How the City of Lebanon TN Implemented Gasification for Biosolids Disposal and Power Generation

Size: px
Start display at page:

Download "How the City of Lebanon TN Implemented Gasification for Biosolids Disposal and Power Generation"

Transcription

1 How the City of Lebanon TN Implemented Gasification for Biosolids Disposal and Power Generation Introduction The City of Lebanon, TN has completed construction of a waste-to-energy system sited at the wastewater treatment plant (WWTP). This project will not only create electricity, but will also utilize existing wood waste, WWTP sludge, and the county s discarded tires as fuel creating an ideal situation for reducing waste and producing renewable energy. The designed system is the integration of three well-established commercial technologies: 1) a biomass gasifier, 2) a thermal oxidizer/hot oil heat exchanger, and 3) Organic Rankine Cycle (ORC) power generator. The plant is designed for a 25-year operating life. The system design is fundamentally different from incineration since it uses gasification to reduce NOx, SOx, and fly ash. As such, the project design further supports the environmental goals of the Tennessee Department of Environment and Conservation since it first converts the biomass into a clean combustible gas and then combusts it in a thermal oxidizer yielding stack emissions similar to natural gas unlike traditional incineration-to-energy projects. Project revenues are derived from the avoided cost of purchased electricity and anaerobic digestion using ATAD and tip fees for processing wood waste and tires. As a result, the project is expected to provide the city a net savings of $300,000 annually, and $6 million during its operational lifetime through avoided costs and operational efficiencies while simultaneously meeting all selection criteria of the TDEC Energy Program and its broader goals. The City of Lebanon s WWTP is supplied electricity by the Middle Tennessee Electric Cooperative (MTEC), a municipal distribution utility serving residential and commercial customers within the corporate limits of the City of Lebanon. MTEC is a separate entity and is not affiliated with the Lebanon WWTP. Lebanon WWTP is currently supplied electricity at an average cost of $.10/kW. Equally important however, are the costs in managing and disposing of existing waste streams via traditional waste disposal methods. The City of Lebanon collects and surrounding industries contribute more than 27 tons of woody biomass per day that currently must be disposed of in a landfill. In addition, the city must also dispose of over 3 tons of biosolids per day from the wastewater treatment facility via land application. At current volumes, over 1840 trips a year are required to dispose of the material. As is explained below, the implementation of this project will consolidate these waste streams at the WWTP and eliminate the majority of disposal costs while adding substantial energy and environmental benefits that will contribute to the long term viability and continued growth of the City of Lebanon. PROPOSED SOLUTION: PHG Energy, a Tennessee based company, has proposed to design, engineer, install and commission a downdraft gasification-to-energy system that can convert approximately 32 tons per day of the wood, tires and sludge waste collected in the city into carbon neutral electricity for use at the WWTP. Gasifiers, thermal oxidizers and ORC s are well-established commercial technologies individually. This project combines a state-of-the-art biomass gasification system with thermal oxidation equipment with ORC technologies to produce reliable electrical power with emission levels comparable to natural gas combustion. ORC power generators are often preferred over traditional steam cycle or internal-combustion engine (ICE) power generators because they can offer much lower operating and maintenance costs while operating without the need for dedicated attendance by an operator. Using gasification instead of incineration uses a fundamentally different thermochemical 365

2 process to cleanly convert the city s waste streams into a combustible gas, called producer gas, limiting the formation of NOx, SOx, and fly ash emissions inherent to an incineration process. Gasification offers the added benefit of feedstock flexibility; the same equipment can handle a wide variety of feedstock giving the city flexibility in handling its waste streams over the 25-year life of the plant. The PHG gasifier, from Antioch, TN-based PHG Energy, LLC, is an industrial-grade downdraft gasifier that converts biomass into a clean combustible producer gas. PHG gasifiers have over 45,000 hours of combined operation and run with relatively little need for operator interaction. The downdraft-style gasifier is well known to be the most efficient method of gasification and produces the cleanest gas from woody biomass. 1 The simplicity of the design enables the entire gasification process to occur with very few moving parts and relatively low parasitic loads. Thermal oxidizers are the most common and most efficient technology employed today to destroy hydrocarbons in the form of Hazardous Air Pollutants (HAPs) and Volatile Organic Compounds (VOCs) and have been in use for more than 70 years. The principal behind thermal oxidation of HAPs and VOCs is that when combusted, the hydrocarbon pollutants will convert to CO2 and H2O in the outlet stream. The Thermal Oxidizer proposed for this project will include an attached hot water heater that will transfer the energy from the thermal oxidizer s exhaust flue stream into a closed loop circulating stream of hot water. The hot water stream will carry the heat energy into the ORC generator, where it will be used to drive the ORC s closed-loop power generation. Hundreds of ORC s are operating in the field today from various manufacturers including General Electric and Pratt and Whitney. An ORC operates similarly to a steam-turbine generator, however, the ORC uses a working fluid inside an enclosed system that evaporates at a much lower temperature than water and is non-corroding to valves, tubing and turbine blades that drive the generator. Since the system is enclosed, there is no make-up fluid in the generator itself, and it does not require a boiler-certified operator to function. The ORC is simple to start and stop, operates very quietly and requires minimum operation and maintenance. 3 Overall, the proposed system offers a combination of commercially proven technologies that are both robust in its design and flexible in their operation. The complete system will use landfill bound waste to provide a continuous stream of domestically produced energy that is clean, carbon-neutral, and renewable providing the city with both economic and long-term environmental benefits. ENERGY EFFICIENCY This project will produce measureable energy savings through onsite reductions in electrical energy purchases and offsite reductions in diesel fuel consumption through avoided trips to landfills. A generation meter and monitoring system will provide real time and accurate measurements of the amount of electrical energy specifically produced by the system. Since the system will be connected directly to the common electrical grid, it is assumed that the metered amount of electricity produced will result in a corresponding decrease in the amount of electricity purchased from the City of Lebanon s electrical utility supplier. Currently, industrial and manufacturing waste within the city is hauled to a landfill located approximately 22 miles away from the source of the material, resulting in round trip distances of approximately 44 miles per trip. At current volumes, over 1680 round trips are needed annually to dispose of existing waste streams. By providing a central location within the corporate city limits for this material to be transported and converted into energy, thousands of truck miles will be saved. The effect of this project activity will be measurable through the identification of avoided individual tipping tickets at the currently utilized landfills. 366

