Bioconversion of Lignocellulosic Biomass into Bacterial Bio-Oils

Size: px
Start display at page:

Download "Bioconversion of Lignocellulosic Biomass into Bacterial Bio-Oils"

Transcription

1 Bioconversion of Lignocellulosic Biomass into Bacterial Bio-Oils Tyrone Wells, Jr. Georgia Institute of Technology School of Chemistry & Biochemistry Institute of Paper Science and Technology 1

2 Substrate Lignin Product Bio-oil BIOCONVERSION Organism Using biological systems to convert abundant starting materials Lignin into Recovery more valuable boiler BIODIESEL compounds limited mills Potential Domestic Supplemental Fuel Platform Wells, T. and A.J. Ragauskas, Biotechnological opportunities with the beta-ketoadipate pathway. Trends in Biotechnology, (12): p

3 Outline Background of Bacteria Rhodoccocus opacus Experimental Progress Kraft Lignin Wells, T. and A.J. Ragauskas, Biotechnological opportunities with the beta-ketoadipate pathway. Trends in Biotechnology, (12): p

4 Rhodococcus opacus Both are soil bacteria Both are oleaginous >20% of cell dry weight in oil (β-kap) Two Strains DSM 1069 PD 630 HSCoA High affinity towards the digestion of lignocellulosic aromatics β-ketoadipate pathway (β-kap) Glycerol Wells, T. and A.J. Ragauskas, Biotechnological opportunities with the beta-ketoadipate pathway. Trends in Biotechnology, (12): p

5 Model Compounds vs. Lignin Model Compounds Microbes digested nearly all of substrate during adaptation tests Oleaginous amounts of lipid production 30% palmitic acid Substantially less complex than actual lignin palmitic acid Lower molecular weight High homogeneity Lignin (basic representation) 5

6 Substrate Residue (Lignin mg/ml) Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

7 72 h 72 h Wells, T. and A.J. Ragauskas, Biotechnological opportunities with the beta-ketoadipate pathway. Trends in Biotechnology, (12): p Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

8 Wells, T. and A.J. Ragauskas, Biotechnological opportunities with the beta-ketoadipate pathway. Trends in Biotechnology, (12): p Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

9 palmitic acid TBA 9

10 Summary Microbes can consume both aliphatic and aromatic functional groups in Kraft lignin Kraft lignin polymerizes during adaptation, more challenging for bacterial digestion Goal: Train microbes to digest progressively higher concentrations of high MW lignin Improved yields FA composition is promising Future Work New sources for bioconversion opportunities Adaptation to pretreatment waste streams 10

11 Bioconversion Acknowledgement Arthur Ragauskas Matyas Kosa Zhen Wei DOE Biorefinery Project 11

12 12

13 13

14 14

15 15

16 16

17 17

18 Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

19 palmitic acid Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

20 Summary Oil-producing bacteria can metabolize aromatic biomass and produce bio-oil This process has potential as a supplemental energy platform Current Accomplishments Successfully generated bacterial bio-oils from: Model compounds (G and H-type monolignol analogs) Low M w Softwood Kraft lignin Ultrasonicated Ethanol Organosolv Lignin Successfully adapted bacteria to: Tannin-derived pyrolysis oils Ethanol Organosolv Hemicellulose Future Work Optimize adaptation to dilute acid pretreatment waste (contains lignin and hemicellulose Adapt the bacteria to higher M w Kraft lignin Alternative lignocellulosic derivatives 20

21

22 Experimental Adaptation Process Cell proliferation (full media) Centrifugation Cell proliferation (minimal media + new carbon source) PHASE I Lipid accumulation (reducing nitrogen content of minimal media) PHASE II Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

23 Fundamental Overview of Tracking Cell Growth Verifying that the cells are growing well on lignin as sole carbon source Decreasing Concentration of the Substrate Increasing Cell Dry Weight (CDW, can also be tracked by UV-Vis nm) Track the number of healthy cells (aka Colony Forming Units, CFU) Characterize the Generated Fats (Fatty Acid Methyl Esters, FAME) Rupture and Transesterification GC/MS [substrate] [cell dry weight] 23

24 Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:

25 Lipid Composition Within Bio-Oil FAME Comparison of FAME compositions at maximum specific yields and productivities 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% DSM HBA-12 DSM VanA-24 PD HBA-36 PD630- VanA-48 linoleate c-oleate 10-me-stearate stearate c-heptadecenoate 10-me-heptadecanoate heptadecanoate t-palmitoleate c-palmitoleate palmitate pentadecanoate myristate strain-substrate-time [h] till maximum productivity (and yield) Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53-61 palmitic acid c-oleic acid c-palmitoleate acid 25

26 Pyrolysis 26

27 Pyrolysis is the thermal degradation of biomass bio-oil Heavy Oil Fraction Lignin 600 o C, 1 hr 500 ml/min N 2 Gas Flow Light Oil Fraction 27 M Kosa, H. Ben, H. Theliander, A. J. Ragauskas, Pyrolysis oils from CO2 precipitated Kraft lignin, Green Chemistry. 13 (2011)

28 Future Work: Pyrolysis Heavy Oil Fraction Non-water soluble Hydrophobic globules Highly acidic Not a viable substrate for bacteria Lignin 600 o C, 1 hr 500 ml/min N 2 Gas Flow Heavy Oil Fraction Light Oil Fraction 28

29 Comparison of EOL vs. EOL Oil Growth Growth of DSM1069 on EOL and EOL Pyrolysis Oil 68 h and at 0.3 w/v% substrate concentration EOL Growth EOL Oil Growth 29

