Ch 18. Hydrologic Cycle and streams. Tom Bean

Size: px
Start display at page:

Download "Ch 18. Hydrologic Cycle and streams. Tom Bean"

Transcription

1 Ch 18. Hydrologic Cycle and streams Tom Bean

2 Wednesday s outline 1. the hydrologic cycle reservoirs cycling between them Evaporation and the atmosphere 2. Surface hydrology infiltration and soil moisture streamflow ET Snow/ice 3. water balance Water balance equation control volume a drainge basin water balance example units

3 Why do we care about the hydrologic Cycle and streams Water resources Floods = hazards Rivers shape Earth s surface

4 1. Hydrologic Cycle: continuous circulation of earth s water, between oceans, atmosphere and continents

5 Major reservoirs of water, in kg Atmosphere 13.5 Land 16,000 Cryosphere (ice and snow) 43,000 Oceans 1,400,000 70% of all fresh water 97% of all water (salty) 29% of fresh water as GROUNDWATER Lithosphere (LOTS) hydrosphere

6 Moving water between reservoirs Atmosphere 13.5 Cryosphere 43,000 precipitation: rain and snow Evaporation Land 16,000 rivers Oceans 1,400,000 Lithosphere

7 Evaporation and hydro cycle Water in atmosphere 1. Gas (you cannot see water vapor) Condensation Gas to liquid or ice Water in atmosphere 2. Clouds: liquid and ice Evaporation liquid to gas Ocean LAND

8 Surface hydrology: land or terrestrial branch of the hydrologic cycle

9 Infiltration: movement of water from the soil surface into the soil Overland flow to streams Soil s Sediment/Rock

10 Evapotranspiration (ET) is the combination of: 1. Evaporation of water from soil (liquid to gas) 2. Transpiration: water evaporates inside leaves; moves into atmosphere as gas Transpiration Evaporation Soil s Sediment/Rock

11 Streamflow (or runoff) movement of water downhill in a channel Sources: 1. From groundwater 2. Overland flow 3. Precipitation on channel Evaporation

12 Snow and ice: water is temporarily stored as a solid

13 Water Balance Change in vol. of water equals inputs minus outputs Similar to 1.Balancing a bank account 2.Inventory at a store

14 1. Need a control volume A user defined compartment Need not be spatially connected for example, the earth s glaciers

15 Drainage basin or watershed An area of the earth s surface that contributes the water passing a point on a stream the boundary is called a divide Mississippi River basin 6th largest river ~4000 km long 41% of U.S.

16 Drainage Basin of the Colorado River Fig

17 Catchment water budget Change in volume of water = input minus output change in volume p et r Mississippi River basin Inputs? Precipitation (P) Outputs? Evapotranspiration (ET) Runoff (R)

18 Catchment water budget change in volume p et r 0 p et r et r p Precipitation that falls on a basin, leaves the basin via the sum of ET and runoff

19 Catchment water balance example: In a year, how much ET from Boulder creek watershed et p r 1. P measured as a depth/time mm/year 2. R measured as a volume/time m 3 /second What percent of precipitation leaves basin via ET? A) 20% B) 40% C) 60% D) 80%

20 Raingauge depth per time (length per time)

21 Streamgauge; measure discharge volume per time

22 What is stream discharge? 3 m/s Area = height * width 2 m 2 m DISCHARGE = area x AVERAGE velocity Discharge = 4 m 2 x 3 m/s = 12 m 3 / s

23 Volume = area * depth km 3 [=] km 2 * km Map of Boulder Creek drainage basin Area

24 Does it rain more in Rhode Island or New Mexico? By volume: more rain falls in New Mexico. By depth: more rain falls in Rhode island volume = area * depth depth = volume / area

25 1. Boulder Creek example P = 1 m/year Basin area = 500 km 2 =500,000,000 m 2 What is volume of precipitation in Boulder creek basin? Either: 500,000,000 m 3 /year or 0.5 km 3

26 2. Boulder creek example Runoff = 3.2 m 3/ s What is volume of runoff (per year) 3 m yr 3 m sec x 3.15x10 1yr 7 sec R x10 s 8 m m 3.2 x 1.01x10 100,000,000 1yr yr yr 3 3 km 0.1 yr 3

27 Catchment water balance example: In a year, how much ET from Boulder creek watershed et p r P = 0.5 km 3 R = 0.1 km 3 What percent of precipitation leaves basin via ET? A) 20% B) 40% C) 60% D) 80% Answer: ET = 0.4 km 3 or 80% of p

28 Catchment water balance example: In a year, how much ET from Boulder creek watershed et p r P = 1.0 m / yr or 1000 mm/yr R = 0.2 m / yr or 200 mm/yr ET = 0.8 m/yr or 800 mm/yr 20% of precipitation ends up as runoff 80% of returns to atmosphere via ET

29 Water balance by continent (units = mm yr -1 ) Continent P (mm) R (mm) ET (mm) % runoff Globally, only 40% of precipitation is runoff Africa Asia Majority (60%) goes to ET! Australia Europe N. America S. America Antarctica All land All oceans