3 Savings Energy savings can be calculated and discussed in terms of both energy amount and dollar value. Assuming a conservative availability, over 748MW-hrs can be generated annually from the facility. This yields approximately $75,000/year in electrical energy savings. In addition, taking the ATAD offline will net an additional $175,000 annually in electricity savings. Energy savings resulting from reduced transportation and combustion of diesel fuel needed to transport the waste streams to the gasification site is realized. Savings are calculated based on the transportation distance and the number of trips needed per year. Project implementation avoids approximately 1680 trips and more than 104,000 gallons of diesel fuel annually. Finally, avoiding landfill tipping fees associated with the disposal of waste wood and sludge combined with the labor and fuel savings will save the approximately $248,000 per year. When combined with the electric savings, over $300,000 per year will be saved from all aspects of the project after expenses. In addition to the saving realized above the City will be developing markets for the Biochar that will provide additional revenues for the project. Currently the City is able to give the Biochar away for free. GENERAL PUBLIC BENEFIT Immediate Results & Project Readiness The site for the project is owned by the City of Lebanon and has been reviewed by the city council. Existing waste streams (fuel supplies) are already part of the City of Lebanon s existing services and infrastructure so there is no need to engage in lengthy and extensive fuel procurement negotiations. As the required technology is readily available and no long lead times are expected, the project can be fully operational within 9 to 12 months of grant approval. Once operational the project will produce immediate and meaningful beneficial results. Long-Term Savings The project will be designed, constructed and maintained for at least 25 years. The project can provide net savings to the citizens of Lebanon of more than $6 million over the life of the project. This estimate is considered conservative and is calculated as the sum of electrical savings and avoided costs associated with the transportation and disposal of existing waste. Other Public Benefits Since the wastewater treatment plant sludge will be gasified at the site of the Lebanon treatment facility, the need to transport the sludge or tires over highly traveled local highways will be eliminated. As a result, the risk of a spill will be greatly diminished ensuring that no environmental pollution due to an accident will occur. The same is true of the current wood waste and tire disposal methods. 367

4 Biochar is also an inert byproduct of the gasification system and can be used as a soil additive or mixed with compost to further enhance its economic value. Also independent companies seek and purchase biochar for reuse. This further eliminates any additional materials being sent to a landfill and opens opportunities for additional revenue streams. Renewable Resources Biomass comes in many forms and there is significant debate as to which forms should be considered renewable. Virgin timber and the use of materials from forestlands harvested unsustainably face considerable scrutiny when being evaluated as renewable. However, since the fuel to be used for the Lebanon project is derived from waste streams, it can be deemed renewable. As the city provides a service and maintains its streets and right of ways, the wood waste will continue to be produced without impacting carbon storage or contributing to deforestation. Wastewater sludge also may not normally be thought of as renewable, but as this stream will also to continue to be created everyday it too can be deemed as a renewable resource. The result is 100% renewable fueled power generation. The only fossil fuels used are to start up the thermal oxidizer and to maintain a pilot flame, which in totality are negligible and insignificant to the overall project implementation. No additional energy is needed for preparation of discarded tires as the nylon cords and steel belts do not have to be removed in order for the tire to be used as feedstock as they become part of the biochar. PROTECTION OF ENVIRONMENT RESOURCES Utilizing Existing Resources The wood and wastewater sludge waste are expensive to dispose of and are not good for the air quality as presently disposed because it can convert to methane. The utilization of waste products for energy represents the highest value for otherwise low or no value materials. Innovation and utilization of existing resources has been a hallmark of Lebanon leadership and is consistent with their vision and future of their community. While it is true that many landfills currently utilize methane collection, capture and flare or energy generation technologies, the US EPA estimates that 60-90% of the methane is collected. This wasted energy represents a significant weakness in existing resource utilization strategies and presents a unique opportunity for forward-looking communities to control their own environmental and energy futures. Discarded tires are currently picked up and reused or recycled. Use of tires in the feedstock will further remove transport vehicles, labor costs and its emissions from the environment. Conservation Gasifying the wood waste, tires and sludge inside the city limits of Lebanon will result in a significant reduction in the use of coal and petroleum based products. Best practice energy and environmental strategies recommended by experts in the field consistently call for the use of efficiency and conservation strategies as the first line in forming a comprehensive plan for sustainable communities. The City of Lebanon hopes to become a leader and demonstrate in a concrete fashion to other communities in Tennessee and the nation how a conservation strategy aimed at utilizing existing resources can ultimately turn a liability into an asset. 368

5 Reduction in Carbon Intensity Biomass, when gasified and used consistent with the proposed project design, will also emit CO2. However, wood waste, tires and WWTP sludge are considered renewable and are accounted for as a short term biogenic carbon emissions. This proposal presents a significant opportunity to reduce the carbon intensity associated with the Lebanon WWTP. Reduction in the usage of diesel fuel used in the transportation of waste material to landfill and disposal sites also reduces the Lebanon WWTP s carbon intensity. AIR QUALITY Overall Emissions Reduction The City of Lebanon is located within the Tennessee Valley Authority electric generation grid, specifically Sub region: SERC Tennessee Valley. This project will reduce the need for electricity to be provided from power plants located within the TVA service area through Lebanon Electric. Since TVA will not have to generate the 748,880 kwh provided locally by the Lebanon Waste Biomass Gasification to Energy Project, there will be a reduction of 9809 pounds of sulfur dioxide, 3719 pounds of NOx, and 2717 tons of carbon. Non-Attainment Area Targeted The most direct reduction in emissions from the offset of electric energy is assumed to occur in Lebanon/Wilson County. At present the wastewater sludge is disposed of by local land application. Wood waste is taken to a landfill in Rutherford County. Discarded tires are taken out of state. The elimination of transportation of these waste streams would further reduce GHG, Sulfur dioxide, VOC's, Nitrogen oxides and HAP's in Wilson and Rutherford counties. ABILITY TO LEVERAGE (MATCH) FUNDING TO ENHANCE OVERALL PROJECT OBJECTIVES The City of Lebanon has been granted a Qualified Energy Conservation Bond for this project. QEBC will pay 70% of the interest, a savings of $122,000 per year. Qualified Energy Conservation Bonds were first authorized by Congress in October At that time, Congress allowed a maximum of $800 million in QECB volume cap nationwide. In February 2009, through the American Recovery and Reinvestment Act, Congress increased the volume cap to $3.2 billion. These bonds may be issued by state, local and tribal governments to finance qualified energy conservation projects. A maximum of 30% of the aggregate bonds may be used to finance private activity projects

