODUCTION BY STEAM COAL GASIFICATION IN ARGENTINA G.G. Fouga, D. Nassini,

More information

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems

Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Characterization of Coal and Biomass Conversion Behaviors in Advanced Energy Systems Investigators Reginald E., Associate Professor, Mechanical Engineering; Paul A. Campbell and Liqiang Ma, Graduate Researchers

More information

MECHANISMS OF PYROLYSIS. Jim Jones

MECHANISMS OF PYROLYSIS. Jim Jones MECHANISMS OF PYROLYSIS Jim Jones WHAT IS PYROLYSIS? the thermal decomposition of carbonaceous materials in the absence of oxygen WHAT IS PYROLYSIS? the thermal decomposition of carbonaceous materials

More information

Fluidized Bed Combustion of Biomass and Waste-derived Fuels Current Status and Challenges

Fluidized Bed Combustion of Biomass and Waste-derived Fuels Current Status and Challenges Waste-To-Energy Research and Technology Council, WTERT 2005 Fall Meeting at Columbia University New York City, October 20-21, 2005 Fluidized Bed Combustion of Biomass and Waste-derived Fuels Current Status

More information

BTL2030 Project presentation. VTT Technical Research Centre of Finland Ltd Espoo, June 2017

BTL2030 Project presentation. VTT Technical Research Centre of Finland Ltd Espoo, June 2017 BTL2030 Project presentation VTT Technical Research Centre of Finland Ltd Espoo, June 2017 BTL2030-project Project title: Production of transport fuels from biomass by gasification-based concepts integrated

More information

LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS

LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS ECN-RX--04-119 LARGE-SCALE PRODUCTION OF FISCHER-TROPSCH DIESEL FROM BIOMASS Optimal gasification and gas cleaning systems H. Boerrigter A. van der Drift Presented at Congress on Synthetic Biofuels - Technologies,

More information

Microwave processing as a green and energy efficient technology for the production of energy and chemicals from biomass and energy crops

Microwave processing as a green and energy efficient technology for the production of energy and chemicals from biomass and energy crops Aspects of Applied Biology 90, 2008 Biomass and Energy Crops III Microwave processing as a green and energy efficient technology for the production of energy and chemicals from biomass and energy crops

More information

Fundamental oxy-fuel combustion research carried out within the ENCAP project

Fundamental oxy-fuel combustion research carried out within the ENCAP project Oxy-fuel workshop, Cottbus, 29-3 th November 25 Fundamental oxy-fuel combustion research carried out within the ENCAP project KLAS ANDERSSON Department of Energy and Environment, Chalmers University of

More information

The hydrothermal decomposition of biomass and waste to produce bio-oil

The hydrothermal decomposition of biomass and waste to produce bio-oil Waste Management and The Environment VII 445 The hydrothermal decomposition of biomass and waste to produce bio-oil P. De Filippis, B. de Caprariis, M. Scarsella & N. Verdone Chemical Engineering Department,

More information

GASIFICATION: gas cleaning and gas conditioning

GASIFICATION: gas cleaning and gas conditioning GASIFICATION: gas cleaning and gas conditioning A. van der Drift November 2013 ECN-L--13-076 GASIFICATION: gas cleaning and gas conditioning Bram van der Drift SUPERGEN Bioenergy Hub Newcastle, UK 23 October

More information

Brown Coal and Biomass Gasification Research at Monash University Chemical Engineering

Brown Coal and Biomass Gasification Research at Monash University Chemical Engineering Brown Coal and Biomass Gasification Research at Monash University Chemical Engineering Sankar Bhattacharya Victorian brown coal Victoria estimated resource Gippsland 394 billion tonne Otway 15.5 billion

More information

Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption

Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption Advances in Emission Control and Monitoring Technology for Industrial Sources Exton, PA July 9-10,

More information

Effectiveness of briquetting bio mass materials with different ratios in 10 kw down draft gasifier

Effectiveness of briquetting bio mass materials with different ratios in 10 kw down draft gasifier Effectiveness of briquetting bio mass materials with different ratios in 10 kw down draft gasifier K.Sivakumar 1* B. Sivaraman 2 and N.Krishna Mohan 3 1*, Assistant Professor, Department of Mechanical