30 Kraft Lignin Pyrolysis Heavy Oil Adaptation 1.2E+05 Rhodococcus strains on Kraft lignin pyrolysis oil at 0.5 w/v% living cell numbers [CFU/ml] 1.0E E E E E E time [h] Rhodococcus opacus DSM 1069 Rhodococcus opacus PD630 30

31 Could pyrolysis of Tannin Oils work? Figure C C-NMR of tannin pyrolysis oil (in DMSO-d6, ppm) provided by Haoxi Ben. The major peaks are assignable to catechol (147.3, 122.7, ppm), acetic acid (176.0 and 22.9 ppm). Catechol is a major component of the Beta-ketoadipate pathway... 31

32 GPC results of Tannin Oil reveals Samples are Predominantly Catechol Figure C GPC analysis of generated TAN LO. The largest population of material at ~110 g/mol, corresponds to catechol (110.1 g/mol). 32

33 Hemicellulose 33

34 Hemicellulose: Future work GPC, NMR,HPLC for the substrate Transesterification, GC/MS for the bacterials

35 Review of Lignocellulosic Biomass Cellulose Hardwood 40-44% Softwood 40-44% Hemicellulose Lignin Hardwood 25-35% Softwood 20-32% Hardwood 20-25% Softwood 25-35% Complex biomacromolecule Monolignols p-hydroxyphenyl (H), Guaiacyl (G), Syringyl (S) 3D polyaromatic macromolecule Recalcitrant Significantly less applications Horst H. Nimz, Uwe Schmitt, Eckart Schwab, Otto Wittmann, Franz Wolf "Wood" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. 35

36 Optimizing the Use of Lignin Lignin (>90%) Kraft lignin burnt as a nonoptimized fuel Opportunity for recovery-boiler limited mills Alternative Uses of Lignin Lignin Biodiesel Bacterial treatment Sustainable supplemental fuel platform Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53-61 Areskogh, J. Li, G. Gellerstedt, G. Henriksson, Investigation of the molecular weight increase of commercial lignosulphonates by laccase catalysis, Biomacromol. 11 (2010) Pu Y, Kosa M, Kalluri UC, Tuskan GA, Ragauskas AJ (2011) Challenges of the utilization of wood polymers: how can they be overcome? Appl Microbiol Biotechnol, 91:

37 Lipid Composition Within Bio-Oil FAME 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Comparison of FAME compositions at maximum specific yields and productivities DSM 1069-Glu- 12 DSM HBA-12 DSM VanA-24 PD630- Glu-12 PD HBA-36 PD630- VanA-48 strain-substrate-time [h] till maximum productivity (and yield) linoleate c-oleate 10-me-stearate stearate c-heptadecenoate 10-me-heptadecanoate heptadecanoate t-palmitoleate c-palmitoleate palmitate pentadecanoate myristate Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29:53-61 linoleic acid stearic acid palmitic acid myristate acid c-oleic acid c-palmitoleate acid 37

38 The β-kap R 3 Precursory Compounds Protocatechuate β -Carboxymuconate γ -Carboxymuconolactone β Ketoadipate enol-lactone β -Ketoadipate Protocatechuate 3,4- dioxygenase β-carboxy-cis,cismuconate lactonizing enzyme γ -Carboxymuconolactone decarboxylase enol-lactone hydrolase Wells, T. and A.J. Ragauskas, Biotechnological opportunities with the beta-ketoadipate pathway. Trends in Biotechnology, (12): p

New energy: Fuel resources from kraft pulping

New energy: Fuel resources from kraft pulping New energy: Fuel resources from kraft pulping Máté Nagy, MátyM tyás s Kosa, Arthur J. Ragauskas, Hans Theliander Georgia Institute of Technology Chalmers University verview Fossil fuels vs. Biofuels Lignin

More information

Catalytic Pyrolysis of Lignin for Bio oils

Catalytic Pyrolysis of Lignin for Bio oils Catalytic Pyrolysis of Lignin for Bio oils Haoxi Ben and Arthur Ragauskas Georgia Institute of Technology Institute of Paper Science and Technology http://www.eia.doe.gov http://www.nrel.gov 2 Kraft Pulp

More information

Laccase-Facilitated Copolymerization of Lignin for the Synthesis of Novel Biomaterials

Laccase-Facilitated Copolymerization of Lignin for the Synthesis of Novel Biomaterials Laccase-Facilitated Copolymerization of Lignin for the Synthesis of Novel Biomaterials Mark D. Cannatelli Dr. Arthur J. Ragauskas Renewable Bioproducts Institute Department of Chemistry Georgia Tech 1

More information

Solubilization of lignin and hemicellulose during hydrothermal pretreatment

Solubilization of lignin and hemicellulose during hydrothermal pretreatment Solubilization of lignin and hemicellulose during hydrothermal pretreatment Heather L. McKenzie 1, Nancy L. Engle 2, Joshua F. Emory 2, Marcus B. Foston 3, Arthur Ragauskas 3, Bruce A. Tomkins 2, Timothy

More information

Lignin Production by Organosolv Fractionation of Lignocellulosic Biomass W.J.J. Huijgen P.J. de Wild J.H. Reith

Lignin Production by Organosolv Fractionation of Lignocellulosic Biomass W.J.J. Huijgen P.J. de Wild J.H. Reith Lignin Production by Organosolv Fractionation of Lignocellulosic Biomass W.J.J. Huijgen P.J. de Wild J.H. Reith Presented at the International Biomass Valorisation Congress, 13-15 September 2010, Amsterdam,

