MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work?

Size: px
Start display at page:

Download "MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work?"

Transcription

1 MILLER/SPOOLMAN LIVING IN THE ENVIRONMENT 17 TH CHAPTER 3 Ecosystems: What Are They and How Do They Work?

2 Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface Contain about 50% of the world s known plant and animal species Disruption will have three major harmful effects Reduce biodiversity Accelerate global warming Change regional weather patterns

3 Natural Capital Degradation: Satellite Image of the Loss of Tropical Rain Forest Fig. 3-1a, p. 54

4 3-1 What Keeps Us and Other Organisms Alive? Concept 3-1A The four major components of the earth s life-support system are the atmosphere (air), the hydrosphere (water), the geosphere (rock, soil, and sediment), and the biosphere (living things). Concept 3-1B Life is sustained by the flow of energy from the sun through the biosphere, the cycling of nutrients within the biosphere, and gravity.

5 The Earth s Life-Support System Has Four Major Components Atmosphere Troposphere: where weather happens Stratosphere: contains ozone layer Hydrosphere Geosphere Biosphere

6 Natural Capital: General Structure of the Earth Fig. 3-2, p. 56

7 Atmosphere Soil Rock Crust Biosphere (living organisms) Mantle Mantle Geosphere (crust, mantle, core) Core Atmosphere (air) Hydrosphere (water) Fig. 3-2, p. 56

8 The Diversity of Life Fig. 3-3a, p. 56

9 Three Factors Sustain Life on Earth One-way flow of high-quality energy: Sun plants living things environment as heat radiation to space Cycling of nutrients through parts of the biosphere Gravity holds earths atmosphere

10 Sun, Earth, Life, and Climate Sun: UV, visible, and IR energy Radiation Absorbed by ozone and other atmosphere gases Absorbed by the earth Reflected by the earth Radiated by the atmosphere as heat Natural greenhouse effect

11 Flow of Energy to and from the Earth Fig. 3-4, p. 57

12 Solar radiation UV radiation Most UV absorbed by ozone Absorbed by the earth Visible light Reflected by atmosphere Lower Stratosphere (ozone layer) Troposphere Heat added to troposphere Radiated by atmosphere as heat Heat radiated by the earth Greenhouse effect Fig. 3-4, p. 57

13 3-2 What Are the Major Components of an Ecosystem? Concept 3-2 Some organisms produce the nutrients they need, others get their nutrients by consuming other organisms, and some recycle nutrients back to producers by decomposing the wastes and remains of organisms.

14 Ecologists Study Interactions in Nature Ecology: how organisms interact with each other and their nonliving environment Organisms Populations Communities Ecosystems Biosphere

15 Levels of Organization in Nature Fig. 3-5, p. 58

16 Biosphere Parts of the earth's air, water, and soil where life is found Ecosystem Community Population A community of different species interacting with one another and with their nonliving environment of matter and energy Populations of different species living in a particular place, and potentially interacting with each other A group of individuals of the same species living in a particular place Organism An individual living being Cell The fundamental structural and functional unit of life Molecule Atom Chemical combination of two or more atoms of the same or different elements Smallest unit of a chemical element that exhibits its chemical properties Fig. 3-5, p. 58

17 Ecosystems Have Living and Abiotic Water Air Nutrients Rocks Heat Solar energy Nonliving Components Biotic Living and once living

18 Ecosystem Fig. 3-6, p. 59

19 Precipitaton Oxygen (O 2 ) Carbon dioxide (CO 2 ) Producer Secondary consumer (fox) Primary consumer (rabbit) Producers Water Decomposers Soluble mineral nutrients Fig. 3-6, p. 59

20 Producers and Consumers Are the Living Components of Ecosystems (1) Producers, autotrophs Photosynthesis: CO 2 + H 2 O + sunlight glucose + oxygen Chemosynthesis Consumers, heterotrophs Primary consumers = herbivores Secondary consumers Tertiary consumers Carnivores, Omnivores

21 Producers Fig. 3-7a, p. 59

22 Consumers Fig. 3-8a, p. 60

23 Producers and Consumers Are the Living Components of Ecosystems (2) Decomposers Consumers that release nutrients Bacteria Fungi Detritivores Feed on dead bodies of other organisms Earthworms Vultures