More information

WRI S PRE GASIFICATION TREATMENT OF PRB COALS FOR IMPROVED ADVANCED CLEAN COAL GASIFIER DESIGN

WRI S PRE GASIFICATION TREATMENT OF PRB COALS FOR IMPROVED ADVANCED CLEAN COAL GASIFIER DESIGN WRI S PRE GASIFICATION TREATMENT OF PRB COALS FOR IMPROVED ADVANCED CLEAN COAL GASIFIER DESIGN SER Contract No. WY49975WRI Dr. Al Bland Western Research Institute FINAL EXECUTIVE SUMMARY REPORT WRI S PRE

More information

How do I make a basic combustion characterisation of biofuel?

How do I make a basic combustion characterisation of biofuel? Combustion File No: 24 Version No: 1 How do I make a basic combustion characterisation of biofuel? Date: Author(s): Source(s): Referee(s): Status: Sponsor: 5-Nov-1 Johan Hustad/Maria Barrio Authors Peter

More information

The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion

The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion The Effects of Increased Pressure on the Reaction Kinetics of Biomass Pyrolysis and Combustion Charles Churchman, P.E. Stephanie England, E.I.T. International Applied Engineering, Inc. Marietta, Georgia

More information

Smart CHP from Biomass and Waste

Smart CHP from Biomass and Waste Smart CHP from Biomass and Waste It Cost Money to Throw Energy Away Gasification Technology Conference William (Bill) Partanen, P.E October 13-16, 2013 Colorado Springs, CO. SRF and RDF and recycled wood

More information

Dual Fluidized Bed Steam Gasification of Coal and Pyrolyzed Coal

Dual Fluidized Bed Steam Gasification of Coal and Pyrolyzed Coal Engineering Conferences International ECI Digital Archives The 14th International Conference on Fluidization From Fundamentals to Products Refereed Proceedings 2013 Dual Fluidized Bed Steam Gasification

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Gasification of Municipal Solid Waste

Gasification of Municipal Solid Waste Gasification of Municipal Solid Waste Salman Zafar Renewable Energy Advisor INTRODUCTION The enormous increase in the quantum and diversity of waste materials and their potentially harmful effects on the

More information

Life Cycle Assessment (LCA) of Thermal Processes. Examples for Gasification and Pyrolyses to Transportation Biofuels, Electricity and Heat

Life Cycle Assessment (LCA) of Thermal Processes. Examples for Gasification and Pyrolyses to Transportation Biofuels, Electricity and Heat Life Cycle Assessment (LCA) of Thermal Processes Examples for Gasification and Pyrolyses to Transportation Biofuels, Electricity and Heat Gerfried Jungmeier, gerfried.jungmeier@joanneum.at IEA Bioenergy

More information

A NEW APPARATUS FOR FLAME SPREAD EXPERIMENTS

A NEW APPARATUS FOR FLAME SPREAD EXPERIMENTS th International Conference on Structural Mechanics in Reactor Technology (SMiRT ) - A NEW APPARATUS FOR FLAME SPREAD EXPERIMENTS Johan Mangs VTT Technical Research Centre of Finland, Espoo, Finland ABSTRACT

More information

Available online at ScienceDirect. Energy Procedia 105 (2017 )

Available online at  ScienceDirect. Energy Procedia 105 (2017 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 105 (2017 ) 830 835 The 8 th International Conference on Applied Energy ICAE2016 Biomass Charcoal Properties Changes during Storage

More information

EXPERIMENTAL STUDY OF COAL PYROLYSIS AND GASIFICATION IN ASSOCIATION WITH SYNGAS COMBUSTION

EXPERIMENTAL STUDY OF COAL PYROLYSIS AND GASIFICATION IN ASSOCIATION WITH SYNGAS COMBUSTION National Cheng Kung University From the SelectedWorks of Wei-Hsin Chen December, 27 EXPERIMENTAL STUDY OF COAL PYROLYSIS AND GASIFICATION IN ASSOCIATION WITH SYNGAS COMBUSTION Wei-Hsin Chen, National Cheng

