The effect of Interannul climate variability on the methane emissions of tropical wetlands

Size: px
Start display at page:

Download "The effect of Interannul climate variability on the methane emissions of tropical wetlands"

Transcription

1 The effect of Interannul climate variability on the methane emissions of tropical wetlands Changhui Peng Centre ESCER/CEF, University of Quebec at Montreal, Canada QiuAn Zhu Northwest A & F University, China Laboratoire de modélisation écologique et de science du carbone (Eco-MSC) Ecological Modelling and Carbon Science Laboratory (Eco-MCS)

2 TOPICS FOR TODAY 1. Why do we care about methane? 2. Connecting CH4 with climate variability and tropical wetlands 3. Modelling methane emissions from natural wetlands in tropics 4. Ongoing challenges and future direction

3 WHY DO WE CARE ABOUT METHANE (CH4)? 1) Methane (CH4) is the second most important wellmixed greenhouse gas contributing to humaninduced climate change. 2) In a time horizon of 100 years, CH4 has a Global Warming Potential 28 times larger than CO2. 3) CH4 is responsible for 20% of the global warming produced by all well-mixed greenhouse gases IPCC [2013]

4 ? The Methane Mystery Methane ups and downs. Globally averaged atmospheric methane concentrations rose quickly before The rise then slowed and almost stopped between 1999 and 2006, but resumed in Data from ftp://ftp.cmdl.noaa.gov/ ccg/ch4/fl ask/event/.

5 Connecting CH4 with wetlands and climate variability Observed methane trends in recent decades: Emission trends or climate variability? 1. Aydin et al., Nature, 2011 (fossil fuel) Study period: 20 th century; ethane:methane in firn air 2. Kai et al., Nature, 2011 (NH microbial sources) study period: ; isotopic source signature 3. Kirschke et al., Nature Geo ( wetlands and ENSO) study period: ; Top down (atmospheric inversion), Bottom up (process modeling), and Inventories (atmospheric observation)

6 Wetlands are the single largest source of atmospheric CH4. Natural Methane Sources (2000s) Global Carbon Project 2013; Figure based on Kirschke et al. 2013

7 BERGAMASCHI ET AL.: CH4 INVERSE MODELING Wetlands are concentrated in tropical/subtropical regions (30 S and 30 N ) CH4 emissions from tropical regions contributed 78% of global CH4 emissions

8 The hypothesis that tropical wetland CH4 emissions respond strongly to rainfall anomalies and trends (e.g. ENSO) - The Amazon drought in 2010 should have resulted in a drop in wetland CH4 emissions.

9 The El Niño Southern Oscillation (ENSO) cycle of alternating warm El Niño and cold La Niña events is the most dominant year-to-year climate variation on Earth. ENSO originates in the tropical Pacific through interactions between the ocean and the atmosphere,

10 Three Main Approaches to Investigating Effect of Climate Change on Ecosystems Long-term observation Experimental manipulation Model simulation (J.M. Melillo, 1999, Science, 283: 183)

11

12 Methods (TRIPLEX GHG) CH4 module (Zhu et al. 2014, GMD) ECO-FGC Northwest A&F University

13 Data Climate: CRU TS 3.1 Climate Database Wetland map: GLWD Level 3 data set of Lehner and Doll (2004) (0.5º x 0.5º resolution) Soil property: Digital Soil Map of the World (DSMW), (soil clay, sand, silt fraction; soil ph) Initial soil carbon: IGBP DIS 2000 A spin up run of about 300 years ECO-FGC Northwest A&F University

14 Data for Model Validation ECO-FGC Northwest A&F University

15 Results Comparison of modeled and observed CH 4 emissions for the sites in Canada ECO-FGC Northwest A&F University

16 Results Comparison of modeled and observed CH 4 emissions for the sites in America ECO-FGC Northwest A&F University

17 Results Coparison of modeled and observed CH 4 emissions for the sites in Europe ECO-FGC Northwest A&F University

18 Model Validation Results (Zhu et al. 2014, GMD) Comparison of modeled and observed CH 4 emissions for the two selected sites in China ECO-FGC Northwest A&F University

19 Results Comparison o modeled and observed CH 4 emissions for the sites in Australia ECO-FGC Northwest A&F University

20 CH4 emission anomalies spatial distribution of tropical wetlands (to mean ; 30 S and 30 N)

21 CH4 Growth Rate & Temperate Change (Anomaly) Methane growth rate by latitude. Contours of methane growth rate with sine of latitude. Data from (Nisbet et al. Science, 2014) Temperature anomaly by latitude. NCEP DOE Reanalysis 2 temperature data was acquired from

22 Contribution of tropical wetlands to the seesaw of global CH4 concentration Interannual Variation CH4 Emissions Triggered by El Nino and La Nina Events Mount Pinatubo (1991) 1999/ / /1998 ECO-FGC Northwest A&F University

23 Southern Oscillation Index (SOI) & CH4 Emissions ECO-FGC Northwest A&F University

24 Possible Mechanisms: Carbon supply hypothesis Moisture supply hypothesis Net biogenic emission ECO-FGC Northwest A&F University

25

26 Effect of ENSO on CH4 Emissions of Wetlands in Amazon La Nina (Cold) ECO-FGC El Nino (Drought) El Nino (Drought) Northwest A&F University

27 Methane ups and downs. Globally averaged atmospheric methane concentrations rose quickly before The rise then slowed and almost stopped between 1999 and 2006, but resumed in Data from ftp://ftp.cmdl.noaa.gov/ ccg/ch4/fl ask/event/.