6 ESTIMATE OF REDUCTIONS AND/OR AIR EMISSIONS This project is projected to result in over 2717 tons of CO2, 3719 pounds of NOx, and 9809 pounds of SO2 reduction since the fuel source is carbon neutral biomass using gasification and a thermal oxidizer to convert the biomass to heat. In addition, over 124 MW-hrs. of electricity from line losses will be saved since the power will be generated on-site. 370

SUSTAINABLE INNOVATIVE SOLUTIONS

SUSTAINABLE INNOVATIVE SOLUTIONS SUSTAINABLE INNOVATIVE SOLUTIONS SUSTAINABLE INNOVATIVE SOLUTIONS ENERGY EMISSIONS WASTE The sustainability strategy we offer is a three-pronged approach that considers environmental implications and the

More information

8/4/2015. PHG Energy Means Industrial Grade. Chris Koczaja VP of Engineering and Implementation. Clean Energy Conversion.

8/4/2015. PHG Energy Means Industrial Grade. Chris Koczaja VP of Engineering and Implementation. Clean Energy Conversion. Chris Koczaja VP of Engineering and Implementation Clean Energy Carbon Emissions Crop Residues Clean Energy Conversion Delivering Affordable Renewable Technology Through Gasification New Landfills Transportation

More information

WEF Residuals and Biosolids Conference 2017

WEF Residuals and Biosolids Conference 2017 Triple Bottom Line Analysis of Energy Recovery from Thermal Oxidation of Wastewater Solids Compared to Coal Anna J. Munson 1*, Webster F. Hoener 1, Robert P. Dominak 2, James E. Welp 1 1 Black & Veatch.

More information

Introduction. Ridge Road Transfer Station Ridge Road, Cleveland

Introduction. Ridge Road Transfer Station Ridge Road, Cleveland 1 Agenda Page Introduction 3 1. Gasification Technology 12 2. System Requirements And Facility Design 16 3. Environmental Impacts 24 4. Sustainability 35 5. Economic Development 39 6. Summary of Development

More information

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS GASIFICATION THE WASTE-TO-ENERGY SOLUTION WASTE SYNGAS STEAM CONSUMER PRODUCTS HYDROGEN FOR OIL REFINING TRANSPORTATION FUELS CHEMICALS FERTILIZERS POWER SUBSTITUTE NATURAL GAS W W W. G A S I F I C A T

More information

Westinghouse Plasma Gasification is the Next Generation of Energy from Waste Technology. USEA Annual Meeting May 30, 2013 Washington, DC

Westinghouse Plasma Gasification is the Next Generation of Energy from Waste Technology. USEA Annual Meeting May 30, 2013 Washington, DC Westinghouse Plasma Gasification is the Next Generation of Energy from Waste Technology USEA Annual Meeting May 30, 2013 Washington, DC WHO WE ARE Alter NRG is a publicly traded (TSX: NRG; OTCQX: ANRGF)

More information

Refuse-to-Energy Facility

Refuse-to-Energy Facility Commerce Refuse-to-Energy Facility Waste Diversion: A Challenge for Southern California Communities Los Angeles County successfully diverts more than 50 percent of the solid waste generated each day from

More information

A LEADING PROVIDER OF CLEAN ENERGY SOLUTIONS

A LEADING PROVIDER OF CLEAN ENERGY SOLUTIONS A LEADING PROVIDER OF CLEAN ENERGY SOLUTIONS PLASMA GASIFICATION VS. INCINERATION June 2010 WHAT IS PLASMA GASIFICATION? Plasma gasification uses heat - as hot as the sun s surface - to break down waste

More information

New 790-Megawatt Unit. Council Bluffs Energy Center

New 790-Megawatt Unit. Council Bluffs Energy Center New 790-Megawatt Unit Council Bluffs Energy Center JUST THE FACTS Council Bluffs Energy Center s New 790-Megawatt Unit Background To ensure a long-term positive impact on Iowa's economy and a secure supply

More information

PureCycle 200 Heat-to-Electricity Power System

PureCycle 200 Heat-to-Electricity Power System PureCycle 200 Heat-to-Electricity Power System Energy Savings Power Reliability Environmental Stewardship INDUSTRIAL PROCESSES RECIPROCATING ENGINES GAS TURBINES THERMAL OXIDIZERS FLARES / INCINERATORS

More information

Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption

Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption Advances in Emission Control and Monitoring Technology for Industrial Sources Exton, PA July 9-10,

More information

Introduction: Thermal treatment

Introduction: Thermal treatment Thermal Treatment 2 Introduction: Thermal treatment Technologies using high temperatures to treat waste (or RDF) Commonly involves thermal combustion (oxidation) Reduces waste to ash (MSW c. 30% of input)

More information

Current Trends in Energy-from-Waste

Current Trends in Energy-from-Waste Current Trends in Energy-from-Waste NJ SWANA Spring Conference 2012 Atlantic City, NJ By Kenneth E. Armellino, P.E. Director, Environmental Science and Community Affairs Agenda Who am I & who is Covanta

More information

Decentralized Biomass Power Production

Decentralized Biomass Power Production Decentralized Biomass Power Production by Dr. Eric Bibeau University of Manitoba (Alternative Energy Research) Biomass Energy II Heat and Power Workshop November 13, 2003 Activity at U of M biomass alternative

More information

Leonardo Riera and Bary W. Wilson. Presented at the 4th Global Economic Leaders Summit, Changchun China, August 30 - September 1, 2015