More information

Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors

Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors Kurosawa et al. Biotechnology for Biofuels (215) :76 DOI 1.1/s136-15-25-3 RESEARCH ARTICLE Open Access Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived

More information

Biofuels. Letizia Bua

Biofuels. Letizia Bua Biofuels Letizia Bua Biofuels What is a biofuel? What the European Community says about it? How we can produce it? (Technology options) eni and renewable energy 2 What is a biofuel? interesting! Life cycle

More information

Effects of Liquid Hot Water Pretreatment on Enzyme Loading and Hydrolysis of Hardwood

Effects of Liquid Hot Water Pretreatment on Enzyme Loading and Hydrolysis of Hardwood 1 Effects of Liquid Hot Water Pretreatment on Enzyme Loading and Hydrolysis of Hardwood Michael Ladisch, Youngmi Kim, Ja Kyong Ko, Tommy Kreke, Eduardo Ximenes Laboratory of Renewable Resources Engineering

More information

Uncatalyzed Lignin Solvolysis

Uncatalyzed Lignin Solvolysis Kyösti Ruuttunen, Syed Farhan Hashmi, Johanna Hakonen, Herbert Sixta Uncatalyzed Lignin Solvolysis Utilizing Water-Solvent Mixtures as a Reaction Medium 1st International Forest Biorefining Conference

More information

Biofuels Research at the University of Washington

Biofuels Research at the University of Washington Biofuels Research at the University of Washington 15 July 2008 Rick Gustafson Paper Science & Engineering College of Forest Resource University of Washington UW biofuels research agenda Vision: Cost effective

More information

Lignocellulosic biorefinery pathways to biobased chemicals and materials

Lignocellulosic biorefinery pathways to biobased chemicals and materials Lignocellulosic biorefinery pathways to biobased chemicals and materials 1 st Int. Forest Biorefinery Conference, Thunder Bay, Canada May 9-11, 2017 Richard Gosselink, Carmen Boeriu, Paulien Harmsen, Jeroen

More information

CHARACTERIZATION AND POTENTIAL APPLICATIONS OF MILLED WOOD LIGNIN OBTAINED FROM SUGAR DEPOT BIOREFINERY PROCESS

CHARACTERIZATION AND POTENTIAL APPLICATIONS OF MILLED WOOD LIGNIN OBTAINED FROM SUGAR DEPOT BIOREFINERY PROCESS CHARACTERIZATION AND POTENTIAL APPLICATIONS OF MILLED WOOD LIGNIN OBTAINED FROM SUGAR DEPOT BIOREFINERY PROCESS Authors ORGANIZATION Xiao Zhang Ruoshui Ma Kuan-Ting Ling Peipei Wang COMPLETED 2016 1 TABLE

More information

Processes and Electron Flow in a Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds

Processes and Electron Flow in a Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds Processes and Electron Flow in a Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds Xiaofei (Sophie) Zeng 1, Abhijeet P. Borole 2 and Spyros G. Pavlostathis 1 1 School of Civil & Environmental

More information

Plant Biotechnology for Biofuels

Plant Biotechnology for Biofuels Plant Biotechnology for Biofuels Markus Energy Biosciences Institute Department of Plant and Microbial Biology UC Berkeley Princeton University, October 14, 2013 CO 2 -concentration in the atmosphere!

More information

Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification

Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification Ethanosolv Pretreatment of Bamboo with Dilute Acid for Efficient Enzymatic Saccharification Zhiqiang LI Ph.D. lizq@icbr.ac.cn 55th International Convention of Society of Wood Science and Technology Main

More information

Assessing Cellulose Accessibility of Lignocellulosic Biomass before and after Pretreatment

Assessing Cellulose Accessibility of Lignocellulosic Biomass before and after Pretreatment Assessing Cellulose Accessibility of Lignocellulosic Biomass before and after Pretreatment Xianzhi Meng 1, Marcus Foston 1, Jaclyn DeMartini 2, Charles E. Wyman 2 and Arthur J. Ragauskas 1,3 (1) BioEnergyScience

More information

VARIATIONS IN EXTRACTIVE COMPOUNDS DURING HYDROTHERMAL TREATMENT OF LIGNOCELLULOSIC SLUDGE

VARIATIONS IN EXTRACTIVE COMPOUNDS DURING HYDROTHERMAL TREATMENT OF LIGNOCELLULOSIC SLUDGE VARIATIONS IN EXTRACTIVE COMPOUNDS DURING HYDROTHERMAL TREATMENT OF LIGNOCELLULOSIC SLUDGE Saeid Baroutian, John Andrews, Murray Robinson, Anne-Marie Smit, Ben McDonald, Suren Wijeyekoon, Daniel Gapes

More information

VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS. FP7 EC KBBE-CALL 7- Project No

VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS. FP7 EC KBBE-CALL 7- Project No VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS FP7 EC KBBE-CALL 7- Project No. 613802 VALORPLUS: VALORISING BIOREFINERY BY-PRODUCTS Valorisation of biorefinery by-products leading to closed loop systems

More information

Update on Lignol s Biorefinery Technology

Update on Lignol s Biorefinery Technology Update on Lignol s Biorefinery Technology October 15, 2009 www.lignol.ca Introduction to Lignol A leader in emerging cellulosic ethanol technology Burnaby, BC and Berwyn, PA based, public company (LEC:TSX-V)