28 La Nina

29 What did we learn from this modeling study? CH4 emissions from tropical wetlands responded strongly to repeated ENSO cycles, with greater negative anomalies occurring during El Niño and greater positive anomalies occurring during La Niña. Interannual variability is dominated by natural wetlands. Repeated ENSO events throughout 1950s- 2000s, which has probably contributed to stabilized observed atmospheric CH4 concentrations during the stagnation period of This study also support a recent hypothesis: ENSOinduced droughts in the Amazon basin have resulted in a drop in wetland CH4 emissions (Kirschke et al., 2013)

30 Research Needs and Ongoing Challenges: An improved network of observations CH4, both ground based and remotely sensed, is needed to quantify global CH4 budget Very few wetland CH4 flux measurements and data sets limit our ability to test and validate large scale modelled CH4 emissions. The further extension of the CO2 FLUXNET measurements and database Flux Towers with Li Co 7700 (CH4) Wetlands in Tibet Plateau ECO-FGC Tropical Rain Forests Northwest A&F University

31 Future Direction: Agriculture PFT Nitrogen cycling Phosphorus cycling DOC transference Land surface module Vegetation Dynamic module Plant phenology module Soil biogeochemical module Based on IBIS (Foley et al (1996)) Plant function trait Land use change Fire disturbance Vegetation phenology GHG emission (CO2, CH4, N2O) Major Framework of TRIPLEX GHG ECO-FGC Northwest A&F University

32 Future of the assessment : CH 4 and N 2 O climate feedbacks CH 4 Temperature Feedbacks that were not included in CMIP5 models: Climate sensitivity of wetland CH 4 emissions Stability of ocean CH 4 hydrate pools Response of soil N 2 O emission processes to climate and elevated CO 2 Response of ocean N 2 O emissions to changes in O 2 & circulation

33 Thank you and Merci Beaucoup! Acknowledgments: Funding for this study was provided by the NSERC Discovery Grant (Canada) and National Natural Science Foundation of China

34 Results The global multi year mean for the period 1990 to 2009 of CH 4 emission rates from wetlands ECO-FGC Northwest A&F University

35

36 Introduction ECO-FGC Northwest A&F University

37 Methods Water Table module 0 + _ φ Theta_u_s Theta_s,min saturated unsaturated Z theta,min Water Table, z Z acro Low Boundary Granberg et al. (1999) Vtot Zacro if WT 0 3.0*( Zacro Vtot ) Water _ Table if WT Z 2.0* Az 3.0*( Zacro Vtot ) if WT Z 2.0*( s,min) s,min s,min ECO-FGC Northwest A&F University

38 Methods Methane module CH 4 production R H :is the soil heterotrophic respiration rate f ST, f ph, and f Eh : CH 4 production factors of soil temperature, ph, and redox potential R: the release ratio of CH 4 to CO 2. ECO-FGC Northwest A&F University

39 Methods Methane module CH 4 oxidation f CH4 : CH 4 concentration factor f ST : Soil temperature effects on CH 4 oxidation C CH4 : CH 4 concentration f Eh :Redox potential effects on CH 4 oxidation ECO-FGC Northwest A&F University

40 Methods Methane module CH 4 emission processes Ebullition CH 4 concentrations in the soil profile exceeds a certain threshold (750 umol L 1 ) ECO-FGC Northwest A&F University

41 Methods Methane module CH 4 emission processes Diffusion 1 Da :CH 4 molecular diffusion coefficients in air (0.2 cm 2 s 1 ) Dw: CH 4 molecular diffusion coefficients in water( cm 2 s 1 ) f coarse : relative volume of coarse pores f tort : tortuousity coefficient (0.66) WFPS: water filled pore space ECO-FGC Northwest A&F University

42 Methods Methane module CH 4 emission processes Plant mediated transport f rhi : rhizospheric oxidation factor f aer : plant aerenchyma factor CH 4gra : CH 4 concentration deficit between soil and atmosphere ECO-FGC Northwest A&F University

43 HISTORICAL TRENDS IN METHANE The last 20 years The last 1000 years Currently, atmospheric concentration of methane is 1774 ppm (unprecedented in last 650 kyr) IPCC [2007]

44 Atmospheric Observations Emission Inventories Biogeochemistry Models Inverse Models OH Sink The Tools and Data Ground based data from observation networks (AGAGE, CSIRO, NOAA, UCI). Airborne observations. Satellite data. Agriculture and waste related emissions, fossil fuel emissions (EDGAR, EPA, IIASA). Fire emissions (GFED, GICC, FINN, RETRO). Ensemble of different wetland models, (LPJ WHyMe, LPJ wsl, ORCHIDEE). Data and models to calculate annual flooded area. Suite of different atmospheric inversion models (TM5 4DVAR, LMDZ MIOP, CarbonTracker CH 4, GEOS Chem, LMDZt SACS, MATCH, TM2, GISS). Long term trends and decadal variability of the OH sink. ACCMIP CTMs intercomparison. TransCom intercomparison.

45 The El Niño Southern Oscillation (ENSO) affects climatic conditions in the tropical Pacific, where it originates, and also influences global climate. ENSO like fluctuations, known as the Pacific Decadal Oscillation, can influence climatic conditions for decades at a time. Heffernan, 2014, Nature CC

46 CH 4 Atmospheric Growth Rate, : 12 ± 6 ppb : 6 ± 8 ppb : 2 ± 2 ppb Slowdown of atmospheric growth rate before 2005 Resumed increase after 2006 Kirschke et al. 2013, Nature Geoscience; Data from NOAA, CSIRO, AGAGE, UCI atmospheric networks

47 (Peng, Zhu et al. unpublished)

48 The Methane Mystery: Leveling Off then Rebounding Heimann, Science, 2011, news and views

49 The Methane Mystery: Leveling Off then Rebounding The uptick: observational evidence suggests natural sources in 2007 and 2008: 2007 Arctic depleted in 13C (wetlands) Warm Arctic Temp 2008 tropics (zero growth rate in Arctic) La Nina, tropical precip Dlugokencky et al., GRL, 2009 Help characterizing sources from isotopes + co-emitted species Inverse constraints on sinks (confidence?) [Montzka et al., 2011]