More information

Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview

Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview Advanced Processes Analysis and Control Methods for CFB Power Plants Project Overview 47 th International Energy Agency Fluidized bed conversion (IEA- FBC) meeting, on October 13-14 th, 2003 in Zlotniki,

More information

EVALUATION OF THE POSSIBILITY TO UTILIZE BIOMASS IN FINNISH BLAST FURNACE IRONMAKING

EVALUATION OF THE POSSIBILITY TO UTILIZE BIOMASS IN FINNISH BLAST FURNACE IRONMAKING EVALUATION OF THE POSSIBILITY TO UTILIZE BIOMASS IN FINNISH BLAST FURNACE IRONMAKING Scanmet IV 4th International Conference on Process Development in Iron and Steelmaking, 10-13 June 2012, Luleå, Sweden

More information

Experimental Study on Combustion of Biomass in a Boiler with Gasification

Experimental Study on Combustion of Biomass in a Boiler with Gasification Experimental Study on Combustion of Biomass in a Boiler with Gasification TĂNASE PANAIT, GHEORGHE CIOCEA, ION ION Thermal Systems and Environmental Engineering Department Dunarea de Jos University of Galati

More information

Analysis of the Effect of Steam-to-Biomass Ratio in Fluidized Bed Gasification with Multiphase Particle-in-cell CFD Simulation

Analysis of the Effect of Steam-to-Biomass Ratio in Fluidized Bed Gasification with Multiphase Particle-in-cell CFD Simulation Analysis of the Effect of Steam-to-Biomass Ratio in Fluidized Bed Gasification with Multiphase Particle-in-cell CFD Simulation Janitha C. Bandara 1 Marianne S. Eikeland 1 Britt M. E. Moldestad 1 1 Faculty

More information

Evaluation of Pyrolysis and Steam Gasification Processes of Sugarcane Bagasse in a Fixed Bed Reactor

Evaluation of Pyrolysis and Steam Gasification Processes of Sugarcane Bagasse in a Fixed Bed Reactor 925 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

INDIRECT vs. DIRECT GASIFICATION

INDIRECT vs. DIRECT GASIFICATION INDIRECT vs. DIRECT GASIFICATION Bram van der Drift, Guadalupe Aranda, Berend Vreugdenhil, Rian Visser, Carlos Vilela, Christiaan van der Meijden 4 September 2013 www.ecn.nl GASIFICATION matching energy

More information

Development of Tar Removal Technologies for Biomass Gasification using the By-products

Development of Tar Removal Technologies for Biomass Gasification using the By-products Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 208 213 The 7 th International Conference on Applied Energy ICAE2015 Development of Tar Removal Technologies for Biomass

More information

Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry

Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry Biomass co-firing Technology, barriers and experiences in EU TNO Science and Industry Prof.dr.ir. Gerrit Brem GCEP Advanced Coal Workshop March 15 th -16 th 2005, Provo (UT), USA Presentation overview

More information

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4162]-185 S.E. (Chemical) (First Semester) EXAMINATION, 2012 PROCESS CALCULATIONS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

More information

Indirect gasification

Indirect gasification Indirect gasification Workshop at IEA Bioenergy Task32 and Task33 Meeting, October 2010 Dr. Reinhard Rauch Institute of Chemical Engineering Content Technology Operational status Efficiencies Investment

More information

Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production

Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production S.S. Abdullah, S. Yusup, M.M. Ahmad, A. Ramli, L. Ismail Abstract This paper aims to study decomposition

More information

DEPARTMENT OF CHEMICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA , INDIA

DEPARTMENT OF CHEMICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA , INDIA PERFORMANCE ANALYSIS OF CIRCULATING FLUDIZED BED BIOMASS GASIFIER: ASPEN SIMULTAION A Project Report Submitted By Jasmeet Singh Bhatia (109CH0506) BACHELOR OF TECHNOLOGY In CHEMICAL ENGINEERING Under the