24 Decomposer Fig. 3-9a, p. 61

25 Detritivores and Decomposers Fig. 3-10, p. 61

26 Detritus feeders Decomposers Bark beetle Long-horned engraving beetle holes Carpenter Termite ant galleries and carpenter ant work Dry rot fungus Wood reduced to powder Fungi Time progression Powder broken down by decomposers into plant nutrients in soil Fig. 3-10, p. 61

27 Producers and Consumers Are the Living Components of Ecosystems (3) Aerobic respiration Using oxygen to turn glucose back to carbon dioxide and water Anaerobic respiration = fermentation End products are carbon compounds such as methane or acetic acid

28 Energy Flow and Nutrient Cycling One-way energy flow from sun Nutrient cycling of key materials

29 Ecosystem Components Fig. 3-11, p. 62

30 Heat Chemical nutrients (carbon dioxide, oxygen, nitrogen, minerals) Solar energy Heat Heat Decomposers (bacteria, fungi) Producers (plants) Heat Consumers (plant eaters, meat eaters) Heat Fig. 3-11, p. 62

31 Science Focus: Many of the World s Most Important Species Are Invisible to Us Microorganisms Bacteria Protozoa Fungi

32 3-3 What Happens to Energy in an Ecosystem? Concept 3-3 As energy flows through ecosystems in food chains and webs, the amount of chemical energy available to organisms at each succeeding feeding level decreases.

33 Energy Flows Through Ecosystems in Food Chains and Food Webs Food chain Movement of energy and nutrients from one trophic level to the next Photosynthesis feeding decomposition Food web Network of interconnected food chains

34 A Food Chain Fig. 3-12, p. 63

35 First Trophic Level Second Trophic Level Third Trophic Level Fourth Trophic Level Producers (plants) Primary consumers (herbivores) Secondary consumers (carnivores) Tertiary consumers (top carnivores) Heat Heat Heat Heat Solar energy Heat Heat Heat Decomposers and detritus feeders Fig. 3-12, p. 63

36 A Food Web Fig. 3-13, p. 64

37 Fig. 3-13, p. 64

38 Usable Energy Decreases with Each Link in a Food Chain or Web Biomass Dry weight of all organic matter of a given trophic level in a food chain or food web Decreases at each higher trophic level due to heat loss Pyramid of energy flow 90% of energy lost with each transfer Less chemical energy for higher trophic levels

39 Pyramid of Energy Flow Fig. 3-14, p. 65

40 Usable energy available at each trophic level (in kilocalories) Tertiary consumers (human) 10 Heat Heat Secondary consumers (perch) 100 Heat Decomposers Heat Primary consumers (zooplankton) 1,000 Heat Producers (phytoplankton) 10,000 Fig. 3-14, p. 65

41 Some Ecosystems Produce Plant Matter Faster Than Others Do Gross primary productivity (GPP) Rate at which an ecosystem s producers convert solar energy to chemical energy and biomass Kcal/m 2 /year Net primary productivity (NPP) Rate at which an ecosystem s producers convert solar energy to chemical energy, minus the rate at which producers use energy for aerobic respiration Ecosystems and life zones differ in their NPP

42 Estimated Annual Average NPP in Major Life Zones and Ecosystems Fig. 3-15, p. 66

43 Terrestrial Ecosystems Swamps and marshes Tropical rain forest Temperate forest Northern coniferous forest (taiga) Savanna Agricultural land Woodland and shrubland Temperate grassland Tundra (arctic and alpine) Desert scrub Extreme desert Aquatic Ecosystems Estuaries Lakes and streams Continental shelf Open ocean Fig. 3-15, p. 66

44 3-4 What Happens to Matter in an Ecosystem? Concept 3-4 Matter, in the form of nutrients, cycles within and among ecosystems and the biosphere, and human activities are altering these chemical cycles.