Leonardo Riera and Bary W. Wilson. Presented at the 4th Global Economic Leaders Summit, Changchun China, August 30 - September 1, 2015 Municipal Solid Waste as a Renewable Resource Leonardo Riera and Bary W. Wilson Presented at the 4th Global Economic Leaders Summit, Changchun China, August 30 - September 1, 2015 Abstract: Improperly

More information

9/20/2017 FROM TRASH TO GAS EQUALS CASH

9/20/2017 FROM TRASH TO GAS EQUALS CASH FROM TRASH TO GAS EQUALS CASH ALTERNATIVE FUELS AS A SOURCE OF STATE REVENUES Kerryn de Verteuil &Tim Nehring APC Committee 1 2 From Trash to Gas Equals Cash Goals of Presentation Fossil Fuels A Diminishing

More information

EfW Outputs. Guidance on the management of energy outputs and residues including air pollution control residues and incinerator bottom ash

EfW Outputs. Guidance on the management of energy outputs and residues including air pollution control residues and incinerator bottom ash EfW Outputs and Residues 1.0 Energy from waste outputs 2.0 Energy from waste residues Guidance on the management of energy outputs and residues including air pollution control residues and incinerator

More information

Whiting Business Unit

Whiting Business Unit Whiting Business Unit ENVIRONMENTAL STATEMENT FOR YEAR 2015 (Review of Y2014 performance) Introduction Recognizing the complex nature of petroleum refining operations and to ensure that we meet our stated

More information

WESTINGHOUSE PLASMA GASIFICATION. Hazardous Waste Management

WESTINGHOUSE PLASMA GASIFICATION. Hazardous Waste Management WESTINGHOUSE PLASMA GASIFICATION Hazardous Waste Management Hazardous waste is just that hazardous. Medical, industrial and petrochemical wastes are all types of hazardous waste and pose threats to human

More information

Smithfield Packing, Co. Tar Heel Biomass Steam Plant

Smithfield Packing, Co. Tar Heel Biomass Steam Plant Smithfield Packing, Co. Tar Heel Biomass Steam Plant Aerial View 90 Million Gallon Effluent Storage Basin 8,500 Head 2-3 Hour Hog Resting Area 1 Million Sq Ft Facility Smithfield Packing Tar Heel Division

More information

Energy Generation from Recovered Wood for Greenhouse Gas Reduction

Energy Generation from Recovered Wood for Greenhouse Gas Reduction Energy Generation from Recovered Wood for Greenhouse Gas Reduction Gerfried Jungmeier Joint Workshop COST Action E31 and IEA Bioenergy Task 38 Greenhouse Gas Aspects of Biomass Cascading Reuse, Recycling

More information

Biosolids to Energy- Stamford, CT

Biosolids to Energy- Stamford, CT Biosolids to Energy- Stamford, CT Jeanette A. Brown, PE, DEE, D.WRE Alternative Management Options for Municipal Sewage Biosolids Workshop, Burlington, ON June 17, 2010 Contents Background Project Development

More information

Managing Greenhouse Gas (GHG) Emissions

Managing Greenhouse Gas (GHG) Emissions MARCH 17, 2016 CWEA SPECIALTY WORKSHOP IMPACT OF CLIMATE CHANGE ON CA WASTEWATER FACILITIES Managing Greenhouse Gas (GHG) Emissions CarolloTemplateWaterWave.pptx/1 Sarah A. Deslauriers, P.E. Senior Technologist

More information

This is a draft revision of the briefing, and any comments are welcome please them to Becky Slater on

This is a draft revision of the briefing, and any comments are welcome please  them to Becky Slater on January 2009 Briefing Pyrolysis, gasification and plasma This is a draft revision of the briefing, and any comments are welcome please email them to Becky Slater on becky.slater@foe.co.uk. Introduction

More information

Energy Optimized Resource Recovery Project Presented By: Curtis Czarnecki, P.E.

Energy Optimized Resource Recovery Project Presented By: Curtis Czarnecki, P.E. Kenosha Wastewater Treatment Plant Energy Optimized Resource Recovery Project Presented By: Curtis Czarnecki, P.E. Kenosha Water Utility March 22, 2016 WWTP Service Area Overview Population: 110,000 Service

More information

Utilization of Municipal Solid Waste as a Sustainable Energy Resource

Utilization of Municipal Solid Waste as a Sustainable Energy Resource Utilization of Municipal Solid Waste as a Sustainable Energy Resource Renée Fernandez-Lipp, WM Green Squad, LLC ABSTRACT Americans generated approximately 254 million tons of municipal solid waste (MSW)

More information

Creating Energy from Waste How the RFS2 Helps Make it Happen

Creating Energy from Waste How the RFS2 Helps Make it Happen Creating Energy from Waste How the RFS2 Helps Make it Happen Western Washington Clean Cities The Future of RNG as a Transportation Fuel in Washington RNG: The National Landscape and Successful Projects

More information

Appendix C: GHG Emissions Model

Appendix C: GHG Emissions Model Appendix C: GHG Emissions Model 1 METHOD OVERVIEW The Maryland Statewide Transportation Model (MSTM) Emissions Model (EM) is a CUBE-based model that uses emission rates calculated by the MOVES2010 EPA

More information

CITY OF TAUNTON REGIONAL SOLID WASTE MANAGEMENT FACILITY: AN UPDATE

CITY OF TAUNTON REGIONAL SOLID WASTE MANAGEMENT FACILITY: AN UPDATE CITY OF TAUNTON REGIONAL SOLID WASTE MANAGEMENT FACILITY: AN UPDATE Presented to 7 th Annual Massachusetts Chapter of SWANA Recycling & Solid Waste Conference Westborough, Massachusetts October 1, 2009

More information

Landfills as Renewable Energy Sources. Thomas Smith Prince William County Solid Waste Division

Landfills as Renewable Energy Sources. Thomas Smith Prince William County Solid Waste Division Landfills as Renewable Energy Sources Thomas Smith Prince William County Solid Waste Division Solid Waste Management Hierarchy Problem: People are Creating Too Much Waste! Prince William County residents

More information

Renewable Energy Options. National Grid s Connect21. Agenda. yet, a very local New York business. An International Energy Company.