More information

Torrefaction Kinetics of Red Oak (Quercus rubra) in a Fluidized Reactor

Torrefaction Kinetics of Red Oak (Quercus rubra) in a Fluidized Reactor Torrefaction Kinetics of Red Oak (Quercus rubra) in a Fluidized Reactor Juan C. Carrasco, a,b Gloria S. Oporto, a,b, * John Zondlo, c and Jingxin Wang a Different kinetic models have been proposed to characterize

More information

Co-firing of biomass. Lecture on 10 th October Matti Nieminen VTT Technical research centre of Finland Ltd

Co-firing of biomass. Lecture on 10 th October Matti Nieminen VTT Technical research centre of Finland Ltd Co-firing of biomass Lecture on 10 th October 2017 Matti Nieminen VTT Technical research centre of Finland Ltd 2 Content Why biomass co-firing? What is co-firing? Co-firing Biomass fuel characteristics

More information

CHARACTERISTICS OF THE PYROLYSIS AND GASIFICATION OFLOW-DENSITY POLYETHYLENE (LDPE)

CHARACTERISTICS OF THE PYROLYSIS AND GASIFICATION OFLOW-DENSITY POLYETHYLENE (LDPE) The 5 th ISFR (October 11-14, 2009, Chengdu, China) CHARACTERISTICS OF THE PYROLYSIS AND GASIFICATION OFLOW-DENSITY POLYETHYLENE (LDPE) Zheng Jiao*, Chi Yong Institute for Thermal Power Engineering, State

More information

BIOMASS GASIFICATION IN DOWNDRAFT REACTOR FOR POWER GENERATION

BIOMASS GASIFICATION IN DOWNDRAFT REACTOR FOR POWER GENERATION BIOMASS GASIFICATION IN DOWNDRAFT REACTOR FOR POWER GENERATION N. CERONE, L. CONTUZZI, S. CAVALIERE, F. ZIMBARDI, G. BRACCIO ENEA, Dipartimento Tecnologie per l'energia, Fonti Rinnovabili e Risparmio Energetico,

More information

Verification of the Performance of Future Energy Resources SilvaGas Biomass Gasifier -- Operating Experience in the Vermont Gasifier

Verification of the Performance of Future Energy Resources SilvaGas Biomass Gasifier -- Operating Experience in the Vermont Gasifier Verification of the Performance of Future Energy Resources SilvaGas Biomass Gasifier -- Operating Experience in the Vermont Gasifier M.A. Paisley a and R.P. Overend b a Future Energy Resources Corporation,

More information

»New Products made of Synthesis Gas derived from Biomass«

»New Products made of Synthesis Gas derived from Biomass« Fraunhofer UMSICHT»New Products made of Synthesis Gas derived from Biomass«3-6 May 2010 Presentation at Freiberg Conference on IGCC & XtL Technologies, Dresden Dipl.-Ing. Kai Girod Folie 1 Outline 1. Introduction

More information

Replacing coal with biomass fuels in combined heat and power plants in. Finland

Replacing coal with biomass fuels in combined heat and power plants in. Finland This document is downloaded from the Digital Open Access Repository of VTT Title Replacing coal with biomass fuels in combined heat and power plants in Finland Author(s) Kärki, Janne; Flyktman, Martti;

More information

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS GASIFICATION THE WASTE-TO-ENERGY SOLUTION WASTE SYNGAS STEAM CONSUMER PRODUCTS HYDROGEN FOR OIL REFINING TRANSPORTATION FUELS CHEMICALS FERTILIZERS POWER SUBSTITUTE NATURAL GAS W W W. G A S I F I C A T

More information

Technical Information Paper. (R)FCC Slurry Oil Filtration

Technical Information Paper. (R)FCC Slurry Oil Filtration Technical Information Paper Revision 0, June 2009 INDEX 1. Introduction 1.1 Removing catalyst particles 1.2 Creating value 2. Automatic Gas Assisted Backwash Filtration 2.1 Filter Principles 2.2 Filter