45 Nutrients Cycle in the Biosphere Biogeochemical cycles, nutrient cycles Hydrologic Carbon Nitrogen Phosphorus Sulfur Nutrients may remain in a reservoir for a period of time

46 Water Cycles through the Biosphere Natural renewal of water quality: three major processes Evaporation Precipitation Transpiration Alteration of the hydrologic cycle by humans Withdrawal of large amounts of freshwater at rates faster than nature can replace it Clearing vegetation Increased flooding when wetlands are drained

47 Hydrologic Cycle Including Harmful Impacts of Human Activities Fig. 3-16, p. 67

48 Condensation Condensation Ice and snow Precipitatio n to land Transpiration from plants Evaporation of surface water Evaporation from ocean Runoff Infiltration and percolation into aquifer Lakes and reservoirs Increased runoff on land covered with crops, buildings and pavement Runoff Runoff Increased runoff from cutting forests and filling wetlands Precipitatio n to ocean Groundwater in aquifers Overpumping of aquifers Runoff Water pollution Ocean Natural process Natural reservoir Human impacts Natural pathway Pathway affected by human activities Fig. 3-16, p. 67

49 Glaciers Store Water Fig. 3-17, p. 68

50 Water Erodes Rock in Antelope Canyon Fig. 3-18, p. 69

51 Science Focus: Water s Unique Properties Properties of water due to hydrogen bonds between water molecules: Exists as a liquid over a large range of temperature Changes temperature slowly High boiling point: 100 C Adhesion and cohesion Expands as it freezes Solvent Filters out harmful UV

52 Hydrogen Bonds in Water Supplement 4, Fig 6

53 How Salt Dissolves in Water Supplement 4, Fig 3

54 Carbon Cycle Depends on Photosynthesis and Respiration Link between photosynthesis in producers and respiration in producers, consumers, and decomposers Additional CO 2 added to the atmosphere Tree clearing Burning of fossil fuels Warms the atmosphere

55 Natural Capital: Carbon Cycle with Major Harmful Impacts of Human Activities Fig. 3-19, p. 70

56 Carbon dioxide in atmosphere Respiration Photosynthesis Diffusion Forest fires Animals (consumers) Burning fossil fuels Deforestation Plants (producers) Carbon dioxide dissolved in ocean Transportation Marine food webs Producers, consumers, decomposers Respiration Carbon in animals (consumers) Carbon in plants (producers) Decomposition Carbon in fossil fuels Process Reservoir Carbon in limestone or dolomite sediments Pathway affected by humans Natural pathway Compaction Fig. 3-19, p. 70

57 Increase in Atmospheric Carbon Dioxide, Supplement 9, Fig 14

58 Nitrogen Cycles through the Biosphere: Bacteria in Action (1) Nitrogen fixed by lightning Nitrogen fixed by bacteria and cyanobacteria Combine gaseous nitrogen with hydrogen to make ammonia (NH 3 ) and ammonium ions (NH 4+ ) Nitrification Soil bacteria change ammonia and ammonium ions to nitrate ions (NO 3- ) Denitrification Nitrate ions back to nitrogen gas

59 Nitrogen Cycles through the Biosphere: Bacteria in Action (2) Human intervention in the nitrogen cycle 1. Additional NO and N 2 O in atmosphere from burning fossil fuels; also causes acid rain 2. N 2 O to atmosphere from bacteria acting on fertilizers and manure 3. Destruction of forest, grasslands, and wetlands 4. Add excess nitrates to bodies of water 5. Remove nitrogen from topsoil

60 Nitrogen Cycle in a Terrestrial Ecosystem with Major Harmful Human Impacts Fig. 3-20, p. 71

61 Process Reservoir Pathway affected by humans Natural pathway Nitrogen oxides from burning fuel and using inorganic fertilizers Nitrogen in atmosphere Electrical storms Volcanic activity Denitrification by bacteria Nitrification by bacteria Nitrogen in animals (consumers) Nitrogen in plants (producers) Nitrates from fertilizer runoff and decomposition Decomposition Uptake by plants Nitrate in soil Nitrogen loss to deep ocean sediments Nitrogen in ocean sediments Ammonia in soil Bacteria Fig. 3-20, p. 71

62 Human Input of Nitrogen into the Environment Supplement 9, Fig 16

63 Phosphorus Cycles through the Biosphere Cycles through water, the earth s crust, and living organisms Limiting factor for plant growth Impact of human activities 1. Clearing forests 2. Removing large amounts of phosphate from the earth to make fertilizers 3. Erosion leaches phosphates into streams