Renewable Energy Options. National Grid s Connect21. Agenda. yet, a very local New York business. An International Energy Company. Agenda Role of Renewable Natural Gas in Closing the Carbon Cycle Background on National Grid Renewable Natural Gas Fundamentals Newtown Creek Wastewater Treatment Plant Project Renewable Natural Gas and

More information

LANDFILL GAS ENERGY: AN IMPORTANT COMPONENT OF INTEGRATED SOLID WASTE MANAGEMENT. Thomas A. Frankiewicz U.S. EPA LMOP Washington, DC

LANDFILL GAS ENERGY: AN IMPORTANT COMPONENT OF INTEGRATED SOLID WASTE MANAGEMENT. Thomas A. Frankiewicz U.S. EPA LMOP Washington, DC LANDFILL GAS ENERGY: AN IMPORTANT COMPONENT OF INTEGRATED SOLID WASTE MANAGEMENT Thomas A. Frankiewicz U.S. EPA LMOP Washington, DC Chad A. Leatherwood, P.E. SCS Engineers Asheville, North Carolina Brent

More information

Gasification of Municipal Solid Waste

Gasification of Municipal Solid Waste Gasification of Municipal Solid Waste Salman Zafar Renewable Energy Advisor INTRODUCTION The enormous increase in the quantum and diversity of waste materials and their potentially harmful effects on the

More information

Urban Environmental Excursions

Urban Environmental Excursions Wayne State University Environmental Science Program Urban Environmental Excursions Fall 2007: Energy and Air Quality Where does our GASOLINE come from? How is our ELECTRICITY made? What ultimately happens

More information

Patrick Mathews, General Manager/CAO Salinas Valley Solid Waste Authority. CALIFORNIA BIOMASS COLLABORATIVE 7 TH ANNUAL FORUM May 10 11, 2010

Patrick Mathews, General Manager/CAO Salinas Valley Solid Waste Authority. CALIFORNIA BIOMASS COLLABORATIVE 7 TH ANNUAL FORUM May 10 11, 2010 Patrick Mathews, General Manager/CAO Salinas Valley Solid Waste Authority CALIFORNIA BIOMASS COLLABORATIVE 7 TH ANNUAL FORUM May 10 11, 2010 Salinas Valley Solid Waste Authority Joint Powers Authority

More information

COGENERATION PLANT FAQ. What is biomass cogeneration? Cogeneration is the simultaneous production of electricity and heat using a single primary fuel.

COGENERATION PLANT FAQ. What is biomass cogeneration? Cogeneration is the simultaneous production of electricity and heat using a single primary fuel. COGENERATION PLANT FAQ What is biomass cogeneration? Cogeneration is the simultaneous production of electricity and heat using a single primary fuel. Biomass cogeneration uses waste wood and horticultural

More information

City of Toronto Solid Waste Management Services

City of Toronto Solid Waste Management Services City of Toronto Solid Waste Management Services 8 th Canadian Waste Resource Symposium BIOGAS UTILIZATION: Disco Road Organics Processing Facility Carlyle Khan, Director Infrastructure Development & Asset

More information

Definitions and Comments on 2016 Consolidated Nestlé Environmental Performance Indicators

Definitions and Comments on 2016 Consolidated Nestlé Environmental Performance Indicators Definitions and Comments on 2016 Consolidated Nestlé Environmental Performance Indicators General Comments Environmental performance indicators cover all Nestlé factories except some of the factories acquired

More information

Zero emission Energy Recycling Oxidation System. June 2012

Zero emission Energy Recycling Oxidation System. June 2012 ZER S Zero emission Energy Recycling Oxidation System June 2012 Patented Gasification / Oxidation Method & System A brilliant integration of established technologies: Rotary Kiln Technology Gasification

More information

Biomass Power Generation Resource and Infrastructure Requirements. Idaho Forest Restoration Partnership Conference, Boise, Idaho February 1, 2012

Biomass Power Generation Resource and Infrastructure Requirements. Idaho Forest Restoration Partnership Conference, Boise, Idaho February 1, 2012 Biomass Power Generation Resource and Infrastructure Requirements Idaho Forest Restoration Partnership Conference, Boise, Idaho February 1, 2012 Presentation Overview Introduction Woody Biomass Utilization

More information

Studying about Utilization of Biomass. Inspecting Forest management for Biomass. Exploring Biomass policies and Incentives

Studying about Utilization of Biomass. Inspecting Forest management for Biomass. Exploring Biomass policies and Incentives Kwangho Baek 1 Studying about Utilization of Biomass Inspecting Forest management for Biomass Exploring Biomass policies and Incentives Reviewing the applicability of Policies 2 Korea and Korea Forest

More information

WASTE TO ENERGY (W2E) AS THE MODERN CONCEPT OF WASTE MANAGEMENT

WASTE TO ENERGY (W2E) AS THE MODERN CONCEPT OF WASTE MANAGEMENT WASTE TO ENERGY (W2E) AS THE MODERN CONCEPT OF WASTE MANAGEMENT Marta Starostka-Patyk Czestochowa University of Technology, Faculty of Management, Armii Krajowej 19B, 42-200 Czestochowa, Poland Abstract

More information

Printing and Writing Papers Life- Cycle Assessment Frequently Asked Questions

Printing and Writing Papers Life- Cycle Assessment Frequently Asked Questions Printing and Writing Papers Life- Cycle Assessment Frequently Asked Questions 1. What is LCA? Life-cycle assessment (LCA) is a comprehensive environmental accounting tool with wellestablished procedures

More information

LIFE CYCLE ASSESSMENT II

LIFE CYCLE ASSESSMENT II LIFE CYCLE ASSESSMENT II Lambros Mitropoulos Civil and Environmental Engineering University of Hawaii, Manoa Sustainable Infrastructure (CEE 444) Life Cycle Assessment (LCA) LCA Software Economic Input-

More information

Public Utility Regulatory Policy Act Standards

Public Utility Regulatory Policy Act Standards Document Type: EA Administrative Record Index Field: Final Environmental Document Project Name: PURPA Standards Project Number: 2007-4 FINAL ENVIRONMENTAL ASSESSMENT TENNESSEE VALLEY AUTHORITY Public Utility