30 Water Balance Component 108,000 (62.7%) Evapotranspiration Precipitation 46,000 (95.8%) In southwestern US: Nearly all P ET 48, ,000 CA NV 73,000 (97.3%) 75,000 67,000 (98.5%) NM 68,000 AZ Data in Million Gallon/Day. Source: USGS Water Use Report 1990

31 Water flowing in streams Tom Bean

32 What is a stream : flow of water within any natural channel bed: floor of the channel. floodplain: the flat region adjoining the channel occupied in times of flood

33 How does water get into a stream? Sources: 1. From groundwater 2. Overland flow 3. Precipitation on channel

34 Streams flow downhill gravity Continual conversion of: Potential energy kinetic energy 1. Where does energy come from? 2. How come water doesn t keep going faster? The sun is the energy source for the hydrologic cycle

35 Streams are Turbulence turbulent flows Energy loss to friction in turbulent flows so, water doesn t keep moving faster Even a quiet, gentle stream is a turbulent flow, not laminar

36 Drainage basins and SUB-BASINS A basin can be divided into a series of sub-basins Political boundaries rarely follow basin boundaries

37 Boulder Creek Every basin has a stream network Pattern of stream channels in a basin

38 Some drainage basins are VERY VERY BIG Some drainage basins are VERY VERY small

39 Water flowing in stream channels What controls how water flows down a channel?

40 Channel controls on flow 1. cross sectional AREA 3 m/s Area = height * width 2 m 2 m DISCHARGE = area x AVERAGE velocity Discharge = 4 m 2 x 3 m/s = 12 m 3 / s

41 Velocity varies throughout a channel cross-section

42 Channel controls on flow: 2. Gradient or slope run rise Gradient or slope = rise/run Low gradient High gradient 2 m 2 m

43 Channel controls on flow: 3. material on bed Boulders All else equal: Smooth bed = high velocity Sand Concrete channels

44 Meandering River Point Bar Peter Kresan Fig

45 Braided River Tom Bean Fig

46 Rivers and Geology Erosion Transportation Deposition

47 EROSION: Waterfall Retreating Upriver stream is eroding bedrock Donald Nausbaum Fig. 13.7

48 Carr Clifton/Minden Pictures EROSION Pebbles Caught in Eddies Form Potholes

49 Transport: Streams move material in three forms Dissolved load Suspended load Bed load

50 Bedload -> Saltation Fig. 13.3

51 Deposition 1: Mississippi Delta Delta: sediments deposited where river meets the ocean or a lake Landsat 2 image annotated by Moore, 1979 Fig

52 Shifting Mississippi River Delta Over the Past 6000 Years Fig

53 Deposition 2. Formation of Natural Levees Levees built up further for flood control

54 Xie Jiahua/China Features/Sygma FLOODING

55 Discharge varies through time Boulder Creek, near Orodell Mean daily streamflow, ft 3 /sec Date

56 Flooding Discharge exceeds capacity of channel Interval between floods depends on climate, channel type, basin size and stream network Flooding is natural, but human activities affect flood frequency and magnitude

57 Recurrence interval - Average time between occurrences of a given event The 100-year flood: a flood of this size is expected every 100 years The 500-year flood: a flood of this size is expected every 500 years ZONING and INSURANCE

58 The floodplain in Boulder

59 Annual Flood Frequency Curve Fig. 13.1

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar Hydrology and Water Management Dr. Mujahid Khan, UET Peshawar Course Outline Hydrologic Cycle and its Processes Water Balance Approach Estimation and Analysis of Precipitation Data Infiltration and Runoff

More information

Earth Science Chapter 6 Section 1 Review

Earth Science Chapter 6 Section 1 Review Name: Class: Date: Earth Science Chapter 6 Section 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What process is illustrated by the arrows labeled

More information

Unit 5 Lesson 1 What Is the Water Cycle? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 1 What Is the Water Cycle? Copyright Houghton Mifflin Harcourt Publishing Company Water on the Move warm up 1 Water on the Move About three-fourths of Earth s surface is covered by water. Water on the Move Video!!! Water on the Move Water moves between Earth s surface and the atmosphere

More information

Water is everywhere on Earth oceans, glaciers, rivers, lakes, air,

Water is everywhere on Earth oceans, glaciers, rivers, lakes, air, Section 6.1 6.1 Running Water 1 FOCUS Section Objectives 6.1 Explain how the water cycle circulates Earth s water supply in an unending cycle. 6.2 Explain how the water cycle is kept in balance. 6.3 Describe

More information

Hydrologic Cycle. Water Availabilty. Surface Water. Groundwater

Hydrologic Cycle. Water Availabilty. Surface Water. Groundwater Hydrologic Cycle Hydrologic ydoogccyce cycle Surface Water Groundwater Water Availabilty 1 Hydrologic Cycle Constant movement of water above, on, and, below the earth s surface (Heath) Endless circulation

More information

Term Info Picture. The process by which liquid water changes to gas. The process by which water vapor changes in to liquid water.