64 Impacts Fig. 3-21, p. 73

65 Process Reservoir Pathway affected by humans Natural pathway Phosphates in mining waste Phosphates in sewage Runoff Phosphates in fertilizer Runoff Plate tectonics Animals (consumers) Plants (producers) Runoff Phosphate dissolved in water Erosion Phosphate in rock (fossil bones, guano) Phosphate in shallow ocean sediments Sea birds Ocean food webs Phosphate in deep ocean sediments Bacteria Fig. 3-21, p. 73

66 Sulfur Cycles through the Biosphere Sulfur found in organisms, ocean sediments, soil, rocks, and fossil fuels SO 2 in the atmosphere H 2 SO 4 and SO 4 - Human activities affect the sulfur cycle Burn sulfur-containing coal and oil Refine sulfur-containing petroleum Convert sulfur-containing metallic mineral ores

67 Natural Capital: Sulfur Cycle with Major Harmful Impacts of Human Activities Fig. 3-22, p. 74

68 Sulfur dioxide in atmosphere Dimethyl sulfide a bacteria byproduct Smelting Burning coal Refining fossil fuels Sulfur in animals (consumers) Sulfuric acid and Sulfate deposited as acid rain Sulfur in ocean sediments Mining and extraction Decay Sulfur in plants (producers) Decay Uptake by plants Process Reservoir Pathway affected by humans Natural pathway Sulfur in soil, rock and fossil fuels Fig. 3-22, p. 74

69 3-5 How Do Scientists Study Ecosystems? Concept 3-5 Scientists use both field research and laboratory research, as well as mathematical and other models to learn about ecosystems.

70 Some Scientists Study Nature Directly Field research: muddy-boots biology New technologies available Remote sensors Geographic information system (GIS) software Digital satellite imaging 2005, Global Earth Observation System of Systems (GEOSS)

71 Science Focus: Satellites, Google Earth, and the Environment Satellites as remote sensing devices Google Earth software allows you to view anywhere on earth, including 3-D Satellites can collect data from anywhere in the world

72 Google Earth Images: Jeddah, Saudi Arabia Fig. 3-A (3), p. 76

73 Jeddah Fig. 3-A (3), p. 76

74 Some Scientists Study Ecosystems in the Laboratory Simplified systems carried out in Culture tubes and bottles Aquaria tanks Greenhouses Indoor and outdoor chambers Supported by field research

75 Some Scientists Use Models to Simulate Ecosystems Mathematical and other models Computer simulations and projections Field and laboratory research needed for baseline data

76 We Need to Learn More about the Health of the World s Ecosystems Determine condition of the world s ecosystems More baseline data needed

77 Three Big Ideas 1. Life is sustained by the flow of energy from the sun through the biosphere, the cycling of nutrients within the biosphere, and gravity. 2. Some organisms produce the nutrients they need, others survive by consuming other organisms, and some recycle nutrients back to producer organisms. 3. Human activities are altering the flow of energy through food chains and webs and the cycling of nutrients within ecosystems and the biosphere.

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Niche and Habitat a species plays in a community. What it does all

Niche and Habitat a species plays in a community. What it does all Ecosystem Dynamics What is ecology? Study of the interactions between parts of the environment Connections in nature Abiotic: soil comp. Biotic: and Abiotic and Biotic factors factors in the environment

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece Chapter 54 Ecosystems PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Overview: Ecosystems, Energy, and Matter An ecosystem consists of all the organisms living in a community,

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht Human Biology Sylvia S. Mader Michael Windelspecht Chapter 23 Global Ecology and Human Interferences Lecture Outline See separate FlexArt PowerPoint slides for all figures and tables pre-inserted into

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy 1 Ecocsystems: Energy Flow and Materials Cycling 2 EVPP 111 Lecture Dr. Largen Spring 2004 Energy Flow and Matter Cycling Energy flow s through ecosystems ecosystems global energy budget physical laws

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter Ecosystems Table of Contents Section 1 Organisms and Their Releationships Section 2 Flow of Energy in an Ecosystem Section 3 Cycling of Matter Section 1 Organisms and Their Releationships Interactions

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem. Ecosystems Studying Organisms In Their Environment organism population community ecosystem biosphere 1 Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment.

BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through living organisms and the physical environment. BIOCHEMIST: Scientists who study how LIFE WORKS at a CHEMICAL level. The work of biochemists has

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

What does each part of the equation mean? q=cm T

What does each part of the equation mean? q=cm T Assignment #10 Energy Pyramids LO: I can define trophic levels and explain the energy flow. I can apply those ideas to food webs EQ: Where does all the energy from the sun go? (4-5 sentences) LEVEL ZERO

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Chapter 29. How Do Ecosystems Work? Lectures by Gregory Ahearn. Ammended by John Crocker. University of North Florida

Chapter 29. How Do Ecosystems Work? Lectures by Gregory Ahearn. Ammended by John Crocker. University of North Florida Chapter 29 How Do Ecosystems Work? Lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. 29.1 How Do Ecosystems Obtain Energy And Nutrients?

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION

BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES INTRODUCTION THE CYCLING PROCESS TWO CYCLES: CARBON CYCLE NITROGEN CYCLE HUMAN IMPACTS GLOBAL WARMING AQUATIC EUTROPHICATION BIOGEOCHEMICAL CYCLES: The RECYCLING of MATERIALS through

More information

Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards

Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards Environmental Principles & Concepts (EP&C)/COSA Correlation of 4 th - 7 th Grade CA Science Standards For ROSS Certifications at least nine of the 14 science standards are addressed during a 5-day program,

More information

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE

LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE HYDROLOGIC CYCLE 3 4 5 2 5 1B 6B 1A 6A 7 6C LABEL AND EXPLAIN THE PROCESSES AT EACH NUMBER IN THE DIAGRAM ABOVE 1A. Evaporation of water from oceans 1B. Evaporation of water from land sources (water and

More information

Chapter 3 The Biosphere. Section Objectives:

Chapter 3 The Biosphere. Section Objectives: Chapter 3 The Biosphere Section Objectives: Distinguish between the biotic and abiotic factors in the environment. Compare the different levels of biological organization and living relationships important

More information

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont.

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems ECOLOGICAL PYRAMIDS The trophic levels of an ecosystem can be arranged into in a pyramid and these are called the ecological pyramids

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

Ecology: Part 2. Biology Mrs. Bradbury

Ecology: Part 2. Biology Mrs. Bradbury Ecology: Part 2 Biology Mrs. Bradbury Model 1: Food Chains Food Chain simple model showing the movement of matter and energy through ecosystems. Autotrophs Heterotrophs Decomposers Arrows show energy transfer

More information

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16

NOTEBOOK. Table of Contents: 9. Properties of Water 9/20/ Water & Carbon Cycles 9/20/16 NOTEBOOK Table of Contents: 9. Properties of Water 9/20/16 10. Water & Carbon Cycles 9/20/16 NOTEBOOK Assignment Page(s): Agenda: Tuesday, September 20, 2016 Properties of Water Water & Carbon Cycles 1.

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Ecology: Chapters Worksheet

Ecology: Chapters Worksheet Ecology: Chapters 34 36 Worksheet Name: Chapter 34: The Biosphere Concept 34.1 The biosphere is the global ecosystem. (pp. 744 749) The scientific study of the interactions among organisms and between

More information

Ecosystems: Nutrient Cycles

Ecosystems: Nutrient Cycles Ecosystems: Nutrient Cycles Greeks, Native Peoples, Buddhism, Hinduism use(d) Earth, Air, Fire, and Water as the main elements of their faith/culture Cycling in Ecosystems the Hydrologic Cycle What are

More information

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System.

Earth as a System. Chapter 2. Table of Contents. Section 1 Earth: A Unique Planet. Section 2 Energy in the Earth System. Earth as a System Table of Contents Section 1 Earth: A Unique Planet Section 2 Energy in the Earth System Section 3 Ecology Section 1 Earth: A Unique Planet Objectives Describe the size and shape of Earth.