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia

Global. Carbon Trends. Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Global Carbon Trends Pep Canadell Global Carbon Project CSIRO Marine and Atmospheric Research Canberra, Australia Outline 1. Recent Trends 2. Perturbation Budget 3. Sink Efficiency 4. Attribution 5. Processes

More information

CarbonTracker - CH 4. Lori Bruhwiler, Ed Dlugokencky, Steve Montzka. Earth System Research Laboratory Boulder, Colorado

CarbonTracker - CH 4. Lori Bruhwiler, Ed Dlugokencky, Steve Montzka. Earth System Research Laboratory Boulder, Colorado CarbonTracker - CH 4 Lori Bruhwiler, Ed Dlugokencky, Steve Montzka Earth System Research Laboratory Boulder, Colorado CO 2 CH 4 Fluxes We Estimate: Terrestrial Biosphere Oceans Fluxes We Know : Fossil

More information

Climate Change, People, and the Carbon Cycle

Climate Change, People, and the Carbon Cycle Climate Change, People, and the Carbon Cycle An emerging challenge: Supporting Greenhouse Gas Management Strategies with Observations, Modeling, and Analysis Why this is an urgent issue The primary cause

More information

Leif Backman HENVI Seminar February 19, 2009

Leif Backman HENVI Seminar February 19, 2009 Methane Sources and Sinks Leif Backman HENVI Seminar February 19, 2009 Background Atmospheric methane Sources & Sinks Concentration variations & trends Objective & methods Objective & Goals Research plan

More information

Modelling the global carbon cycle

Modelling the global carbon cycle Modelling the global carbon cycle Chris Jones, Eleanor Burke, Angela Gallego-Sala (U. Exeter)» UNFCCC, Bonn, 24 October 2013 Introduction Why model the global carbon cycle? Motivation from climate perspective

More information

Dynamic Regional Carbon Budget Based on Multi-Scale Data-Model Fusion

Dynamic Regional Carbon Budget Based on Multi-Scale Data-Model Fusion Dynamic Regional Carbon Budget Based on Multi-Scale Data-Model Fusion Mingkui Cao, Jiyuan Liu, Guirui Yu Institute Of Geographic Science and Natural Resource Research Chinese Academy of Sciences Toward

More information

Twentieth Century Sources of Methane in the Atmosphere. Tom Quirk Institute of Public Affairs Melbourne Australia

Twentieth Century Sources of Methane in the Atmosphere. Tom Quirk Institute of Public Affairs Melbourne Australia Twentieth Century Sources of Methane in the Atmosphere Tom Quirk Institute of Public Affairs Melbourne Australia twquirk@labyrinth.net.au Erice International Seminars 21 August 2 Abstract Present global

More information

Climate Science: EPA Decision-Making and Education Efforts

Climate Science: EPA Decision-Making and Education Efforts LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Climate Science: EPA Decision-Making and Education Efforts Presented by: Dr. Marcus Sarofim and Erin Birgfeld March 28, 2011 Climate Science: EPA decision-making

More information

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany

Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany Martin Heimann Max-Planck-Institute for Biogeochemistry, Jena, Germany martin.heimann@bgc-jena.mpg.de 1 Northern Eurasia: winter: enhanced warming in arctic, more precip summer: general warming in center,

More information

Carbon Dioxide and Global Warming Case Study

Carbon Dioxide and Global Warming Case Study Carbon Dioxide and Global Warming Case Study Key Concepts: Greenhouse Gas Carbon dioxide El Niño Global warming Greenhouse effect Greenhouse gas La Niña Land use Methane Nitrous oxide Radiative forcing

More information

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate

Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Climate 1 Wake Acceleration Academy Earth & Environmental Science: Semester B Note Guide Unit 2: Earth s Changing Extra Resources Website: http://waa-science.weebly.com Module 1: The Mechanics of Change 1. What

More information

On the amount of mitigation required to solve the carbon problem: new constraints from recent carbon cycle science. Stephen W.

On the amount of mitigation required to solve the carbon problem: new constraints from recent carbon cycle science. Stephen W. On the amount of mitigation required to solve the carbon problem: new constraints from recent carbon cycle science. Stephen W. Pacala, Outline 1. Effort required to solve the carbon and climate problem

More information

Wetlands, Carbon and Climate Change

Wetlands, Carbon and Climate Change Wetlands, Carbon and Climate Change William J. Mitsch Everglades Wetland Research Park, Florida Gulf Coast University, Naples Florida with collaboration of: Blanca Bernal, Amanda M. Nahlik, Ulo Mander,

More information

Modelling Forest Growth and Carbon Dynamics:

Modelling Forest Growth and Carbon Dynamics: Modelling Forest Growth and Carbon Dynamics: TRIPLEX Model Development and Applications Changhui Peng (www.crc.uqam.ca) Université du Quebec à Montreal (UQAM) Laboratoire de modélisation écologique et

More information

Greenhouse Gas Measurements from Space. Chris O Dell Colorado State University

Greenhouse Gas Measurements from Space. Chris O Dell Colorado State University Greenhouse Gas Measurements from Space Chris O Dell Colorado State University 1 Climate Forcings & Feedbacks Forcings Greenhouse Gases Aerosols Volcanic Eruptions Solar Forcing Temperature Change Feedbacks

More information

Earth Explorer 8 Candidate

Earth Explorer 8 Candidate Earth Explorer 8 Candidate Hartmut Bösch University of Leicester CarbonSat Earth Explorer 8 Mission Advisory Group Heinrich Bovensmann, IUP, University of Bremen, Bremen, D (Chair) Hartmut Bösch, University