More information

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York

Introduction to BIOFUELS. David M. Mousdale. CRC Press. Taylor & Francis Group Boca Raton London New York Introduction to BIOFUELS David M. Mousdale CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business Contents Preface Acknowledgments

More information

ANTIMICROBIAL PROPERTIES OF LIGNIN COMPOUNDS RESEARCH PROPOSAL

ANTIMICROBIAL PROPERTIES OF LIGNIN COMPOUNDS RESEARCH PROPOSAL ANTIMICROBIAL PROPERTIES OF LIGNIN COMPOUNDS RESEARCH PROPOSAL A research proposal submitted in partial fulfillment of the requirements for the degree of Master of Science in the College of Biosystems

More information

Biomass conversion into low-cost and sustainable chemicals*

Biomass conversion into low-cost and sustainable chemicals* Biomass conversion into low-cost and sustainable chemicals Dr. Stephan Freyer Chemical Engineering Biotechnology Chemicals Research & Engineering BASF SE, Ludwigshafen, Germany Foto: R. Hromniak Biomass

More information

Emerging Markets: Biotechnology. MC Jarvis Glasgow University and IBioIC

Emerging Markets: Biotechnology. MC Jarvis Glasgow University and IBioIC Emerging Markets: Biotechnology MC Jarvis Glasgow University and IBioIC M.C. Jarvis. Forest and Timber Industry Leadership Group. Edinburgh, 30 Nov 2015 Biotechnology Plant biotechnology Tree improvement

More information

LIBRA: a lignin biorefinery approach for enhanced profitability

LIBRA: a lignin biorefinery approach for enhanced profitability LIBRA: a lignin biorefinery approach for enhanced profitability P.J. de Wild March 2014 ECN-L--14-015 LIBRA: a lignin biorefinery approach for enhanced profitability Paul de Wild www.ecn.nl Main fractions

More information

Commercial Lignin: Co-product Of Cellulosic Sugar Production

Commercial Lignin: Co-product Of Cellulosic Sugar Production Commercial Lignin: Co-product Of Cellulosic Sugar Production Not All Lignins Are Created Equal Fred Moesler Chief Technology Officer, Renmatix May 13, 2015 Economically Deconstructing Biomass to Valuable

More information

Lignin Conversion: Opportunities and Challenges for the Integrated Biorefinery

Lignin Conversion: Opportunities and Challenges for the Integrated Biorefinery Lignin Conversion: Opportunities and Challenges for the Integrated Biorefinery Shangxian Xie, 1 3 Arthur J. Ragauskas, 4 6 and Joshua S. Yuan 1 3 1 Texas A&M Agrilife Synthetic and Systems Biology Innovation

More information

Imagine a renewable world

Imagine a renewable world Conversion of Woody Biomass to Chemicals, Energy and Materials Shijie Liu and Thomas E. Amidon Biorefinery Research Institute Department of Paper and Bioprocess Engineering SUNY College of Environmental

More information

2.2 Conversion Platforms

2.2 Conversion Platforms 2.2 Conversion Platforms The strategic goal of the conversion element is to develop technologies for converting feedstocks into cost-competitive commodity liquid fuels, like ethanol, as well as bioproducts

More information

Lignin sources, properties and volumes

Lignin sources, properties and volumes Lignin sources, properties and volumes Tom Browne Research Manager, Biorefinery & Bioenergy FPInnovations Pointe-Claire, QC Location: Date: World Bio-Congress, Montreal, QC June 18, 2013 Lignin: a complex

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

INDUSTRIAL ENZYMES FOR CELLULOSIC SUGARS AND BEYOND

INDUSTRIAL ENZYMES FOR CELLULOSIC SUGARS AND BEYOND INDUSTRIAL ENZYMES FOR CELLULOSIC SUGARS AND BEYOND THE POWER AND SPEED OF TAILORED SOLUTIONS EuroNanoForum 2017 Malta, June 22 nd MATTI HEIKKILÄ CTO METGEN STRATEGIC FOCUS Lignocellulosic biomass conversion

More information

Characterization of tree and wood fractions for biorefinery applications SARA JOHANSSON COST FP0901 TURKU SEPTEMBER 18, 2013

Characterization of tree and wood fractions for biorefinery applications SARA JOHANSSON COST FP0901 TURKU SEPTEMBER 18, 2013 Characterization of tree and wood fractions for biorefinery applications SARA JOHANSSON COST FP0901 TURKU SEPTEMBER 18, 2013 To characterize differences in raw material composition and processability of

More information

SCREEN AND IDENTIFY SUITABLE PLANT FEEDSTOCKS FOR LARGE SCALE PRE- TREATMENTS TO PRODUCE HIGH YIELD SUGAR AND HIGH QUALITY LIGNIN

SCREEN AND IDENTIFY SUITABLE PLANT FEEDSTOCKS FOR LARGE SCALE PRE- TREATMENTS TO PRODUCE HIGH YIELD SUGAR AND HIGH QUALITY LIGNIN SCREEN AND IDENTIFY SUITABLE PLANT FEEDSTOCKS FOR LARGE SCALE PRE- TREATMENTS TO PRODUCE HIGH YIELD SUGAR AND HIGH QUALITY LIGNIN Authors ORGANIZATION Scott Geleynse Washington State University Xiao Zhang

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction

More information

Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals

Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals Development of a Lignocellulose Biorefinery for Production of 2 nd Generation Biofuels and Chemicals W.J.J. Huijgen, R. Van der Linden, J.H. Reith & H. den Uil Presented at the Netherlands Process Technology