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

Chapter 36: Population Growth

Chapter 36: Population Growth Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

Energy and Matter in COMMUNITIES AND ECOSYSTEMS

Energy and Matter in COMMUNITIES AND ECOSYSTEMS Energy and Matter in COMMUNITIES AND ECOSYSTEMS abiotic factors physical aspects i.e. soil, water, weather (non-living) biotic factors the organisms (living) The community AND all physical aspects of

More information

The Law of Conservation of Matter. Matter cannot be created nor destroyed Matter only changes form There is no away

The Law of Conservation of Matter. Matter cannot be created nor destroyed Matter only changes form There is no away Review Items Ecosystem Structure The Law of Conservation of Matter Matter cannot be created nor destroyed Matter only changes form There is no away Laws Governing Energy Changes First Law of Thermodynamics

More information

Multiple Choice. Name Class Date

Multiple Choice. Name Class Date Chapter 3 The Biosphere Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following descriptions about the

More information

Biology Ecology Unit Chapter 2 Study Guide

Biology Ecology Unit Chapter 2 Study Guide Name: Date: Block: Biology Ecology Unit Chapter 2 Study Guide 1. Directions: Use each of the terms below just once to complete the passage. Ecology Biotic factors Nonliving Environments Atmosphere Humans

More information

Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31, 35, 36 and on notebook paper, not directly on these handouts

Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31, 35, 36 and on notebook paper, not directly on these handouts Study Outline: Chapters 5, 6, & 9 Environmental Science AP Instructor: Ben Smith Biogeochemical Cycles: Global Recycling Program Ch. 5 Chapter 5 Questions Due for Homework Points: # 4, 9, 18, 23, 30, 31,

More information

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions.

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Ecology What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Biotic Factors Living things in the environment. Animals Plants Fungi Protists Bacteria Abiotic

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Dynamics of Ecosystems. Chapter 57

Dynamics of Ecosystems. Chapter 57 Dynamics of Ecosystems Chapter 57 1 The Water Cycle Nutrient Cycles Trophic Levels Primary Productivity Outline The Energy in Food Chains Ecological Pyramids Interactions Among Trophic Levels Species Richness

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

Chapter 3 Ecosystem Ecology

Chapter 3 Ecosystem Ecology Chapter 3 Ecosystem Ecology Ecosystem Ecology Examines Interactions Between the Living and Non-Living World Ecosystem- A particular location on Earth distinguished by its particular mix of interacting

More information

Chapter 3 Ecosystem Ecology. Reading Questions

Chapter 3 Ecosystem Ecology. Reading Questions APES Name 22 Module 7 Chapter 3 Ecosystem Ecology Monday Tuesday Wednesday Thursday Friday 17 Module 6 The Movement of Energy 18 Ecosystem Field Walk 19 Module 7 The 23 Module 8 Responses to Disturbances

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Ecology Study of interactions that take place between organisms and their environments Living things are affected by nonliving and living parts of the environment Abiotic factors:

More information

Principles of Ecology

Principles of Ecology Principles of Ecology 1 Keystone Anchors Describe ecological levels of organization in the biosphere. o Describe the levels of ecological organization (i.e., organism, population, community, ecosystem,

More information

What is an ecosystem?

What is an ecosystem? 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community and its physical environment treated together

More information

Biosphere & Biogeochemical Cycles

Biosphere & Biogeochemical Cycles Biosphere & Biogeochemical Cycles Biosphere Sphere of living organisms All the regions of the earth and its atmosphere in which living organisms are found or can live. Interacts with all the other spheres

More information

Water cycles through ecosystems.

Water cycles through ecosystems. Water cycles through ecosystems. Water is stored on Earth s surface in lakes, rivers, and oceans. Water is found underground, filling the spaces between soil particles and cracks in rocks. Large amounts

More information

ENVIRONMENTAL BIOLOGY. Part 4

ENVIRONMENTAL BIOLOGY. Part 4 ENVIRONMENTAL BIOLOGY Part 4 Overview: A) THE BIOSPHERE B) POPULATION ECOLOGY C) COMMUNITY ECOLOGY D) ECOSYSTEM ECOLOGY E) THE CARBON & NITROGEN CYCLES F) ECOLOGICAL TECHNIQUES G) SIMPSON S RECIPROCAL

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase. Skills Worksheet Directed Reading Section: What Is an Ecosystem? In the space provided, write the letter of the description that best matches the term or phrase. 1. ecology 2. habitat 3. community 4. ecosystem

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems CARBON CYCLE A. Carbon Facts: Carbon is found in all living matter. Places that carbon is found are called stores or sinks Short-term Stores Long-term Stores - living

More information

1. Where are nutrients accumulated or stored for short or long periods?

1. Where are nutrients accumulated or stored for short or long periods? Use with textbook pages 68 87. Nutrient cycles Answer the questions below. Comprehension 1. Where are nutrients accumulated or stored for short or long periods? 2. Name a biotic process and an abiotic

More information

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology is a science of relationships WHAT DO YOU MEAN BY ENVIRONMENT?