Term Info Picture. The process by which liquid water changes to gas. The process by which water vapor changes in to liquid water. Water Cycle S6E3. Obtain, evaluate and communicate information to recognize the significant role of water in Earth s processes. A. Ask questions to determine where water is located on Earth s surface (oceans,

More information

Hydrologic cycle, runoff process

Hydrologic cycle, runoff process Hydrologic cycle, runoff process Motivation of hydrological modelling What happens at the catchment and in the stream when it rains? How does the increased/decreased runoff affect (not only) the landowners

More information

Freshwater. 260 Points Total

Freshwater. 260 Points Total 9 SURFACE WATER SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. (13 points) 1. An excessive amount of water

More information

Unit 2: Weather Dynamics Chapter 1: Hydrological Cycle

Unit 2: Weather Dynamics Chapter 1: Hydrological Cycle UNIT 2 Chapter 1: Inquiring about Weather Unit 2: Weather Dynamics Chapter 1: Hydrological Cycle Science 10 Mrs. Purba Importance of H 2 O From the beginning of time when water first appeared, it has been

More information

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management

The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management The Islamic University of Gaza- Civil Engineering Department Sanitary Engineering- ECIV 4325 L5. Storm water Management Husam Al-Najar Storm water management : Collection System Design principles The Objectives

More information

BUILDING A WATERSHED MODEL

BUILDING A WATERSHED MODEL BUILDING A WATERSHED MODEL OBJECTIVES Define a watershed and describe how it functions Identify that students live in a watershed within the San Antonio River Basin TOPICS Watersheds Runoff TEKS ALIGNMENT

More information

Introduction to hydrology and the water balance

Introduction to hydrology and the water balance Introduction to hydrology and the water balance The science of hydrology The science that describes and predicts the occurrence, circulation and distribution of the earth s water. There are two principal

More information

CHAPTER 13 OUTLINE The Hydrologic Cycle and Groundwater. Hydrologic cycle. Hydrologic cycle cont.

CHAPTER 13 OUTLINE The Hydrologic Cycle and Groundwater. Hydrologic cycle. Hydrologic cycle cont. CHAPTER 13 OUTLINE The Hydrologic Cycle and Groundwater Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Hydrologic cycle The hydrologic cycle is

More information

Watersheds and the Hydrologic Cycle

Watersheds and the Hydrologic Cycle Watersheds and the Hydrologic Cycle The Global Hydrologic Cycle Water Cycle in Florida Florida Water Facts Surface Area = 170,452 km 2 Average Rainfall = 140 cm (55 ) Total Annual Rain = 238 billion m

More information

Measuring discharge. Climatological and hydrological field work

Measuring discharge. Climatological and hydrological field work Measuring discharge Climatological and hydrological field work 1. Background Discharge (or surface runoff Q s) refers to the horizontal water flow occurring at the surface in rivers and streams. It does

More information

Introduction. Welcome to the Belgium Study Abroad Program. Courses:

Introduction. Welcome to the Belgium Study Abroad Program. Courses: Introduction Welcome to the Belgium Study Abroad Program Courses: AGSM 335: Soil and Water Management BAEN 460: Principals of Environmental Hydrology BAEN 460 / AGSM 335 Combined lecture and HW sessions

More information

1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle

1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle 1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle Watersheds are subjected to many types of changes, major or minor, for various reasons. Some of these are natural changes and

More information

WATER AND THE HYDROLOGIC CYCLE

WATER AND THE HYDROLOGIC CYCLE WATER AND THE HYDROLOGIC CYCLE Summary Water is essential for the support of life and can be considered as a fundamental environmental good. Water is needed to support human habitation, grow crops and

More information

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology GG22A: GEOSPHERE & HYDROSPHERE Hydrology Definitions Streamflow volume of water in a river passing a defined point over a specific time period = VxA discharge m 3 s -1 Runoff excess precipitation - precipitation

More information

Water Resources on PEI: an overview and brief discussion of challenges

Water Resources on PEI: an overview and brief discussion of challenges Water Resources on PEI: an overview and brief discussion of challenges Components: Components and links Atmospheric water Surface water (including glacial water) Groundwater Links: Precipitation (atm(

More information

Norman Maclean Snowmelt Flow rate Storm flows fs (c flow m a tre S

Norman Maclean Snowmelt Flow rate Storm flows fs (c flow m a tre S Eventually, all things merge into one, and a river runs through it. Norman Maclean Understanding Streamflow ADEQ SW Short Course June 13, 213 Phoenix, AZ Hydrographs Discharge (Q) USGS flow data & plots

More information

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH

UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH UNIT HYDROGRAPH AND EFFECTIVE RAINFALL S INFLUENCE OVER THE STORM RUNOFF HYDROGRAPH INTRODUCTION Water is a common chemical substance essential for the existence of life and exhibits many notable and unique

More information

GIS Applications in Water Resources Engineering

GIS Applications in Water Resources Engineering King Fahd University of Petroleum & Minerals City & Regional Planning Department Introduction to Geographic Information Systems Term Paper Presentation GIS Applications in Water Resources Engineering Prepared