More information

EQUILIBRIUM OF LIGNIN PRECIPITATION

EQUILIBRIUM OF LIGNIN PRECIPITATION EQUILIBRIUM OF LIGNIN PRECIPITATION Weizhen Zhu 1 and Hans Theliander 1* 1. Forest Products and Chemical Engineering, Department of Chemical and Biological Engineering, Chalmers University of Technology,

More information

Renewable Chemicals from the Forest Biorefinery

Renewable Chemicals from the Forest Biorefinery 11 th Annual Congress on Industrial Biotechnology May 12 15, 2014 Philadelphia, PA Renewable Chemicals from the Forest Biorefinery François Zasieczny, Mariya Marinova, Tom Browne, Michel Perrier The Forest

More information

Understanding Gene Function and Control in Lignin Formation In Wood

Understanding Gene Function and Control in Lignin Formation In Wood Understanding Gene Function and Control in Lignin Formation In Wood Vincent L. Chiang North Carolina State University Raleigh, NC Tremendous effort has been devoted to developing genetically engineered

More information

Effect of Torrefaction on Biomass Chemistry and Hydrocarbons Production from Fast Pyrolysis

Effect of Torrefaction on Biomass Chemistry and Hydrocarbons Production from Fast Pyrolysis Effect of Torrefaction on Biomass Chemistry and Hydrocarbons Production from Fast Pyrolysis Sushil Adhikari, Ph.D., P.E. Biosystems Engineering Department Auburn University February 03, 2015 Lignocellulosic

More information

Global Warming. Department of Chemical Engineering

Global Warming. Department of Chemical Engineering Global Warming How Can Biofuels Help? Clint Williford Department of Chemical Engineering Introduction ti Greenhouse emissions Reducing growth of GHG emissions Biofuels Why and why now? What they are? How

More information

High value, low volume, challenging to find market. Polymer. Biofuel

High value, low volume, challenging to find market. Polymer. Biofuel High value, low volume, challenging to find market Food, pharmaceutical Composite Polymer Chemical and hydrogen Biofuel Low value, high volume, easy to find market Gas and CHP Fig. 1 Biorefinery products

More information

Ethanol-based Organosolv Pretreatment of Wheat Straw

Ethanol-based Organosolv Pretreatment of Wheat Straw Ethanol-based Organosolv Pretreatment of Wheat Straw W.J.J. Huijgen (ECN) J.W. van Hal (ECN) G. Telysheva (Latvian state Institute of Wood Chemistry) R.J.A. Gosselink (Wageningen UR Food & Biobased Research)

More information

Cellulosic Biomass Chemical Pretreatment Technologies

Cellulosic Biomass Chemical Pretreatment Technologies Life-changing Research and Development Cellulosic Biomass Chemical Pretreatment Technologies September 6, 2007 Keith Pauley Keith.Pauley@matricresearch.com 800-611-2296 Chemical and Environmental Technologies

More information

[330d] Fractionation and Recovery of. Characterization for Biorefinery Processes

[330d] Fractionation and Recovery of. Characterization for Biorefinery Processes [330d] Fractionation and Recovery of Lignin and Xylan from Alkali Liquors Characterization for Biorefinery Processes 330 Separation Processes in Biorefineries Ryan Stoklosa and David Hodge Chemical Engineering

More information

The CIMV organosolv Process. B. Benjelloun

The CIMV organosolv Process. B. Benjelloun The CIMV organosolv Process B. Benjelloun 2 BIOREFINERY CONCEPT THE CIMV PROCESS Based on the oil refining model. Promote 100% of the non-food Biomass in Biofuels and/or Bioproducts. High feedstocks fexilibility

More information

Production of Biofuels and Value-Added Products

Production of Biofuels and Value-Added Products Metabolically engineered microbial systems and the conversion of agricultural biomass into simple sugars Microbial for the production Systems of biofuels For and The valueadded products Production of Biofuels

More information

THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION

THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION Bioenergy- II: Fuels and Chemicals from Renewable Resources THERMOPHILIC ENZYMES FOR BIOMASS CONVERSION Dr. Francesco La Cara Institute of Protein Biochemistry C.N.R. Naples - Italy THERMOPHILIC ENZYMES

More information

Green Epoxy Resin System Based on Lignin and Tung Oil and Its Application in Epoxy Asphalt

Green Epoxy Resin System Based on Lignin and Tung Oil and Its Application in Epoxy Asphalt Green Epoxy Resin System Based on Lignin and Tung il and Its Application in Epoxy Asphalt Ran Li & Junna Xin & Jinwen Zhang School of Mechanical and Materials Engineering Composite Materials and Engineering

More information

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II:

Outline. Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries. ECI Bioenergy-II: Comparative Fast Pyrolysis of Agricultural Residues for Use in Biorefineries Institute for Wood Technology and Wood Biology, amburg e ECI Bioenergy-II: Fuels and Chemicals from Renewable Resources Rio

More information

Flexible Platform Technologies for Resource Recovery from Food Waste

Flexible Platform Technologies for Resource Recovery from Food Waste Flexible Platform Technologies for Resource Recovery from Food Waste Kartik Chandran Columbia University Rutgers University April 27 th, 2016 Brief overview of biological sewage treatment Solids, inerts