More information

Chapter 13 Principles of Ecology Lecture Guide, Day 1

Chapter 13 Principles of Ecology Lecture Guide, Day 1 Chapter 13 Principles of Ecology Lecture Guide, Day 1 What is Ecology? It is the scientific study of interactions among organisms and between organisms or surroundings. The Nonliving Environment - Abiotic

More information

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter

Chapter 2 9/15/2015. Chapter 2. Penny Boat. 2.1 The Role of Water in Cycles of Matter Chapter 2 Chapter 2 Cycles of Matter 2.1 The Role of Water in Cycles of Matter 2.2 Biogeochemical Cycles 2.3 the Balance of the Matter and Energy Exchange 2.1 The Role of Water in Cycles of Matter In this

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

Ecology is the study of interactions among organisms and between organisms and their physical environment

Ecology is the study of interactions among organisms and between organisms and their physical environment Chapter 3 and 4 Study Guide Ecology is the study of interactions among organisms and between organisms and their physical environment This includes both biotic and abiotic factors- biotic factors are living

More information

Energy Flow and Nutrient Cycling in Ecosystems

Energy Flow and Nutrient Cycling in Ecosystems BIOLOGY Life on Earth WITH PHYSIOLOGY Tenth Edition Audesirk Audesirk Byers 28 Energy Flow and Nutrient Cycling in Ecosystems Lecture Presentations by Carol R. Anderson Westwood College, River Oaks Campus

More information

The Cycling of Matter

The Cycling of Matter Section 2 Objectives Describe the short-term and long-term process of the carbon cycle. Identify one way that humans are affecting the carbon cycle. List the three stages of the nitrogen cycle. Describe

More information

The Biosphere and Biogeochemical Cycles

The Biosphere and Biogeochemical Cycles The Biosphere and Biogeochemical Cycles The Earth consists of 4 overlapping layers: Lithosphere Hydrosphere (and cryosphere) Atmosphere Biosphere The Biosphere The biosphere is the layer of life around

More information

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez Ecosystem Ecology: Part 1 September 22, 2014 Mr. Alvarez Ecosystems Ecosystem- a particular location on Earth distinguished by its particular mix of interacting biotic and abiotic components. Forest Ecosystem

More information

Nutrients elements required for the development, maintenance, and reproduction of organisms.

Nutrients elements required for the development, maintenance, and reproduction of organisms. Nutrient Cycles Energy flows through ecosystems (one way trip). Unlike energy, however, nutrients (P, N, C, K, S ) cycle within ecosystems. Nutrients are important in controlling NPP in ecosystems. Bottom-up

More information

Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move!

Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move! The Carbon Cycle Carbon is an element. It is part of oceans, air, rocks, soil and all living things. Carbon doesn t stay in one place. It is always on the move! Carbon moves from the atmosphere to plants.

More information

WARM UP. What can make up a population?

WARM UP. What can make up a population? WARM UP What can make up a population? 1 ECOSYSTEMS: Cycles www.swpc.noaa.gov/ 2 Biochemical Cycling Cycling of nutrients called biogeochemical cycling Move nutrients from nonliving world to living organisms

More information

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer trophic level a category of living things defined by how it gains its energy; the first trophic level contains autotrophs, and each higher level contains heterotrophs autotroph an organism that uses the

More information

The nitrogen cycle is an example of a. carbohydrate cycle c. hydrologic cycle b. atmospheric cycle d. sedimentary cycle

The nitrogen cycle is an example of a. carbohydrate cycle c. hydrologic cycle b. atmospheric cycle d. sedimentary cycle Environmental Science Semester Exam Study Guide Chapter 4: Ecology 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Ecology is the study of how a. organisms interact with each other and their nonliving environment b.