More information

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire May 4, 2010 Name of Model, Date, Version Number Dynamic Watershed Simulation Model (DWSM) 2002

More information

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition Grotzinger Jordan Understanding Earth Sixth Edition Chapter 17: THE HYDROLOGIC CYCLE AND GROUNDWATER 2011 by W. H. Freeman and Company Chapter 17 The Hydrologic Cycle and Groundwater 1 About the Hydrologic

More information

THE IMPORTANCE OF WATER

THE IMPORTANCE OF WATER THE IMPORTANCE OF WATER 2/3rds of the Earth s surface is covered in. water Earth s aquatic ecosystems contain biomass more (living mass) than its terrestrial ecosystems. Phytoplankton are microscopic producers

More information

Arctic Sea Ice. Background Information

Arctic Sea Ice. Background Information Arctic Sea Ice Objectives 1. Students will construct graphs of the extent of sea ice over time. 2. Students will use technology to analyze data and draw conclusions about natural phenomena in the Arctic

More information

Water: A Valuable, Yet Limited Resource

Water: A Valuable, Yet Limited Resource Water: A Valuable, Yet Limited Resource Subject: Science Target Grades 4-5 Duration: One class period Materials per class 3 100-ml graduated cylinders container of water (10-ml/student) Water Cycle with

More information

MODELING SEDIMENT AND PHOSPHORUS YIELDS USING THE HSPF MODEL IN THE DEEP HOLLOW WATERSHED, MISSISSIPPI

MODELING SEDIMENT AND PHOSPHORUS YIELDS USING THE HSPF MODEL IN THE DEEP HOLLOW WATERSHED, MISSISSIPPI MODELING SEDIMENT AND PHOSPHORUS YIELDS USING THE HSPF MODEL IN THE DEEP HOLLOW WATERSHED, MISSISSIPPI Jairo Diaz-Ramirez, James Martin, William McAnally, and Richard A. Rebich Outline Background Objectives

More information

Lecture 20: Groundwater Introduction

Lecture 20: Groundwater Introduction Lecture 20: Groundwater Introduction Key Questions for Groundwater 1. What is an aquifer? 2. What is an unconfined aquifer? 3. What is groundwater recharge? 4. What is porosity? What determines the magnitude

More information

Earth & Space Science (Water Cycle) Grade 7 Science Grade 7 Science Start Date: November 04, 2013 End Date : November 22, 2013

Earth & Space Science (Water Cycle) Grade 7 Science Grade 7 Science Start Date: November 04, 2013 End Date : November 22, 2013 Unit Overview Hydrologic Cycle, Thermal Energy Transfer. Content Elaborations The movement of water through the spheres of E water changes state and energy is transferred, it water transfers from the hydrosphere

More information

EFFECTS OF WATERSHED TOPOGRAPHY, SOILS, LAND USE, AND CLIMATE ON BASEFLOW HYDROLOGY IN HUMID REGIONS: A REVIEW

EFFECTS OF WATERSHED TOPOGRAPHY, SOILS, LAND USE, AND CLIMATE ON BASEFLOW HYDROLOGY IN HUMID REGIONS: A REVIEW PROGRESS IN PHYSICAL GEOGRAPHY EFFECTS OF WATERSHED TOPOGRAPHY, SOILS, LAND USE, AND CLIMATE ON BASEFLOW HYDROLOGY IN HUMID REGIONS: A REVIEW KATIE PRICE 2011 Presented by: Jordan Martin Article Overview

More information

Overview of the Surface Hydrology of Hawai i Watersheds. Ali Fares Associate Professor of Hydrology NREM-CTAHR

Overview of the Surface Hydrology of Hawai i Watersheds. Ali Fares Associate Professor of Hydrology NREM-CTAHR Overview of the Surface Hydrology of Hawai i Watersheds Ali Fares Associate Professor of Hydrology NREM-CTAHR 5/23/2008 Watershed Hydrology Lab 1 What is Hydrology? Hydrology is the water science that

More information

BAEN 673 / February 18, 2016 Hydrologic Processes

BAEN 673 / February 18, 2016 Hydrologic Processes BAEN 673 / February 18, 2016 Hydrologic Processes Assignment: HW#7 Next class lecture in AEPM 104 Today s topics SWAT exercise #2 The SWAT model review paper Hydrologic processes The Hydrologic Processes

More information

Terrestrial Water Cycle and Climate Change: Linkages and Feedbacks

Terrestrial Water Cycle and Climate Change: Linkages and Feedbacks Terrestrial Water Cycle and Climate Change: Linkages and Feedbacks The Atmosphere External Forcing Internal Adjustment The Ice Result The Continents The Oceans Climate System Terrestrial Water Cycle and

More information

Air & Water Lesson 2. Chapter 6 Conserving Our Resources

Air & Water Lesson 2. Chapter 6 Conserving Our Resources Air & Water Lesson 2 Chapter 6 Conserving Our Resources Objectives Summarize the importance of air. Describe the water cycle. Main Idea Living things use air and water to carry out their life processes.