More information

Biomass Electricity. Megan Ziolkowski November 29, 2009

Biomass Electricity. Megan Ziolkowski November 29, 2009 Biomass Electricity Megan Ziolkowski mziolkowski@kentlaw.edu November 29, 2009 Agenda 1. Introduction 2. Conversion Process 3. Environmental Impact 4. Benefits for the US 5. The Future of Biomass Electricity

More information

Carbon Footprint Analysis. UIUC Facilities and Services

Carbon Footprint Analysis. UIUC Facilities and Services + Carbon Footprint Analysis UIUC Facilities and Services + Organization Overview Student Run Project Based Company Focused University Sponsored 250 to 300 students per-year Students are peerselected Rigorous

More information

Las Gallinas Valley Sanitation District Biogas Utilization Evaluation. LGVSD Board Meeting Presentation April 24, 2014

Las Gallinas Valley Sanitation District Biogas Utilization Evaluation. LGVSD Board Meeting Presentation April 24, 2014 Las Gallinas Valley Sanitation District Biogas Utilization Evaluation LGVSD Board Meeting Presentation April 24, 2014 1 Introductions 2 Agenda/Meeting Objectives Project Vision Scope of Work Overview of

More information

Westinghouse Plasma Gasification Industrial Scale Syngas Production from Waste Products

Westinghouse Plasma Gasification Industrial Scale Syngas Production from Waste Products Westinghouse Plasma Gasification Industrial Scale Syngas Production from Waste Products 2013 Gasification Technologies Conference Colorado Springs, CO October 13-16, 2013 WESTINGHOUSE PLASMA GASIFICATION:

More information

Encouraging the Recovery and Beneficial Use of Landfill Gas

Encouraging the Recovery and Beneficial Use of Landfill Gas Encouraging the Recovery and Beneficial Use of Landfill Gas May 16, 2017 TCEQ Environmental Trade Fair and Conference Lauren Aepli Landfill Methane Outreach Program U.S. Environmental Protection Agency

More information

How to Make Biomass to Energy Work in Rural Towns of Alaska

How to Make Biomass to Energy Work in Rural Towns of Alaska How to Make Biomass to Energy Work in Rural Towns of Alaska Keith Henn, Jeff Coombe, Floriano Ferreira, Jason Smith, Jason Jessup, & Ernie Hyatt April 30, 2013 www.tetratech.com Tetra Tech, Inc. Leading

More information

Waste To Energy Option for Carroll County

Waste To Energy Option for Carroll County Waste To Energy Option for Carroll County Robin Davidov and Chris Skaggs Northeast Maryland Waste Disposal Authority authority@nmwda.org November 19, 2007 Northeast Maryland Waste Disposal Authority Who

More information

The Benefits of Renewable Energy From Biomass. Traxys Power Group, Inc.

The Benefits of Renewable Energy From Biomass. Traxys Power Group, Inc. The Benefits of Renewable Energy From Biomass Traxys Power Group, Inc. Closed Loop Biomass A closed loop process is defined as a process in which power is generated using feed stocks that are grown specifically

More information

ENVIRONMENTAL FOOTPRINT 2O16

ENVIRONMENTAL FOOTPRINT 2O16 ENVIRONMENTAL FOOTPRINT REPORT 2O16 WHAT WE CARE ABOUT AND WHY...3 ENERGY AND AIR EMISSIONS...5 FLEET...5 REFRIGERATION...6 GHG EMISSIONS...6 TOTAL ENERGY USE...7 WATER...8 WASTE...9 LANDFILL DIVERSION...9

More information

Fuel cells do not depend on wind or sunshine, and generate more electricity per unit of fuel than almost any other distributed energy source.

Fuel cells do not depend on wind or sunshine, and generate more electricity per unit of fuel than almost any other distributed energy source. FuelCell Energy provides efficient, reliable power to the world s most demanding markets. Fuel cell power plants offer inherent fuel flexibility, 24/7 operation, and the ability to capture waste heat for

More information

30 W E & T w w w. w e f. o r g / m a g a z i n e 2009 Water Environment & Technology All rights reserved

30 W E & T w w w. w e f. o r g / m a g a z i n e 2009 Water Environment & Technology All rights reserved 30 W E & T w w w. w e f. o r g / m a g a z i n e 2009 Water Environment & Technology All rights reserved Evaluating Greenhouse Gas Emissions An inventory of greenhouse gases is an important piece of the

More information

Welcome To Our Exhibition

Welcome To Our Exhibition Welcome To Our Exhibition Welcome to the exhibition of our proposals for a Waste Recycling and Renewable Energy Facility Distributed Renewable Energy Networks Ltd (DRENL) propose to develop a 10MW Waste

More information

Biomass Gasification

Biomass Gasification Biomass Gasification Efficient use of Energy Turning waste to energy, liabilities to assets and visions into reality. Table of Contents THE HTI ADVANTAGE...................... 1 FEED SYSTEMS..........................

More information

Canadian Biogas Study

Canadian Biogas Study Canadian Biogas Study Benefits to the Economy, Environment and Energy Summary Document November, 2013 Authored by: Page 1 Acknowledgements The Biogas Association wishes to thank the organizations that

More information

WESTINGHOUSE PLASMA GASIFICATION

WESTINGHOUSE PLASMA GASIFICATION WESTINGHOUSE PLASMA GASIFICATION 2 clean renewable energy Westinghouse Plasma has over 30 years of experience in research, development, testing, design and commercial use of proven plasma torch technology.