More information

Land Ecosystems and Climate a modeling perspective

Land Ecosystems and Climate a modeling perspective Land Ecosystems and Climate a modeling perspective Samuel Levis Community Land Model Science Liaison Terrestrial Sciences Section, CGD, ESSL, NCAR 12 August 2009 Why the Land? the land surface is a critical

More information

Dr David Karoly School of Meteorology

Dr David Karoly School of Meteorology Global warming: Is it real? Does it matter for a chemical engineer? Dr David Karoly School of Meteorology Email: dkaroly@ou.edu Recent global warming quotes Senator James Inhofe (R, Oklahoma), Chair, Senate

More information

CHAPTER CHAPTER CONTENTS

CHAPTER CHAPTER CONTENTS 7 Carbon Cycle CHAPTER CHAPTER CONTENTS Question 7.1:What are the magnitudes and distributions of North American carbon sources and sinks on seasonal to centennial time scales, and what are the processes

More information

Unit III Nutrients & Biomes

Unit III Nutrients & Biomes Unit III Nutrients & Biomes Nutrient Cycles Carbon Cycle Based on CO 2 cycling from animals to plants during respiration and photosynthesis. Heavy deposits are stored in wetland soils, oceans, sedimentary

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle Laurent Bopp LSCE, Paris Introduction CO2 is an important greenhouse gas Contribution to Natural Greenhouse Effect Contribution to Anthropogenic Effect 1 From NASA Website 2 Introduction

More information

Global Climate Change

Global Climate Change Global Climate Change Greenhouse Gases and Earth s Energy Balance 400 380 CO 2 in air 360 340 320 1960 1970 1980 1990 2000 2010 Year Global Climate Change 1 / 30 Outline of Topics 1 The Natural Earth System

More information

Fire Modelling in JULES using SPITFIRE: Spread and Intensity of Fires and Emissions Model

Fire Modelling in JULES using SPITFIRE: Spread and Intensity of Fires and Emissions Model Fire Modelling in JULES using SPITFIRE: Spread and Intensity of Fires and Emissions Model Allan Spessa National Centre for Atmosphere Science Department of Meteorology Reading University JULES Summer 2009

More information

Methane in the 21 st Century: Projections with RCP scenarios in GEOS-Chem

Methane in the 21 st Century: Projections with RCP scenarios in GEOS-Chem Methane in the 21 st Century: Projections with RCP scenarios in GEOS-Chem Christopher D. Holmes Dept. of Earth System Science University of California, Irvine Coauthors: Michael Prather (UC Irvine) O.

More information

Climate Change. Some solar radiation is reflected by Earth and the atmosphere. Earth s Surface

Climate Change. Some solar radiation is reflected by Earth and the atmosphere. Earth s Surface Q& A n The Basics of Greenhouse gases affect Earth s energy balance and climate The Sun serves as the primary energy source for Earth s climate. Some of the incoming sunlight is reflected directly back

More information

ENSC425/625 Climate Change and Global Warming

ENSC425/625 Climate Change and Global Warming ENSC425/625 Climate Change and Global Warming 1 Emission scenarios of greenhouse gases Projections of climate change Regional climate change (North America) Observed Changes and their Uncertainty 2 Figure

More information

PERMAFROST MELTING AND CLIMATE CHANGE

PERMAFROST MELTING AND CLIMATE CHANGE CAPTURE PERMAFROST MELTING AND CLIMATE CHANGE CHRISTINA BIASI et al. Department of Environmental and Biological Science UNIVERSITY OF EASTERN FINLAND ARKTIKO2017 9.-10.5.2017 Oulu, Finland Estimated 1035±150

More information

GLOBAL WARMING: THE BIOLOGICAL DIMENSION

GLOBAL WARMING: THE BIOLOGICAL DIMENSION FOCUS THE NATION GLOBAL WARMING: THE BIOLOGICAL DIMENSION Thomas W. Sherry Department of Ecology & Evolutionary Biology Tulane University, New Orleans, Louisiana Environmental misconceptions rampant Global

More information

Human nitrogen fixation and greenhouse gas emissions: a global assessment

Human nitrogen fixation and greenhouse gas emissions: a global assessment Human nitrogen fixation and greenhouse gas emissions: a global assessment Wim de Vries 1,2, Enzai Du 3, Klaus Butterbach-Bahl 4, Lena Schulte-Uebbing 2, Frank Dentener 5 1 Alterra Wageningen University

More information

What does IPCC AR5 say? IPCC as a radical inside the closet

What does IPCC AR5 say? IPCC as a radical inside the closet What does IPCC AR5 say? IPCC as a radical inside the closet What does IPCC AR5 say? Plan: * What is IPCC? * The Fifth Assessment Report (AR5) - WR1: The physical basis - WR2: Impacts, adaptation and vulnerability

More information

Development of CarbonTracker Europe-CH4 Part 1: system set-up and sensitivity analyses

Development of CarbonTracker Europe-CH4 Part 1: system set-up and sensitivity analyses Development of CarbonTracker Europe-CH4 Part 1: system set-up and sensitivity analyses 1 Aki Tsuruta 1, Tuula Aalto 1, Leif Backman 1, Janne Hakkarainen 2, Ingrid T. van der Laan-Luijkx 3, Maarten C. Krol

More information

EC FLUXES: BASIC CONCEPTS AND BACKGROUND. Timo Vesala (thanks to e.g. Samuli Launiainen and Ivan Mammarella)

EC FLUXES: BASIC CONCEPTS AND BACKGROUND. Timo Vesala (thanks to e.g. Samuli Launiainen and Ivan Mammarella) EC FLUXES: BASIC CONCEPTS AND BACKGROUND Timo Vesala (thanks to e.g. Samuli Launiainen and Ivan Mammarella) Scales of meteorological processes: Synoptic scale, ~ 1000 km (weather predictions, ~ day) Mesoscale,