More information

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE Water Vapor: A GHG Lesson 3 page 1 of 2 Water Vapor: A GHG Water vapor in our atmosphere is an important greenhouse gas (GHG). On a cloudy day we can see evidence of the amount of water vapor in our atmosphere.

More information

CHAPTER 14 ECOSYSTEM POINTS TO REMEMBER Startification : Vertical distribution of different species occupying different levels in an ecosystem. Primary Production : Amount of biomas or organic matter produced

More information

Section 1: Energy Flow in Ecosystems

Section 1: Energy Flow in Ecosystems Section 1: Energy Flow in Ecosystems Preview Classroom Catalyst Objectives Life Depends on the Sun From Producers to Consumers An Exception: Deep-Ocean Ecosystems What Eats What Cellular Respiration: Burning

More information

Unit III Nutrients & Biomes

Unit III Nutrients & Biomes Unit III Nutrients & Biomes Nutrient Cycles Carbon Cycle Based on CO 2 cycling from animals to plants during respiration and photosynthesis. Heavy deposits are stored in wetland soils, oceans, sedimentary

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer More Ecology WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer Ecology is a science of relationships WHAT DO YOU MEAN

More information

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.

NITROGEN CYCLE. Big Question. Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi. ITROGE CYCLE Big Question Why Are Biogeochemical Cycles Essential to Long-Term Life on Earth? Dr. B. K. Bindhani Assistant Professor KIIT School of Biotechnology KIIT University, Bhubaneswar, Orissa, Indi.a

More information

Unit 6: Ecosystems Module 15: Ecological Principles

Unit 6: Ecosystems Module 15: Ecological Principles Unit 6: Ecosystems Module 15: Ecological Principles NC Essential Standard: 2.1 Analyze the interdependence of living organisms within their environments Did you know The water you poop in today is the

More information

Ecology. AQA Biology topic 7

Ecology. AQA Biology topic 7 Ecology AQA Biology topic 7 7.1 Adaptations, Interdependence and Competition Ecosystems Definition: An ecosystem is the total interaction of a community of living organisms (biotic) with the non-living

More information

Lecture 2. Energy and Ecosystems. Lecture 2

Lecture 2. Energy and Ecosystems. Lecture 2 Lecture 2 Energy and Ecosystems Lecture 2 1. Ecology The Ecological Hierarchy 2. Energy Laws of Thermodynamics Photosynthesis and Cellular Respiration 3. Flow of Energy Through Ecosystems Producers, Consumers

More information

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere Slide 1 / 40 1 ll of Earth's water, land, and atmosphere within which life exists is known as a Population ommunity iome iosphere Slide 2 / 40 2 ll the plants, animals, fungi living in a pond make up a

More information

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings.

Closed Systems A closed system is a system in which energy, but not matter is exchanged with the surroundings. 2.2 Notes Objectives Compare an open system with a closed system. List the characteristics of Earth s four major spheres. Identify the two main sources of energy in the Earth system. Identify four processes

More information

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS:

The Carbon Cycle. Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-19 DATE: NAME: CLASS: CHAPTER 2 BLM 1-19 The Carbon Cycle Goal Use this page to review the carbon cycle. CHAPTER 2 BLM 1-20 The Carbon Cycle Concept Map Goal Use this page to make a concept map about the carbon cycle. What

More information

Unit 11.1: The Science of Ecology

Unit 11.1: The Science of Ecology Unit 11.1: The Science of Ecology These brilliant red feathers are actually animals called tube worms. They live in an extreme environment on the deep ocean floor, thousands of meters below the water s

More information

Cycles in the Biosphere MiniLab: Test for Nitrates Assessment. Essential Questions. Review Vocabulary. Reading Preview

Cycles in the Biosphere MiniLab: Test for Nitrates Assessment. Essential Questions. Review Vocabulary. Reading Preview Cycles in the Biosphere MiniLab: Test for Nitrates Assessment 11 Reading Preview Essential Questions How do nutrients move through biotic and abiotic parts of an ecosystem? Why are nutrients important

More information

Keystone Biology Remediation B4: Ecology

Keystone Biology Remediation B4: Ecology Keystone Biology Remediation B4: Ecology Assessment Anchors: to describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1) to describe

More information