More information

ENVIRONMENTAL FACTORS

ENVIRONMENTAL FACTORS Comparison of Fuels Used for Electric Generation in the U.S, 2014 Update Study Details ENVIRONMENTAL FACTORS Natural Gas, Combined Cycle 400 MW Typically, a gas fired combined cycle plant must control

More information

Print. Turning waste into energy

Print. Turning waste into energy Turning waste into energy Print by Cynthia McFarland In a world that has grown increasingly conscious of the environment and ways to protect it, today's livestock farmers are faced with growing pressure

More information

EA July 11, 2017

EA July 11, 2017 EA 2017-03 July 11, 2017 A COMPARISON OF ENERGY USE, OPERATING COSTS, AND CARBON DIOXIDE EMISSIONS OF HOME APPLIANCES 2016 UPDATE Introduction Natural gas, electricity, oil, and propane compete in the

More information

5.0 PROJECT ALTERNATIVES

5.0 PROJECT ALTERNATIVES 5.0 ALTERNATIVES 5.1 INTRODUCTION GENERAL CEQA REQUIREMENTS California Environmental Quality Act (CEQA) Guidelines Section 15126.6(a) states an EIR shall describe a range of reasonable alternatives to

More information

Biogas Technology Applications

Biogas Technology Applications Biogas Technology Applications Novi Sad ISWA Beacon Workshop 9 November 2010 Adrian Loening Carbon Trade Ltd. (a contractor to US EPA) 1 Why Use Biogas (LFG)? Local, available fuel source Easy to capture

More information

State Of The Art (SOTA) Manual For Non-Hazardous Onsite Remediation Processes

State Of The Art (SOTA) Manual For Non-Hazardous Onsite Remediation Processes State Of The Art (SOTA) Manual For Non-Hazardous Onsite Remediation Processes July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA)

More information

6. Good Practice Example: Biogas in Germany

6. Good Practice Example: Biogas in Germany 6. Good Practice Example: Biogas in Germany Key words Energy, Power, Renewables, Biogas, Organic waste, Landfill. Name and location Using biogas as an energy resource for small power plants in Germany

More information

DELHI CHARTER TOWNSHIP

DELHI CHARTER TOWNSHIP Sustainability Efforts at the Publicly Owned Treatment Plant Sandra Diorka, Director of Public Services Delhi Charter Township DELHI CHARTER TOWNSHIP Project Background 1962 first primary treatment facility

More information

The Philadelphia Water Department s Cogeneration Project: Transforming Biogas to Energy

The Philadelphia Water Department s Cogeneration Project: Transforming Biogas to Energy The Philadelphia Water Department s Cogeneration Project: Transforming Biogas to Energy Presentation Overview Project Goals and Objectives Biogas Beneficial Use Options PWD Cogeneration Facility Project

More information

Plasma Gasification: The Next Generation of Waste-to-Energy (WTE) Solutions

Plasma Gasification: The Next Generation of Waste-to-Energy (WTE) Solutions Alter NRG / Westinghouse Plasma Plasma Gasification: The Next Generation of Waste-to-Energy (WTE) Solutions Gasification India December 6-7, 2017 New Delhi, India WE HAVE A GLOBAL WASTE PROBLEM Landfills

More information

STUMP City of Columbus Solids Treatment and Utilization Master Plan. OWEA Presentation September 27, 2012

STUMP City of Columbus Solids Treatment and Utilization Master Plan. OWEA Presentation September 27, 2012 STUMP City of Columbus Solids Treatment and Utilization Master Plan OWEA Presentation September 27, 2012 Jackson Pike (68 MGD) Southerly (114 MGD) How does the City process biosolids? Compost Facility

More information

Carpet Waste Gasification:

Carpet Waste Gasification: Carpet Waste Gasification: Technical, Economic, Environmental Assessment for Carpet Mills ENGR4300 University of Tennessee at Chattanooga May 6, 2011 Project Team: Jordan Buecker Christopher Burns Katharine

More information

Renewable Portfolio Standard (RPS)

Renewable Portfolio Standard (RPS) Renewable Portfolio Standard (RPS) A Brief Overview RPS bill passed in 2004 Intent: (1) recognize the economic, environmental, fuel diversity, and security benefits of renewable energy resources; (2) establish

More information

2. How can the University have an expansion of the Cogeneration Facility without an increase in the amount of coal used?

2. How can the University have an expansion of the Cogeneration Facility without an increase in the amount of coal used? Responses to Questions Raised at the November 9, 2005 Public Hearing on the University of North Carolina at Chapel Hill s Special Use Permit Modification Request 1. What is the nature of the surveying

More information

PLASMA GASIFICATION TECHNOLOGY FOR HAZADOUS WASTE. Waste2Tricity Internaltional (Thailand) Co., Ltd

PLASMA GASIFICATION TECHNOLOGY FOR HAZADOUS WASTE. Waste2Tricity Internaltional (Thailand) Co., Ltd PLASMA GASIFICATION TECHNOLOGY FOR HAZADOUS WASTE Plasma Gasification Technology Plasma gasification process is the cleanest proven technology to eliminate hazardous waste, as well as to generate electricity

More information

The answer is... yes!

The answer is... yes! The answer is... yes! TURN YOUR HEAT INTO ELECTRICITY NO FUEL, ZERO EMISSION Can plain machines save costs and energy at the same time as saving our beautiful planet? ENERGY CONCERN Today s society is

More information

Assessment of Alternative Waste Management Technologies

Assessment of Alternative Waste Management Technologies Assessment of Alternative Waste Management Technologies Project Progress Report Waste Management Planning Steering Committee November 18, 2013 Project Overview Current Tasks Waste Feedstock Review Review

More information

Update on ICI Boiler MACT

Update on ICI Boiler MACT Update on ICI Boiler MACT Bruce Hedman March 5, 2013 Clean Air Acts Standards for Boilers and Incinerators On December 20, 2012, EPA finalized a specific set of adjustments to March 2011 Clean Air Act

More information

Garrett Smith, PE c: e:

Garrett Smith, PE c: e: presented by Garrett Smith, PE c: 971.678.6932 e: gsmith@weesys.com to 18 September 2008 Seattle, Washington 4 GE Presenter Name Date 2007 5 GE Presenter Name Date 2030 Agenda Applications CHP & Waste

More information

Appendix W: Solid and Hazardous Waste

Appendix W: Solid and Hazardous Waste Solid waste, as defined in 40 Code of Federal Regulations (CFR) 261.2, is any discarded material that is typically found in the solid waste stream, including municipal solid waste, construction and demolition

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

Adopted by Water Environment Federation (WEF) Board of Trustees: October 14, 2011

Adopted by Water Environment Federation (WEF) Board of Trustees: October 14, 2011 Water Environment Federation Position Statement Renewable Energy Generation From Wastewater Adopted by Water Environment Federation (WEF) Board of Trustees: October 14, 2011 SUMMARY OF WEF POSITION WEF