More information

BAEN 673 / February 18, 2016 Hydrologic Processes

BAEN 673 / February 18, 2016 Hydrologic Processes BAEN 673 / February 18, 2016 Hydrologic Processes Assignment: HW#7 Next class lecture in AEPM 104 Today s topics SWAT exercise #2 The SWAT model review paper Hydrologic processes The Hydrologic Processes

More information

NATIONAL AND REGIONAL IMPACTS OF CLIMATE CHANGE ON THE INDIAN ECONOMY

NATIONAL AND REGIONAL IMPACTS OF CLIMATE CHANGE ON THE INDIAN ECONOMY NATIONAL AND REGIONAL IMPACTS OF CLIMATE CHANGE ON THE INDIAN ECONOMY PARTHA SEN and SHREEKANT GUPTA Delhi School of Economics University of Delhi sgupta@econdse.org Climate Change and Developing Countries

More information

Observation System Requirements to Support Greenhouse Gas Management Strategies

Observation System Requirements to Support Greenhouse Gas Management Strategies Observation System Requirements to Support Greenhouse Gas Management Strategies 7 September 2009 James Butler NOAA Earth System Research Laboratory Page 1 Outline Global Greenhouse Gas Monitoring Today

More information

Arctic ecosystems as key biomes in climate-carbon feedback. Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research

Arctic ecosystems as key biomes in climate-carbon feedback. Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research Arctic ecosystems as key biomes in climate-carbon feedback Hanna Lee Climate and Global Dynamics Division National Center for Atmospheric Research Outline Permafrost carbon Permafrost carbon-climate feedback

More information

State of the planetary life support system

State of the planetary life support system State of the planetary life support system "We're simply talking about the very life support system of this planet Joachim Hans Schellnhuber, Director of the Potsdam Climate Impacts Institute and Climate

More information

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes!

Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? Is the Climate Changing? 12/13/2016. Yes! 1 2 3 Yes! 4 Yes! But Earth's climate is always changing! 5 Yes! But Earth's climate is always changing! 6 Throughout its 4.5 billion year history, Earth's climate has alternated between periods of warmth

More information

Current understanding of global climate change and of its possible impacts on agriculture. Maurizio Sciortino.

Current understanding of global climate change and of its possible impacts on agriculture. Maurizio Sciortino. Current understanding of global climate change and of its possible impacts on agriculture Maurizio Sciortino maurizio.sciortino@enea.it Outline 1. Scientific understanding of climate change The greenhouse

More information

Global warming: Evidence, risks and mitigation options (or: Why global warming is an energy issue) Filippo Giorgi Abdus Salam ICTP, Trieste

Global warming: Evidence, risks and mitigation options (or: Why global warming is an energy issue) Filippo Giorgi Abdus Salam ICTP, Trieste Global warming: Evidence, risks and mitigation options (or: Why global warming is an energy issue) Filippo Giorgi Abdus Salam ICTP, Trieste Four frequent questions Is global warming happening? (If yes)

More information

Climate Change : Facts and Future Scenarios

Climate Change : Facts and Future Scenarios Climate Change : Facts and Future Scenarios Dr Jim Salinger National Institute of Water & Atmospheric Research, Auckland, NZ FOA/MAF 6 th Annual Forest Biosecurity Workshop 8-9 th March 2007 Outline Facts

More information

Energy, Greenhouse Gases and the Carbon Cycle

Energy, Greenhouse Gases and the Carbon Cycle Energy, Greenhouse Gases and the Carbon Cycle David Allen Gertz Regents Professor in Chemical Engineering, and Director, Center for Energy and Environmental Resources Concepts for today Greenhouse Effect

More information

Section C: Carbon Cycle

Section C: Carbon Cycle Section C: Carbon Cycle Outline C.1 Introduction C.2 The global carbon cycle C.3 Human perturbations to the carbon cycle C.4 Global carbon budget GEOG 313/513 Fall 2016 Global Climate Change 1 Prof J.

More information

Environmental Science. Physics and Applications

Environmental Science. Physics and Applications Environmental Science 1 Environmental Science. Physics and Applications. Carbon Cycle Picture from the IPCC report on the environment. 4. Carbon cycle 4.1 Carbon cycle, introduction 4.2 The oceans 4.3

More information

Global Ocean and Atmosphere Temperature Trends Compared

Global Ocean and Atmosphere Temperature Trends Compared Warmer Oceans result in coral bleaching and the death of coral reefs support more powerful hurricanes 32 Global Ocean and Atmosphere Temperature Trends Compared 33 Warmer Oceans and Coral Bleaching 1997-1998

More information

Biotic and Abiotic Factors

Biotic and Abiotic Factors Biotic and Abiotic Factors Different Approaches to the Study of Ecology Ecology is the study of an organism or organisms and their relationship to the environment. An organism s environment consists of

More information

Mapping global soil Carbon stocks and sequestration potential

Mapping global soil Carbon stocks and sequestration potential Mapping global soil Carbon stocks and sequestration potential John Latham Renato Cumani UN/FAO Environmental Assessment and Monitoring Unit FAO, Rome, April 16, 2009 1 Food and Agriculture Organization

More information

Global Climate Change

Global Climate Change Global Climate Change MODULE 11: GLOBAL CLIMATE CHANGE UNIT 1: BIODIVERSITY Objectives Define terms. Understand global climate change. Describe the basic predictions of the global climate models. Understand

More information

Carbon Cycle Midterm Exam April 1, Answer Key

Carbon Cycle Midterm Exam April 1, Answer Key Carbon Cycle Midterm Exam April 1, 2008 Answer Key 1. a. What process dominates the seasonal cycle in atmospheric O 2 at 41 S? Southern summer release and southern winter uptake by the ocean. Part due

More information

Peatland Carbon Stocks and Fluxes:

Peatland Carbon Stocks and Fluxes: Peatland Carbon Stocks and Fluxes: monitoring, measurements and modelling Dr Andreas Heinemeyer ah126@york.ac.uk University of York, Stockholm Environment Institute UNFCCC 24 th October 2013 South Africa:

More information

The Global Carbon Cycle

The Global Carbon Cycle The Global Carbon Cycle In a nutshell We are mining fossil CO 2 and titrating into the oceans, (buffered by acid-base chemistry) Much of the fossil CO 2 will remain in the atmosphere for thousands of years

More information

2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol G.1

2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol G.1 GLOSSARY 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol G.1 Accounting The rules for comparing emissions and removals as reported with commitments. Approach

More information

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report :

Introduction. Introduction. Introduction. Outline Last IPCC report : 2001 Last IPCC report : Introduction Greenhouse Gases & Climate Change Laurent Bopp LSCE, Paris When did the story start? ¾1827 Fourier hypothesizes greenhouse effect ¾1860 Tyndal identifies CO2 and water vapor as heat trapping

More information

NOAA/NWS Ohio River Forecast Center. Water Resources Committee Climate Trends and Change

NOAA/NWS Ohio River Forecast Center. Water Resources Committee Climate Trends and Change NOAA/NWS Ohio River Forecast Center Water Resources Committee Climate Trends and Change Jim Noel Service Coordination Hydrologist November 27, 2012 Today s Discussion Climate Trends Climate Change vs Variability

More information

Canadian Forest Carbon Budgets at Multi-Scales:

Canadian Forest Carbon Budgets at Multi-Scales: Canadian Forest Carbon Budgets at Multi-Scales: Dr. Changhui Peng, Uinversity of Quebec at Montreal Drs. Mike Apps and Werner Kurz, Canadian Forest Service Dr. Jing M. Chen, University of Toronto U of

More information

Concentrations of several of these greenhouse gases (CO 2, CH 4, N 2 O and CFCs) have increased dramatically in the last hundred years due to human

Concentrations of several of these greenhouse gases (CO 2, CH 4, N 2 O and CFCs) have increased dramatically in the last hundred years due to human Global Warming 1.1 The facts: With no atmosphere surrounding the earth the surface temperature would be 17 o C. However, due to the greenhouse gases in the atmosphere that absorb infrared radiation emitted

More information

Global Methane Cycle

Global Methane Cycle Global Methane Cycle Outline History and properties of Methane. Sources of methane. Methane sequestration and utilization. Oxidation pathway of Methane. Historical and potential future climate change ability.

More information

GLOBAL CLIMATE CHANGE

GLOBAL CLIMATE CHANGE 1 GLOBAL CLIMATE CHANGE From About Transportation and Climate Change (Source; Volpe center for Climate Change and Environmental forecasting, http://climate.volpe.dot.gov/trans.html Greenhouse effect has

More information

climate change Contents CO 2 (ppm)

climate change Contents CO 2 (ppm) climate change CO 2 (ppm) 2007 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Contents 1. Summary 2. Background 3. Climate change: observations 4. CO 2 : ocean acidification 5. OtherGreenhouse

More information

Estimated Global Temperature and Growth Rate since Estimated global mean temperature

Estimated Global Temperature and Growth Rate since Estimated global mean temperature 1.1 Global Warming Estimated Global Temperature and Growth Rate since 1850 14.6 Estimated global mean temperature C 14.4 14.2 14.0 13.8 13.6 Period Years 25 50 100 150 Annual mean Smoothed series Growth

More information

Session 14 Unit VI CLIMATIC CHANGE AND GLOBAL WARMING

Session 14 Unit VI CLIMATIC CHANGE AND GLOBAL WARMING Session 14 Unit VI CLIMATIC CHANGE AND GLOBAL WARMING Dr. H.S. Ramesh Professor of Environmental Engineering S.J. College of Engineering, Mysore 570 006 Carbon di-oxide is a natural constituent of atmosphere,

More information

The Big Bang, the LHC and the God Particle

The Big Bang, the LHC and the God Particle The Big Bang, the LHC and the God Particle Cormac O Raifeartaigh (WIT) A dialogue abut how we are shaping the future of the planet Cormac O Raifeartaigh (FRAS) Laudato Si I What Is Happening to Our Common

More information

Climate and Biodiversity

Climate and Biodiversity LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 7 Climate and Biodiversity Core Case Study: A Temperate Deciduous Forest Why do forests grow in some areas and not others? Climate Tropical

More information

INFLUX (The Indianapolis Flux Experiment)

INFLUX (The Indianapolis Flux Experiment) INFLUX (The Indianapolis Flux Experiment) A top-down/bottom-up greenhouse gas quantification experiment in the city of Indianapolis Paul Shepson, Purdue University Kenneth Davis, Natasha Miles and Scott

More information

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen

Klimaänderung. Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Klimaänderung Robert Sausen Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen Vorlesung WS 2017/18 LMU München 6. Kohlenstoff- und andere biogeochemische Kreisläufe

More information

The Ecological Theory of Climate Models Gordon Bonan National Center for Atmospheric Research Boulder, Colorado

The Ecological Theory of Climate Models Gordon Bonan National Center for Atmospheric Research Boulder, Colorado The Ecological Theory of Climate Models Gordon Bonan National Center for 2 nd Integrated Land Ecosystem-Atmosphere Processes Study (ileaps) science conference Melbourne, Australia 24 August 2009 Forests

More information

Hydrological Feedbacks in Tropical African Wetlands

Hydrological Feedbacks in Tropical African Wetlands Hydrological Feedbacks in Tropical African Wetlands Simon Dadson University of Oxford (simon.dadson@ouce.ox.ac.uk) Key challenges Linking across scales: can we predict the hydrological response to climate

More information

The CO 2 budget: methods for estimating CO 2 fluxes from atmospheric observations. Jan Winderlich PhD student