More information

Hydrology 101. Impacts of the Urban Environment. Nokomis Knolls Pond Summer June 2008

Hydrology 101. Impacts of the Urban Environment. Nokomis Knolls Pond Summer June 2008 Hydrology 101 Nokomis Knolls Pond Summer 2002 Impacts of the Urban Environment Hydrologic Cycle; What is it? Geography, Topography, Geology, Land Cover and Climate determine the Amount and Behavior of

More information

RUNOFF FLOWING WATER

RUNOFF FLOWING WATER RUNOFF FLOWING WATER Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial, non-profit educational

More information

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings.

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings. 2.2 Notes Objectives Compare an open system with a closed system. List the characteristics of Earth s four major spheres. Identify the two main sources of energy in the Earth system. Identify four processes

More information

CEE6400 Physical Hydrology

CEE6400 Physical Hydrology CEE6400 Physical Hydrology Midterm Review Learning Objectives (what you should be able to do) Hydrologic data, the hydrologic cycle and water balance (HW 1) Work with hydrologic data, quantify uncertainty

More information

Geography 3511: Introduction to Hydrology

Geography 3511: Introduction to Hydrology Geography 3511: Introduction to Hydrology Class materials are posted on the GEOG 3511 website. The GEOG 3511 website, part of the Department of Geography website, is located under undergrads, Courses Current

More information

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow Engineering Hydrology (ECIV 4323) CHAPTER FIVE Runoff Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Overland flow interflow Base flow Saturated overland flow ١ ٢ 5.1 Introduction To Runoff Runoff

More information

NREM 407/507 WATERSHED MANAGEMENT Day 2

NREM 407/507 WATERSHED MANAGEMENT Day 2 NREM 407/507 WATERSHED MANAGEMENT 1-15-09 - Day 2 1. Review Hydrologic Cycle Terminology/Model 2. Summarize Differences Cropfield vs Perennial Watershed 3. Tues Lab Develop International River PPT bring

More information

Lecture 9A: Drainage Basins

Lecture 9A: Drainage Basins GEOG415 Lecture 9A: Drainage Basins 9-1 Drainage basin (watershed, catchment) -Drains surfacewater to a common outlet Drainage divide - how is it defined? Scale effects? - Represents a hydrologic cycle

More information

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis Assessment of the Restoration Activities on Water Balance and Water Quality at Last Chance Creek Watershed Using Watershed Environmental Hydrology (WEHY) Model M.L. Kavvas, Z. Q. Chen, M. Anderson, L.

More information

Lecture 1: Hydrologic cycle

Lecture 1: Hydrologic cycle 1-1 GEOG415 Lecture 1: Hydrologic cycle Hydrologic cycle is ultimately driven by solar radiation, which evaporates water from the ocean and lift it up in the atmosphere. Dunne & Leopold, 1978, Fig. 1-1

More information

NREM 407/507 WATERSHED MANAGEMENT

NREM 407/507 WATERSHED MANAGEMENT NREM 407/507 WATERSHED MANAGEMENT Please pick up Syllabus, Reading Material & Today s Lab on the Table in the Front Dick Schultz Instructor Sara Berges Teaching Assistant January 13, 2009 1. Conduct Get

More information

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis Assessment of the Restoration Activities on Water Balance and Water Quality at Last Chance Creek Watershed Using Watershed Environmental Hydrology (WEHY) Model M.L. Kavvas, Z. Q. Chen, M. Anderson, L.

More information

The Hydrological Cycle. Hydrological Cycle. Definition of Terms. Soils and Water, Spring Lecture 7, The Hydrological Cycle 1

The Hydrological Cycle. Hydrological Cycle. Definition of Terms. Soils and Water, Spring Lecture 7, The Hydrological Cycle 1 The Hydrological Cycle Water vapor helps warm up the earth Evaporation+Transpiration Chemical Spill Runoff To Oceans Water potential, atmosphere Hydrological Cycle Transpiration, T Atmospheric pool Interception

More information

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff

6.0 Runoff. 6.1 Introduction. 6.2 Flood Control Design Runoff October 2003, Revised February 2005 Chapter 6.0, Runoff Page 1 6.1 Introduction 6.0 Runoff The timing, peak rates of discharge, and volume of stormwater runoff are the primary considerations in the design

More information

Vegetation Management and Water Yield: Silver Bullet or a Pipe Dream?

Vegetation Management and Water Yield: Silver Bullet or a Pipe Dream? Vegetation Management and Water Yield: Silver Bullet or a Pipe Dream? Lee H. MacDonald rofessor Emeritus and Senior Research Scientist Watershed Science/NREL Colorado State University, Fort Collins, CO

More information

Write It! Station Directions

Write It! Station Directions Write It! Station Directions It is recommended that you have completed at least two of the following stations before working at this station. -Read It! -Explore It! -Watch It! -Research It! Answer each

More information

Runoff Processes. Daene C. McKinney

Runoff Processes. Daene C. McKinney CE 374 K Hydrology Runoff Processes Daene C. McKinney Watershed Watershed Area draining to a stream Streamflow generated by water entering surface channels Affected by Physical, vegetative, and climatic