More information

Second Annual California Biomass Collaborative Forum

Second Annual California Biomass Collaborative Forum Second Annual California Biomass Collaborative Forum John Ferrell Office of Biomass Program U.S. Department of Energy March 1, 2005 Federal Goals for Biorefinery Development and Implications for Fuel and

More information

Pretreatment of Prevalent Canadian West Coast Softwoods Using the Ethanol Organosolv Process Assessing Robustness of the Ethanol Organosolv Process

Pretreatment of Prevalent Canadian West Coast Softwoods Using the Ethanol Organosolv Process Assessing Robustness of the Ethanol Organosolv Process Pretreatment of Prevalent Canadian West Coast Softwoods Using the Ethanol Organosolv Process Assessing Robustness of the Ethanol Organosolv Process Johanna Johansson Department of Chemical Engineering,

More information

ECN Research and Development in bioenergy

ECN Research and Development in bioenergy ECN Research and Development in bioenergy June 2014, Environmental Day, Sao Paulo Tatjana Komissarova, Corporate business developer www.ecn.nl BRAZIL Brazil is nowadays the largest and BEST bioethanol

More information

Development of Bioengineered Yeast for the Grain Ethanol Industry

Development of Bioengineered Yeast for the Grain Ethanol Industry Development of Bioengineered Yeast for the Grain Ethanol Industry Overcoming Challenges in Regulation and Intellectual Property Track 3: Advanced Biofuels and Biorefinery Platforms Session 5: Tuesday,

More information

BIOMASS FUTURES. Chemical & Adhesives Industry Demand for Biomass CHIMAR HELLAS S.A. Workshop, 30 June Eleftheria Athanassiadou

BIOMASS FUTURES. Chemical & Adhesives Industry Demand for Biomass CHIMAR HELLAS S.A. Workshop, 30 June Eleftheria Athanassiadou BIOMASS FUTURES Chemical & Adhesives Industry Demand for Biomass Workshop, 30 June 2010 Eleftheria Athanassiadou R&D Support and IP Protection Manager CHIMAR HELLAS S.A. World Chemicals Sales (2007) SOURCE:

More information

Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments

Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments 6 th International Symposium on Fuels and Lubricants New Delhi, India March 9-12, 2008 S. Kent Hoekman, Ph.D. Desert Research Institute

More information

HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION. Alain Quignard / IFPEN

HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION. Alain Quignard / IFPEN Flash Pyrolysis Flash Pyrolysis Flash Pyrolysis 2 step HDT 1) Stabilization 2) Hydroconversion Flash Pyrolysis HYDROCONVERSION OF FAST PYROLYSIS BIO-OIL: UNDERSTANDING AND LIMITING MACROMOLECULES FORMATION

More information

The Next Generation of Biofuels

The Next Generation of Biofuels The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

Fermentation of pretreated source separated organic (SSO) waste for ethanol production by different bacteria

Fermentation of pretreated source separated organic (SSO) waste for ethanol production by different bacteria Fermentation of pretreated source separated organic (SSO) waste for ethanol production by different bacteria by Bekmuradov Valeriy, Luk Grace and Luong Robin Ryerson University Toronto, Canada Montreal,

More information

Preliminary Design and Energy Efficiency Analysis of a Kraft Pulp Mill Converted to a Biorefinery Producing Ethanol and DME from Softwood

Preliminary Design and Energy Efficiency Analysis of a Kraft Pulp Mill Converted to a Biorefinery Producing Ethanol and DME from Softwood CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021192 1147

More information

The kraft pulp mill biorefinery platform

The kraft pulp mill biorefinery platform The kraft pulp mill biorefinery platform Peter Axegård, INNVENTIA AB, Sweden, peter.axegard@innventia.com Niklas berglin, INNVENTIA, Sweden, niklas.berglin@innventia.com Karin Lindgren, INNVENTIA, Sweden,

More information

Applying the mutation of Bacillus subtilis and the optimization of feather fermentation medium to improve Keratinase activity

Applying the mutation of Bacillus subtilis and the optimization of feather fermentation medium to improve Keratinase activity Advances in Biological Chemistry, 2012, 2, 64-69 http://dx.doi.org/10.4236/abc.2012.21008 Published Online February 2012 (http://www.scirp.org/journal/abc/) ABC Applying the mutation of Bacillus subtilis

More information

Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass

Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass Solar-Induced Hybrid Fuel Cell Produces Electricity Directly from Biomass Researchers at the Georgia Institute of Technology have developed a new type of lowtemperature fuel cell that directly converts

More information

Shodex HPLC approach for biomass related analysis

Shodex HPLC approach for biomass related analysis Shodex HPLC approach for biomass related analysis Kanna Ito, Shodex /Showa Denko America, Inc. Data provided by Showa Denko K.K. Introduction: Biomass is a renewable energy source obtained from biological

More information

to-wheels Graduate Enterprise: Bioprocessing Initiatives

to-wheels Graduate Enterprise: Bioprocessing Initiatives A Wood-to to-wheels Graduate Enterprise: Bioprocessing Initiatives David R. Shonnard Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931 Presentation to MEDC and Other

More information

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee

Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Waste to energy conversion Dr. Prasenjit Mondal Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 26 Energy production from Organic Wastes Through Anaerobic Digestion-1

More information

The National Bioenergy Center and Biomass R&D Overview

The National Bioenergy Center and Biomass R&D Overview The National Bioenergy Center and Biomass R&D verview Dr. Michael A. Pacheco Director of National Bioenergy Center National Renewable Energy Laboratory May 20, 2004 National Bioenergy Center Announced