The CO 2 budget: methods for estimating CO 2 fluxes from atmospheric observations. Jan Winderlich PhD student The CO 2 budget: methods for estimating CO 2 fluxes from atmospheric observations 1 Dr. Christoph Gerbig Research Scientist Jan Winderlich PhD student Dr. Rona Thompson Post-doctoral researcher 2 How do

More information

Carbon Science Highlights 2004

Carbon Science Highlights 2004 Carbon Science Highlights 2004 THE PAST Understanding the Ice Ages THE PRESENT Observations of Atmospheric Gases Estimating CO 2 Sources and Sinks Processes Controlling CO 2 Fluxes Processes Determining

More information

Climate Change Frequently Asked Questions Scrambled Information Source: EPA Climate Change FAQ

Climate Change Frequently Asked Questions Scrambled Information Source: EPA Climate Change FAQ Climate Change Frequently Asked Questions Scrambled Information Source: EPA Climate Change FAQ Instructions: The questions and answers below have been scrambled. Cut the answers and questions apart. Separate

More information

Global Warming Science Solar Radiation

Global Warming Science Solar Radiation SUN Ozone and Oxygen absorb 190-290 nm. Latent heat from the surface (evaporation/ condensation) Global Warming Science Solar Radiation Turbulent heat from the surface (convection) Some infrared radiation

More information

Climate system dynamics and modelling

Climate system dynamics and modelling Climate system dynamics and modelling Hugues Goosse Chapter 6 Future climate changes Outline Methods used to estimate future climate changes. Description of the main results at different timescales. Interpretation

More information

Carbon Dioxide and Methane Emissions Derived from GOSAT Data

Carbon Dioxide and Methane Emissions Derived from GOSAT Data LCLUC SARI International Regional Science Meeting in South/Southeast Asia Chiang Mai, Thailand, July 17-19, 2017 1 Carbon Dioxide and Methane Emissions Derived from GOSAT Data GOSAT-2 (FY2018 - ) Tsuneo

More information

Changes to the Underlying Scientific-Technical Assessment to ensure consistency with the approved Summary for Policymakers

Changes to the Underlying Scientific-Technical Assessment to ensure consistency with the approved Summary for Policymakers THIRTY-SIXTH SESSION OF THE IPCC Stockholm, 26 September 2013 IPCC-XXXVI/Doc. 4 (27.IX.2013) Agenda Item: 3 ENGLISH ONLY ACCEPTANCE OF THE ACTIONS TAKEN AT THE TWELFTH SESSION OF WORKING GROUP I Working

More information

Local and Global Impacts of Climate Change: Predictions of the 5th IPCC Report

Local and Global Impacts of Climate Change: Predictions of the 5th IPCC Report Local and Global Impacts of Climate Change: Predictions of the 5th IPCC Report Peter Schlosser Department of Earth and Environmental Sciences and Department of Earth and Environmental Engineering The Earth

More information

1) The Changing Carbon Cycle

1) The Changing Carbon Cycle 1) The Changing Carbon Cycle WG1 Chapter 6, figure 1 The numbers represent carbon reservoirs in Petagrams of Carbon (PgC; 10 15 gc) and the annual exchanges in PgC/year. The black numbers and arrows show

More information

Why are there large quantities of the un-natural (Man Made) CFCs in Antarctica?

Why are there large quantities of the un-natural (Man Made) CFCs in Antarctica? Ozone Depletion and Climate Change Why are there large quantities of the un-natural (Man Made) CFCs in Antarctica? In a recent (last August 2016) BBC documentary on the Antarctic weather changes, it has

More information

Environmental Impacts of. Energy Production

Environmental Impacts of. Energy Production CH2356 Energy Engineering Environmental Impacts of Energy Production Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

4) Ecosystem Feedbacks from Carbon and Water Cycle Changes

4) Ecosystem Feedbacks from Carbon and Water Cycle Changes 4) Ecosystem Feedbacks from Carbon and Water Cycle Changes Summary: Climate change can affect terrestrial and marine ecosystems which in turn has impacts on both the water and carbon cycles and then feeds

More information

Climate driven increases in global terrestrial net primary production from 1982 to Ramakrishna R. Nemani 1,5,* Charles D.

Climate driven increases in global terrestrial net primary production from 1982 to Ramakrishna R. Nemani 1,5,* Charles D. 1 Climate driven increases in global terrestrial net primary production from 1982 to 1999 Ramakrishna R. Nemani 1,5,* Charles D. Keeling 2 Hirofumi Hashimoto 1 William M. Jolly 1 Stephen C. Piper 2 Compton

More information

ATM S 211 Final Examination June 4, 2007

ATM S 211 Final Examination June 4, 2007 ATM S 211 Final Examination June 4, 2007 Name This examination consists of a total of 100 points. In each of the first two sections, you have a choice of which questions to answer. Please note that you

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Estimation of CO 2 and CH 4 fluxes in Siberia using tower observation network (Abstract of the Interim Report)

Estimation of CO 2 and CH 4 fluxes in Siberia using tower observation network (Abstract of the Interim Report) 2 - i Global Environment Research Account for National Institutes Estimation of CO 2 and CH 4 fluxes in Siberia using tower observation network (Abstract of the Interim Report) Contact person MACHIDA,

More information

Recent carbon trends and the fate of the natural sink

Recent carbon trends and the fate of the natural sink Recent carbon trends and the fate of the natural sink Biosphere between sink & source 22.01.2008 Johannes Enssle GCM 2007 Student presentation Physical Fundamentals of Global Change Content 1. Recent global

More information

Dynamics of Ecosystems. Chapter 57

Dynamics of Ecosystems. Chapter 57 Dynamics of Ecosystems Chapter 57 1 The Water Cycle Nutrient Cycles Trophic Levels Primary Productivity Outline The Energy in Food Chains Ecological Pyramids Interactions Among Trophic Levels Species Richness

More information

Soils and Global Warming. Temperature and Atmosphere. Soils and Water, Spring Lecture 9, Soils and Global Warming 1

Soils and Global Warming. Temperature and Atmosphere. Soils and Water, Spring Lecture 9, Soils and Global Warming 1 Soils and Global Warming Reading: Lecture Notes Objectives: Introduce climate change Describe measured and expected effects on soil systems Describe prediction of climate change effect on food production.