More information

ADVANCED APPLICATIONS OF HEC-HMS

ADVANCED APPLICATIONS OF HEC-HMS Hydrologic Engineering Center Training Course on ADVANCED APPLICATIONS OF HEC-HMS 18 22 April 2016 Davis, California Course Objectives The course covers a variety of areas that go beyond the Basic HEC-HMS

More information

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Sonu Duhan *, Mohit Kumar # * M.E (Water Resources Engineering) Civil Engineering Student, PEC University Of Technology, Chandigarh,

More information

Watershed: an area or ridge of land that separates waters flowing to different rivers, basins, or seas. It is the interdependent web of living

Watershed: an area or ridge of land that separates waters flowing to different rivers, basins, or seas. It is the interdependent web of living Watershed: an area or ridge of land that separates waters flowing to different rivers, basins, or seas. It is the interdependent web of living organisms that inhabit a geographic area and depend on it

More information

Methods of Streamflow Analysis

Methods of Streamflow Analysis 4 Methods of Streamflow Analysis CHAPTER 4 Streamflow Measurements Danielle M. Andrews Department of Crop and Soil Sciences, The Pennsylvania State University I. INTRODUCTION Perennial carries water all

More information

Water can have three states

Water can have three states Water Cycle Goals 1. Know the states of water and how / why they change from one state to another 2. Describe the Water Cycle using specific and precise vocabulary when describing each part of the Water

More information

Water cycles through ecosystems.

Water cycles through ecosystems. Water cycles through ecosystems. Water is stored on Earth s surface in lakes, rivers, and oceans. Water is found underground, filling the spaces between soil particles and cracks in rocks. Large amounts

More information

Suspended Sediment Discharges in Streams

Suspended Sediment Discharges in Streams US Army Corps of Engineers Hydrologic Engineering Center Suspended Sediment Discharges in Streams April 1969 Approved for Public Release. Distribution Unlimited. TP-19 REPORT DOCUMENTATION PAGE Form Approved

More information

Watershed Hydrology and Water Resources Science Teacher Education Program (STEP)

Watershed Hydrology and Water Resources Science Teacher Education Program (STEP) Watershed Hydrology and Water Resources Science Teacher Education Program (STEP) Presented by Amy Tidwell Water and Environmental Research Center/ Institute of Northern Engineering University of Alaska

More information

East Maui Watershed Partnership Adapted from Utah State University and University of Wisconsin Ground Water Project Ages 7 th -Adult

East Maui Watershed Partnership Adapted from Utah State University and University of Wisconsin Ground Water Project Ages 7 th -Adult INTRODUCTION What is groundwater? Water contained in saturated soil and rock materials below the surface of the earth. It is not NEW water, but is recycled water through the hydraulic cycle. The source

More information

Water Account, Mauritius 2013

Water Account, Mauritius 2013 Republic of Mauritius Water Account, Mauritius 2013 Statistics Mauritius, Ministry of Finance and Economic Development June 15 Contents Foreword... III List of Symbols and Abbreviations... IV 1. Introduction...

More information

GC2: Components of the Earth System Working Together

GC2: Components of the Earth System Working Together Global Connections: Earth Systems at the Global Scale GC2: Components of the Earth System Working Together Purpose To develop familiarity with interactions among the major components of the Earth system

More information

IPCC WG II Chapter 3 Freshwater Resources and Their Management

IPCC WG II Chapter 3 Freshwater Resources and Their Management IPCC WG II Chapter 3 Freshwater Resources and Their Management Impacts increasingly harmful & more costly to adapt as global temperature increases May imperil sustainable development goals Semi-arid /

More information

Chapter 3 Physical Factors Affecting Runoff

Chapter 3 Physical Factors Affecting Runoff Chapter 3 Physical Factors Affecting Runoff Copyright 2003 David G Tarboton, Utah State University CHAPTER 3: PHYSICAL FACTORS AFFECTING RUNOFF The general climatic regime controls the total volume of

More information

URBAN FLOODING: HEC-HMS

URBAN FLOODING: HEC-HMS 1.0 Introduction URBAN FLOODING: HEC-HMS -Sunil Kumar, Director, NWA All major ancient civilisations were developed in the river valleys because river served as source of water, food, transportation and

More information

HYDROLOGIC & HYDRAULIC ASPECTS of the Walnut Street Bridge over the Schuylkill River Philadelphia, PA

HYDROLOGIC & HYDRAULIC ASPECTS of the Walnut Street Bridge over the Schuylkill River Philadelphia, PA HYDROLOGIC & HYDRAULIC ASPECTS of the Walnut Street Bridge over the Schuylkill River Philadelphia, PA J. Richard Weggel CAEE201 Lectures 30 April & 2 May 2007 HYDROLOGY (Natural Science) Study of the waters

More information

Alternative Approaches to Water Resource System Simulation

Alternative Approaches to Water Resource System Simulation US Army Corps of Engineers Hydrologic Engineering Center Alternative Approaches to Water Resource System Simulation May 1972 Approved for Public Release. Distribution Unlimited. TP-32 REPORT DOCUMENTATION