More information

Stability of fast pyrolysis bio-oils and upgraded products

Stability of fast pyrolysis bio-oils and upgraded products Stability of fast pyrolysis bio-oils and upgraded products TCBiomass13 Anja Oasmaa, VTT, Finland Douglas C. Elliott, PNNL, USA VTT Technical Research Centre of Finland 2 Content Composition of fast pyrolysis

More information

What is Bioenergy? William Robinson B9 Solutions Limited

What is Bioenergy? William Robinson B9 Solutions Limited What is Bioenergy? William Robinson B9 Solutions Limited Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion Introduction William Robinson B9 employee for nearly

More information

Cool Producing Systems Based on Burning and Gasification of Biomass

Cool Producing Systems Based on Burning and Gasification of Biomass Cool Producing Systems Based on Burning and Gasification of Biomass J. POSPISIL, J. FIEDLER, Z. SKALA Energy Institute Faculty of Mechanical Engineering Brno University of Technology Technicka 2, Brno

More information

Slow Pyrolysis Of Imperata Cylindrica In a Fixed Bed Reactor

Slow Pyrolysis Of Imperata Cylindrica In a Fixed Bed Reactor Slow Pyrolysis Of Imperata Cylindrica In a Fixed Bed Reactor K.Azduwin, M.J.M.Ridzuan, S.M. Hafis and T.Amran T.A Abstract Slow pyrolysis of Imperata Cylindrica has been conducted in a fixed bed reactor

More information

Lignite oxidative desulphurization. Notice 2: effects of process parameters

Lignite oxidative desulphurization. Notice 2: effects of process parameters Int J Coal Sci Technol (2015) 2(3):196 201 DOI 10.1007/s40789-015-0056-3 Lignite oxidative desulphurization. Notice 2: effects of process parameters Volodymyr Gunka 1 Serhiy Pyshyev 1 Received: 18 July

More information

Molten Salt Reactors in Gasification and Gas Purification

Molten Salt Reactors in Gasification and Gas Purification Molten Salt Reactors in Gasification and Gas Purification Presenting author: Ville Nikkanen Place: 6 th International Freiberg Conference on IGCC & XtL Technologies Dresden, Germany Time: 19 th of May

More information

Plastic to Fuel Technologies

Plastic to Fuel Technologies Plastic to Fuel Technologies Author: Mauro Capocelli, Researcher, University UCBM Rome (Italy) 1. Theme description The growth of economy and consumes, combined with the modern models of production, have

More information

VTT pilot plants for bio and circular economy

VTT pilot plants for bio and circular economy VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD VTT pilot plants for bio and circular economy Mika Härkönen SmartPilots study visit, 24.5.2017 Solutions for Natural Resources and Environment VTT Technical

More information

Response of soil respiration to the addition of chars - one way to estimate the stability of chars? Jürgen Kern, Giacomo Lanza

Response of soil respiration to the addition of chars - one way to estimate the stability of chars? Jürgen Kern, Giacomo Lanza Response of soil respiration to the addition of chars - one way to estimate the stability of chars? Jürgen Kern, Giacomo Lanza Outline Background: Climate change by greenhouse gases CO 2 emission Carbon

More information

Working group Gasification & Gas Cleaning

Working group Gasification & Gas Cleaning Working group Gasification & Gas Cleaning hermann.hofbauer@tuwien.ac.at Institute of Chemical Engineering page 1 Working group Gasification & Gas Cleaning Content Working group Gasification and Gas Cleaning

More information

Mini converter carbons and wastes for Biogas production and Energy Cogeneration model «ПТК-52»

Mini converter carbons and wastes for Biogas production and Energy Cogeneration model «ПТК-52» Mini converter carbons and wastes for Biogas production and Energy Cogeneration model «ПТК-52» Team: System processing of raw materials, thermochemical conversion reactor. Features: the team is a model

More information

Carbon Dioxide Conversions in Microreactors

Carbon Dioxide Conversions in Microreactors Carbon Dioxide Conversions in Microreactors D.P. VanderWiel, J.L. Zilka-Marco, Y. Wang, A.Y. Tonkovich, R.S. Wegeng Pacific Northwest National Laboratory P.O. Box 999, MSIN K8-93, Richland, WA 99352 Abstract

More information