More information

Human perturbations to the global Nitrogen cycle

Human perturbations to the global Nitrogen cycle Human perturbations to the global Nitrogen cycle Lecture for Biogeochemistry and Global Change Edzo Veldkamp The pace of human caused global change has increased in modern history, but none so rapidly

More information

GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, March 2017

GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, March 2017 GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, 21-23 March 2017 Quantifying terrestrial ecosystem carbon stocks for future GHG mitigation, sustainable land-use planning and adaptation to climate

More information

CONTENTS. Introduction x

CONTENTS. Introduction x CONTENTS Introduction x Chapter 1: Climate 1 Solar Radiation and Temperature 2 The Distribution of Radiant Energy from the Sun 2 The Effects of the Atmosphere 3 Average Radiation Budgets 6 Surface-Energy

More information

THE ANTHROPOGENIC INFLUENCE ON THE CLIMATE CHANGE IS CLEAR

THE ANTHROPOGENIC INFLUENCE ON THE CLIMATE CHANGE IS CLEAR FROM IPCC AR5 WKG I: THE ANTHROPOGENIC INFLUENCE ON THE CLIMATE CHANGE IS CLEAR Excerpts from IPCC AR5 by Toni Federico Scientific Committee of Sustainable Development Foundation SUMMARY Note from editor

More information

Application of biochar as a tool to mitigate non-co2 greenhouse gas emissions from soil

Application of biochar as a tool to mitigate non-co2 greenhouse gas emissions from soil Application of biochar as a tool to mitigate non-co2 greenhouse gas emissions from soil Per Ambus Risø National Laboratory for Sustainable Energy Technical University of Denmark Biochar sequesters carbon

More information

Where have we been. Where are we going today? Lecture Outline. Geoengineering. What is a system?

Where have we been. Where are we going today? Lecture Outline. Geoengineering. What is a system? Where have we been 1. Course Introduction 2. What is the environment 3. Examined in some detail weather disasters for 2010 and 2011 4. Touched on Scale 5. Touched on borders. Examples a) Air pollution

More information

NGSS correlations to Student Climate Data Learning Sequences.

NGSS correlations to Student Climate Data Learning Sequences. NGSS correlations to Student Climate Data Learning Sequences. How thoroughly the standard is addressed depends on the level of inquiry used with students. Student Climate Data & NGSS: High School Biomass

More information

Comparison of glacial activity and ocean temperatures. Comparison of glacial activity and N.Atlantic temp changes

Comparison of glacial activity and ocean temperatures. Comparison of glacial activity and N.Atlantic temp changes Comparison of glacial activity and ocean temperatures Comparison of glacial activity and N.Atlantic temp changes Figure 17A. Comparison of advance and retreat of glaciers Figure 17B. Comparison of advance

More information

Fifteen years after TransCom3: are global CO 2 inverse calculations robust?

Fifteen years after TransCom3: are global CO 2 inverse calculations robust? Fifteen years after TransCom3: are global CO 2 inverse calculations robust? Benjamin Gaubert 1, Britton B. Stephens 1, Andrew R. Jacobson 2, Sourish Basu 2, Frederic Chevallier 3, Christian Roedenbeck

More information

Many players have contributed to this John Miller, Arlyn Andrews, Pieter Tans, Oksansa Tarasova, and a host of partners.

Many players have contributed to this John Miller, Arlyn Andrews, Pieter Tans, Oksansa Tarasova, and a host of partners. Many players have contributed to this John Miller, Arlyn Andrews, Pieter Tans, Oksansa Tarasova, and a host of partners. Whatever measurements are made supporting urban systems must be compatible with

More information

Principles of Terrestrial Ecosystem Ecology

Principles of Terrestrial Ecosystem Ecology E Stuart Chapin III Pamela A. Matson Harold A. Mooney Principles of Terrestrial Ecosystem Ecology Illustrated by Melissa C. Chapin With 199 Illustrations Teehnische Un.fversitSt Darmstadt FACHBEREIGH 10

More information

People, Oceans and Climate Change

People, Oceans and Climate Change People, Oceans and Climate Change A deeper look at the carbon dioxide cycle, greenhouse gases, and oceanic processes over the last 150 years OCN 623 Chemical Oceanography 18 April 2013 Reading: Libes,

More information

SHAPING OUR FUTURE: THE CLIMATE CHALLENGE KS3 LESSON 1 PRESENTATION HOW IS OUR CLIMATE CHANGING?

SHAPING OUR FUTURE: THE CLIMATE CHALLENGE KS3 LESSON 1 PRESENTATION HOW IS OUR CLIMATE CHANGING? SHAPING OUR FUTURE: THE CLIMATE CHALLENGE KS3 LESSON 1 PRESENTATION HOW IS OUR CLIMATE CHANGING? CLIMATE CHANGE IS HAPPENING RIGHT NOW! CLICK TO PLAY Video opens in YouTube 1 WHAT IS CLIMATE CHANGE? What

More information

Climate modeling, INPE's projections for the 21st century, and the distribution of Brazilian biomes

Climate modeling, INPE's projections for the 21st century, and the distribution of Brazilian biomes National Institute for Space Research INPE Earth System Science Center CCST Climate modeling, INPE's projections for the 21st century, and the distribution of Brazilian biomes Gilvan Sampaio gilvan.sampaio@inpe.br

More information