More information

Challenges in developing microbes for industrial biotechnology

Challenges in developing microbes for industrial biotechnology Challenges in developing microbes for industrial biotechnology Rishi Jain, Praj Matrix, India 10-Oct-2012 Domains of life http://pacelab.colorado.edu/images/big_tree_bold_letters_white.png 2 Bioprospecting

More information

Analyzing Changes in Lignin Chemistry Due to Biofuel Production Processes

Analyzing Changes in Lignin Chemistry Due to Biofuel Production Processes Analyzing Changes in Lignin Chemistry Due to Biofuel Production Processes S. Carter Fox Weyerhaeuser Northwest Wood-Based Biofuels + Co-Products Conference I Seattle, WA I April 30, 2014 NARA Supply Chain

More information

Kraft Pulp & Paper Mills: Forest-Based Emerging Biorefineries

Kraft Pulp & Paper Mills: Forest-Based Emerging Biorefineries Kraft Pulp & Paper Mills: Forest-Based Emerging Biorefineries Carlos Pascoal Neto RAIZ / The Navigator Company carlos.neto@thenavigatorcompany.com Almost every successful person begins with two beliefs:

More information

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit

Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Routes to Higher Hydrocarbons BIO, Pacific Rim Summit Thomas D. Foust, Ph.D., P.E. Director, National Advanced Fuels Consortium NREL Bioenergy Center December 9, 2013 NREL is a national laboratory of the

More information

Development of a Sulfur-Free Delignification Process for Softwood Biorefineries

Development of a Sulfur-Free Delignification Process for Softwood Biorefineries Development of a Sulfur-Free Delignification Process for Softwood Biorefineries Claire Monot, Christine Chirat Grenoble INP-Pagora / LGP2 58 th SWST International Convention June 9, 2015 Funded by The

More information

Lignin valorization towards materials, chemicals and energy

Lignin valorization towards materials, chemicals and energy Lignin valorization towards materials, chemicals and energy 2 nd Lund symposium on lignin and hemicellulose valorisation, November 3-4, 2015 Lund Dr. Richard Gosselink Contents Lignin valorization Biorefineries

More information

C5 fermentation; strain engineering for high level xylitol (and xylonate) production. Merja Penttilä VTT Technical Research Centre of Finland

C5 fermentation; strain engineering for high level xylitol (and xylonate) production. Merja Penttilä VTT Technical Research Centre of Finland C5 fermentation; strain engineering for high level xylitol (and xylonate) production Merja Penttilä VTT Technical Research Centre of Finland CIMV ORGANOSOLV PROCESS: C5 SYRUP C6 cellulose pulp C5 hemicellulose

More information

Genetic Engineering for Biofuels Production

Genetic Engineering for Biofuels Production Genetic Engineering for Biofuels Production WSE 573 Spring 2013 Greeley Beck INTRODUCTION Alternative transportation fuels are needed in the United States because of oil supply insecurity, oil price increases,

More information

Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels

Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels A Workshop to Develop the Roadmap for Making Lignocellulosic Biofuels a Practical Reality ACS Headquarters Washington, D.C. June

More information

Improvements in Bioethanol Production Process from Straw

Improvements in Bioethanol Production Process from Straw Improvements in Bioethanol Production Process from Straw Heike Kahr,*, Alexander G. Jäger Upper Austria University of Applied Sciences Research and Development Ltd, Campus Wels Stelzhamerstrasse, A- Wels,

More information

Activities in UW Forest Resources and Lignocellulosic Biorefineries

Activities in UW Forest Resources and Lignocellulosic Biorefineries Activities in UW Forest Resources and Lignocellulosic Biorefineries Rick Gustafson, Renata Bura, Bill McKean, Sharon Doty, Brian Marquardt, Rob Synovec, Joyce Cooper 3 May 2010 U.S. Renewable Fuel Standard

More information

The Utility of Critical Fluids for Efficient Processing of Lignocellulose as Part of an Integrated Biorefining Concept

The Utility of Critical Fluids for Efficient Processing of Lignocellulose as Part of an Integrated Biorefining Concept University of Birmingham, School of Chemical Engineering, College of Engineering & Physical Sciences, UK The Utility of Critical Fluids for Efficient Processing of Lignocellulose as Part of an Integrated

More information

Biomass Pretreatment: What do we really know?

Biomass Pretreatment: What do we really know? Biomass Pretreatment: What do we really know? Bradley A. Saville, Ph.D., P.Eng University of Toronto Department of Chemical Engineering and Applied Chemistry Pretreatment: Role and History Initiated >

More information

Upscaling of New Processes - Challenges and Opportunities

Upscaling of New Processes - Challenges and Opportunities Upscaling of New Processes - Challenges and Opportunities Markus Norström Business Area Manager, Energy markus.norstrom@sp.se Sören Eriksson Soren.eriksson@preem.se Driving Forces Towards a Biobased Economy

More information

From waste to fuel: bioconversion of domestic food wastes to energy carriers

From waste to fuel: bioconversion of domestic food wastes to energy carriers From waste to fuel: bioconversion of domestic food wastes to energy carriers M. Alexandropoulou 1,2, N. Menis 1, G. Antonopoulou 2, I. Ntaikou 2, G. Lyberatos 1,2 1 School of Chemical Engineering, National

More information

Mobilisation and utilisation of recycled wood for lignocellulosic(lc)bio-refinery processes. Dr. Guido Hora, Fraunhofer WKI, GERMANY