More information

Biogas Opportunities: From Fuel to Flame

Biogas Opportunities: From Fuel to Flame Biogas Opportunities: From Fuel to Flame Matt Krumenauer Senior Policy Analyst Oregon Department of Energy Paul Suto, P.E. Supervising Engineer Bureau of Environmental Services Paul.Suto@portlandoregon.gov

More information

An Overview of Landfill Gas Energy in the United States. U.S. Environmental Protection Agency Landfill Methane Outreach Program (LMOP)

An Overview of Landfill Gas Energy in the United States. U.S. Environmental Protection Agency Landfill Methane Outreach Program (LMOP) An Overview of Landfill Gas Energy in the United States U.S. Environmental Protection Agency Landfill Methane Outreach Program (LMOP) Why EPA is Concerned about Landfill Gas Why is methane a greenhouse

More information

The OriGen. Clean, Renewable Power From Waste Heat. AERCO.com

The OriGen. Clean, Renewable Power From Waste Heat. AERCO.com The OriGen Clean, Renewable Power From Waste Heat AERCO.com Turning Waste Heat into Usable Power What is Energy Recovery? Energy recovery is the method of using the waste heat of one process as the input

More information

An Overview of Air Pollution Issues

An Overview of Air Pollution Issues An Overview of Air Pollution Issues Richard Valentinetti Vermont Agency Natural Resources 18 October 2007 Air Pollution Control In Vermont: Three Problems -- 1. Criteria Air Pollutants 2. Air Toxics 3.

More information

THE U.S. AUTOGAS MARKET

THE U.S. AUTOGAS MARKET THE U.S. AUTOGAS MARKET Table of Contents About Autogas For America... U.S. vs. Worldwide Autogas Vehicles... Propane Autogas Supply & Demand Analysis... Benefits of Autogas... Appendix I... Appendix II...

More information

PUBLIC SERVICE COMPANY OF OKLAHOMA (PSO)

PUBLIC SERVICE COMPANY OF OKLAHOMA (PSO) PUBLIC SERVICE COMPANY OF OKLAHOMA (PSO) NORTHEASTERN POWER STATION ANNUAL CCR FUGITIVE DUST CONTROL REPORT Prepared By: Public Service Co. of Oklahoma 7300 East Highway 88 Oologah, OK 74053 and American

More information

Carbon Heat Energy Assessment and. (CHEApet) Tutorials: Carbon Footprint Primer

Carbon Heat Energy Assessment and. (CHEApet) Tutorials: Carbon Footprint Primer Carbon Heat Energy Assessment and Plant Evaluation Tool (CHEApet) Tutorials: Carbon Footprint Primer Tutorials Sources of Greenhouse Gases (GHG) at WWTPs How does CHEApet measure Carbon Footprint? Comparing

More information

AIR REGULATION IN SOUTH CAROLINA 3 JUNE 2016

AIR REGULATION IN SOUTH CAROLINA 3 JUNE 2016 AIR REGULATION IN SOUTH CAROLINA Presented by Phil Conner 3 JUNE 2016 pconner@nexsenpruet.com SCDHEC s Authority for Administering Air Quality Regulations South Carolina Pollution Control Act (The PCA

More information

Integrating Renewable Fuel Heating Systems

Integrating Renewable Fuel Heating Systems Integrating Renewable Fuel Heating Systems An Overview of Wood Heating Systems Better Buildings by Design 2009 February 12th, 2009 Adam Sherman, Program Manager Biomass Energy Resource Center Biomass Energy

More information

11/15/2011. Renewable Energy Generation from Wastewater WRRF. Boilers. Storage. Gas Treatment. Biogas. Biosolids Vehicle Fuel.

11/15/2011. Renewable Energy Generation from Wastewater WRRF. Boilers. Storage. Gas Treatment. Biogas. Biosolids Vehicle Fuel. Renewable Energy Generation from Wastewater Robert Forbes, P.E. Eastern U.S. Technology Leader in Residuals Resource Recovery 1. Redefines wastewater treatment plants as water resource recovery facilities

More information

Callidus Oxidizer Systems. Thermal and Catalytic Oxidizer Systems

Callidus Oxidizer Systems. Thermal and Catalytic Oxidizer Systems Callidus Oxidizer Systems Thermal and Catalytic Oxidizer Systems Meet the Thermal Oxidizer Experts Wide Range of Applications Honeywell UOP Callidus is an industry leader in environmental combustion technology.

More information

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle 11/18/2010 1 st Renewable Energy Technologies, LP 8147 Clear Shade Drive, Windber, PA 15963 Phone: (814) 467-0431 Fax: (814) 467-8675 Email: Sales@1stRET.com Web: www.1stret.com Organic Rankine Cycle The

More information

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc. MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.

More information

Prospectus: Biochar Production Unit

Prospectus: Biochar Production Unit Prospectus: Biochar Production Unit In 2014, Sonoma Ecology Center (SEC) acquired an Adam Retort biochar production unit. The unit is designed to make high quality biochar while minimizing the environmental

More information

Solid Waste to Energy

Solid Waste to Energy Chalita Suwan Municipal Solid Waste to Energy Technologies: Environmental Assessment Workshop on Sustainability of Solid Waste Management in Thailand King Mongkut s University of Technology Thonburi, Bangkok

More information

PROJECT UPDATES. Westinghouse Plasma Commercialized; Industrial Scale Syngas Production

PROJECT UPDATES. Westinghouse Plasma Commercialized; Industrial Scale Syngas Production Westinghouse Plasma Commercialized; Industrial Scale Syngas Production PROJECT UPDATES Gasification Technologies Council (GTC) October 26-29, Washington, DC WESTINGHOUSE PLASMA CORP (WPC) Excels by gasifying

More information

S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES

S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES UOP Callidus Oxidizers for Waste Destruction TODAY S THERMAL OXIDIZER SOLUTIONS TO MEET TOMORROW S CHALLENGES Thermal oxidizer systems Catalytic oxidizer systems Callidus, experts in Thermal Oxidizers

More information

CHAPTER 2 BIOMASS SOURCES

CHAPTER 2 BIOMASS SOURCES CHAPTER 2 BIOMASS SOURCES 2.1 BIOMASS SOURCES University-generated biomass considered for the CURBI project includes renewable energy crops, food waste from the dining halls, manure and bedding from various

More information