More information

DRAINAGE & DESIGN OF DRAINAGE SYSTEM

DRAINAGE & DESIGN OF DRAINAGE SYSTEM Drainage on Highways DRAINAGE & DESIGN OF DRAINAGE SYSTEM P. R.D. Fernando Chartered Engineer B.Sc.(Hons), M.Eng. C.Eng., MIE(SL) Drainage Requirement of Highway Drainage System Introduction Drainage means

More information

The water cycle. What is the water cycle? Fact file 2

The water cycle. What is the water cycle? Fact file 2 Fact file 2 The water cycle The water we use at home and at work comes from the natural environment. It is being recycled all the time in what is called the water cycle. What is the water cycle? Water

More information

SNAMP water research. Topics covered

SNAMP water research. Topics covered SNAMP water research SNAMP water team UC Merced Topics covered Objectives, goals & overview What & why the water component of SNAMP Pre-treatment Observations Water Quality Water Quantity Modeling & Scenarios:

More information

7-4 Soil. By Cyndee Crawford September 2014

7-4 Soil. By Cyndee Crawford September 2014 7-4 Soil By Cyndee Crawford September 2014 Soil Table of Contents 28.Chemical Weathering Lab 29.What is a Watershed? / Watershed Demo 30.Groundwater Layers Book 31.Groundwater Notes 32.What is an aquifer?

More information

1.2 The Earth System s Four Spheres

1.2 The Earth System s Four Spheres EXIT CHAPTER. A New View of Earth.2 The Earth System s Four Spheres.3 Cycles and the Earth CHAPTER OUTLINE Earth system science model system closed system. A New View of Earth Technological advances and

More information

The Hydrologic Cycle. Floods 3 5. Flood Science LESSON PLAN 1. Key Terms and Concepts. Purposes. Objectives

The Hydrologic Cycle. Floods 3 5. Flood Science LESSON PLAN 1. Key Terms and Concepts. Purposes. Objectives LESSON PLAN 1 The Hydrologic Cycle Floods It is important for children to understand the hydrologic cycle in preparation for learning the science behind floods and flash floods. Key Terms and Concepts

More information

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System.

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System. Earth as a System Table of Contents Section 1 Earth: A Unique Planet Section 2 Energy in the Earth System Section 3 Ecology Section 1 Earth: A Unique Planet Objectives Describe the size and shape of Earth.

More information

1. Only about 25% of the annual precipitation actually ends up in the river. Where does the other 85% go?

1. Only about 25% of the annual precipitation actually ends up in the river. Where does the other 85% go? Earth Revealed #19: Running Water 1: Rivers, Erosion and Deposition Name 1. Only about 25% of the annual precipitation actually ends up in the river. Where does the other 85% go? 2. Describe how the following

More information

Practical Limnology: A Primer Series by John Hains Clemson University Chapter 1

Practical Limnology: A Primer Series by John Hains Clemson University Chapter 1 Practical Limnology: A Primer Series by John Hains Clemson University Chapter 1 Introduction: In this series, I will present topics in the field of limnology that are important to water quality, especially

More information

Earth s Water Reservoirs

Earth s Water Reservoirs Earth s Water Reservoirs Introduction What do you think of when you hear the word reservoir? Living in Utah, most of us will think of a man made lake that stores needed water. Many of us have been swimming,

More information

3rd GRADE MINIMUM CONTENTS UDI 1: WATER (3)

3rd GRADE MINIMUM CONTENTS UDI 1: WATER (3) 3rd GRADE MINIMUM CONTENTS UDI 1: WATER (3) THE PROPERTIES OF WATER Water has different properties: Water has no taste, colour or smell. Water exists in three states: solid, liquid and gas. Water is a

More information

WHERE DOES THE WATER GO IN THE SAN ANTONIO RIVER BASIN?

WHERE DOES THE WATER GO IN THE SAN ANTONIO RIVER BASIN? WHERE DOES THE WATER GO IN THE SAN ANTONIO RIVER BASIN? OBJECTIVES Identify the San Antonio River Basin as a system that is a combination of systems Identify the San Antonio River Basin as part of the

More information

Temporary Watercourse Crossing: Culverts

Temporary Watercourse Crossing: Culverts Temporary Watercourse Crossing: Culverts DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent Symbol

More information

The water cycle. By NASA.gov, adapted by Newsela staff on Word Count 664 Level 810L

The water cycle. By NASA.gov, adapted by Newsela staff on Word Count 664 Level 810L The water cycle By NASA.gov, adapted by Newsela staff on 12.15.16 Word Count 664 Level 810L TOP: Water is the only common substance that can exist naturally as a gas, liquid or solid at the relatively

More information

Flood Plain Functions

Flood Plain Functions Flood Plain Functions Lesson Abstract Summary: MO GLE: Subject Areas: Students will connect knowledge from previous watershed lessons to understand the functions of flood plains by participating in group

More information

The Fourth Assessment of the Intergovernmental

The Fourth Assessment of the Intergovernmental Hydrologic Characterization of the Koshi Basin and the Impact of Climate Change Luna Bharati, Pabitra Gurung and Priyantha Jayakody Luna Bharati Pabitra Gurung Priyantha Jayakody Abstract: Assessment of

More information

1 Precipitation: Water that comes from clouds. Most precipitation falls as rain, but it can also fall as frozen water such as snow.