Mobilisation and utilisation of recycled wood for lignocellulosic(lc)bio-refinery processes. Dr. Guido Hora, Fraunhofer WKI, GERMANY ReWoBioRef Mobilisation and utilisation of recycled wood for lignocellulosic(lc)bio-refinery processes Dr. Guido Hora, Fraunhofer WKI, GERMANY Background and objectives There will be a growing demand within

More information

Cellulosic Conversion to Bioethanol from Pongamia Pod A Biodiesel Industry Waste

Cellulosic Conversion to Bioethanol from Pongamia Pod A Biodiesel Industry Waste International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Cellulosic Conversion to Bioethanol from Pongamia Pod A Biodiesel Industry Waste Yashaswi R.Metri 1, Dr.Bharati S.Meti 2 Department

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

Biorefinery scenarios for the future BOKU network Bioconversion of Renewables

Biorefinery scenarios for the future BOKU network Bioconversion of Renewables Biorefinery scenarios for the future BKU network Bioconversion of Renewables Thomas Rosenau, Antje Potthast, Falk Liebner, Stefan Böhmdorfer, Axel Russler University of Natural Resources and Life Sciences

More information

Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment

Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment Co-production of Ethanol and Cellulose Fiber from Southern Pine: A Technical and Economic Assessment Jim Frederick, Steve Lien, Chuck Courchene, Niko DeMartini, Art Ragauskas and Kristiina Iisa Georgia

More information

Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004)

Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004) Abstract Process Economics Program Report 252 CHEMICALS FROM AGRICULTURAL WASTES (September 2004) Petrochemical hydrocarbon sources are finite and many experts suggest that they will become exhausted within

More information

Quantitative Structural Characters of Lignins Obtained from Residue after Hydrothermal Pretreatment

Quantitative Structural Characters of Lignins Obtained from Residue after Hydrothermal Pretreatment Quantitative Structural Characters of Lignins Obtained from Residue after Hydrothermal Pretreatment Jia-Long Wen 1 Bai-Liang Xue 2 Feng Xu 3 Run-Cang Sun 4* 1 PHD student, Institute of Biomass Chemistry

More information

Biorefineries. International status quo and future directions. Ed de Jong / Rene van Ree

Biorefineries. International status quo and future directions. Ed de Jong / Rene van Ree Biorefineries International status quo and future directions Ed de Jong / Rene van Ree Contents 1. Biobased Economy 2. Biorefineries - Definition 3. Biorefineries - Categories 4. Biorefineries - Objective

More information

Relationships Between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels

Relationships Between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels ENERGY EXPLORATION & EXPLOITATION Volume 20 Number 1 2002 105 Relationships Between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels Ayhan Demirbas P. K. 216, TR-61035 Trabzon,

More information

Alkaline Polyethylene Glycol Treatment for. Material Utilization of Lignin

Alkaline Polyethylene Glycol Treatment for. Material Utilization of Lignin Alkaline Polyethylene Glycol Treatment for Material Utilization of Lignin May 2016 Kukjin YOON Alkaline Polyethylene Glycol Treatment for Material Utilization of Lignin A Dissertation Submitted to Graduate

More information

Innovation in Small Diameter Utilization

Innovation in Small Diameter Utilization Innovation in Small Diameter Utilization Bioenergy & Wood Products Conference II Denver, Colorado March 15, 2006 John R. Shelly University of California Cooperative Extension john.shelly@nature.berkeley.edu

More information

Refining Biorefining Art J. Ragauskas BioEnergy Science Center Sch oo Ch

Refining Biorefining Art J. Ragauskas BioEnergy Science Center Sch oo Ch Refining Biorefining Art J. Ragauskas BioEnergy Science Center Sh School lchemistry & Biochemistry i Institute of Paper Science & Technology Georgia Institute of Technology Atlanta, GA Motivation: World

More information

CONVERSION OF LIGNOCELLULOSICS TO BIOFUELS

CONVERSION OF LIGNOCELLULOSICS TO BIOFUELS CONVERSION OF LIGNOCELLULOSICS TO BIOFUELS Bioenergy - I: From Concept to Commercial Processes March 5-10, 2006 Tomar, Portugal Maria Costa-Ferreira João Matos de Sousa INETI National Institute for Engineering,

More information

The development of the Biorefinery and the SUSTOIL project

The development of the Biorefinery and the SUSTOIL project The development of the Biorefinery and the SUSTIL project Ray Marriott Green Chemistry Centre of Excellence University of York Contents Biorefinery evolution The SUSTIL project Project objectives Preliminary

More information

SOME CHALLENGES OF BIOMASS

SOME CHALLENGES OF BIOMASS SOME CHALLENGES OF BIOMASS Energy density, moisture Handling characteristics Shelf life and hazards Composition (inorganics) Digestibility and enzyme conversion rates/efficiencies Economics of process

More information

Assessment of Potential Biorefineries. Dr Kate Haigh, Prof Johann Görgens, Process Engineering

Assessment of Potential Biorefineries. Dr Kate Haigh, Prof Johann Görgens, Process Engineering Assessment of Potential Biorefineries Dr Kate Haigh, Prof Johann Görgens, Process Engineering Overview Why investigate biorefinery scenarios? Technologies, techniques and processes currently under investigation

More information

The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw

The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw nd International Conference on Sustainable Solid Waste Management The effect of acid pretreatment on bio-ethanol and bio-hydrogen production from sunflower straw G. Antonopoulou 1, G. Dimitrellos 1, D.

More information