1 Precipitation: Water that comes from clouds. Most precipitation falls as rain, but it can also fall as frozen water such as snow. AEN-127 University of Kentucky College of Agriculture, Food and Environment Cooperative Extension Hydrologic Models Tyler Mahoney, Civil Engineering, and Carmen Agouridis and Richard Warner, Biosystems

More information

Issues include coverage gaps, delays, measurement continuity and consistency, data format and QC, political restrictions

Issues include coverage gaps, delays, measurement continuity and consistency, data format and QC, political restrictions Satellite-based Estimates of Groundwater Depletion, Ph.D. Chief, Hydrological Sciences Laboratory NASA Goddard Space Flight Center Greenbelt, MD Groundwater Monitoring Inadequacy of Surface Observations

More information

Hydrology Review, New paradigms, and Challenges

Hydrology Review, New paradigms, and Challenges Hydrology Review, New paradigms, and Challenges Intent quick introduction with emphasis on aspects related to watershed hydrochemistry and new paradigms Watershed / Catchment Definition Portion of landscape

More information

Where did the water you drank today come from? Summary With a roll of the dice, you can simulate the movement of water within the water cycle.

Where did the water you drank today come from? Summary With a roll of the dice, you can simulate the movement of water within the water cycle. The Water Cycle Where did the water you drank today come from? Summary With a roll of the dice, you can simulate the movement of water within the water cycle. Objectives Students will learn the complex

More information

TOPIC 1: WHY DO WE STUDY HYDROLOGY AND OPEN CHANNEL HYDRAULICS TABLE OF CONTENTS

TOPIC 1: WHY DO WE STUDY HYDROLOGY AND OPEN CHANNEL HYDRAULICS TABLE OF CONTENTS Unit CIV2262: Waterway Engineering 1.1 TOPIC 1: WHY DO WE STUDY HYDROLOGY AND OPEN CHANNEL HYDRAULICS TABLE OF CONTENTS 1. PREVIEW...2 1.1. Introduction... 2 1.2. Objectives... 2 1.3. Readings... 3 2.

More information

A damming report Why are some strategies for flood management more sustainable than others?

A damming report Why are some strategies for flood management more sustainable than others? A damming report Why are some strategies for flood management more sustainable than others? Instructions Record your answers in this booklet for revision you are not allowed to have anything in the exam

More information

Understanding Environmental Impacts of Horticulture

Understanding Environmental Impacts of Horticulture Lesson A1 3 Understanding Environmental Impacts of Horticulture Unit A. Horticultural Science Problem Area 1. Exploring the Horticulture Industry Lesson 3. Understanding Environmental Impacts of Horticulture

More information

Lecture 11: Water Flow; Soils and the Hydrologic Cycle

Lecture 11: Water Flow; Soils and the Hydrologic Cycle Lecture 11: Water Flow; Soils and the Hydrologic Cycle Water Flow in Soils Types of Water Flow in Soil Saturated flow: Soil pores completely filled with water; controlled by the hydrostatic potential After

More information

MoRE Results and Modifications

MoRE Results and Modifications MoRE Results and Modifications Stephan Fuchs, Stephan Hilgert, Tatyana Rogozina, Ramona Wander Simon Höllering, Jürgen Ihringer und Ulrike Scherer INSTITUTE FOR WATER AND RIVER BASIN MANAGEMENT, DEPARTMENT

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Re-plumbing Roadside Ditch Networks

Re-plumbing Roadside Ditch Networks Re-plumbing Roadside Ditch Networks Ditches Improving management to reduce flooding, water pollution, and in-stream erosion and habitat degradation Rebecca Schneider Dept. Natural Resources Cornell University,

More information

Wisconsin s Buried Treasure

Wisconsin s Buried Treasure Wisconsin s Buried Treasure Kevin Masarik Center for Watershed Science and Education Through the University of Wisconsin-Extension, all Wisconsin people can access University resources and engage in lifelong

More information

The Returning Raindrop

The Returning Raindrop Did you know that some of the water molecules we drink today may have been around when dinosaurs walked the Earth thousands of years ago? Water is continuously recycling in a process called the hydrologic

More information

Types of Hydropower Facilities

Types of Hydropower Facilities Types of Hydropower Facilities 1 Impoundment Hydropower- uses a dam to store water. Water may be released either to meet changing electricity needs or to maintain a constant water level. 2 Run-of-River

More information

EART 204. Water. Dr. Slawek Tulaczyk. Earth Sciences, UCSC

EART 204. Water. Dr. Slawek Tulaczyk. Earth Sciences, UCSC EART 204 Water Dr. Slawek Tulaczyk Earth Sciences, UCSC 1 Water is an amazing liquid, (high heat capacity - particularly in phase transitions, maximum density at ca. 4 deg. C) 2 3 4 5 6 7 8 9 Basin Hydrologic

More information