HIGH PRESSURE BOILERS

Size: px
Start display at page:

Download "HIGH PRESSURE BOILERS"

Transcription

1 Power Plant Engg. High Pressure Boilers & FBC Assi. Professor Mechanical Engineering Department

2 HIGH PRESSURE BOILERS High Pressure Boiler, P > 60 bar Critical Pressure Boiler, P = bar Super Critical Pressure Boiler, P > bar Sub Critical Boiler P < bar generally in between 130 to 180 bar Low Capacity Boiler Ms = 4000 to 6000 kg/hr Heavy Duty boiler Ms > kg/hr

3 DEPENDING ON TYPE OF FIRING ADOPTED IN BOILERS THEY CAN BE CLASSIFIED AS Stoker fired Pulverized coal fired Down shot fired Fluidized bed boilers Cyclone fired Chemical recovery boilers

4 VARIOUS TYPES OF ARRANGEMENT ARE USED BY DESIGNERS IN DESIGNING THE BOILER FOR MEETING THE END REQUIREMENT. HENCE BOILERS ARE CLASSIFIED BASED ON THE ARRANGEMENT AS Top supported boilers Bottom supported Package boilers Field erected boilers Drum type boilers Single drum Bi drum Three drums, but these are presently out of use Tower type or single pass Close coupled Two pass boilers

5 ACCORDING THE "ASME BOILER AND PRESSURE VESSEL CODE" BOILERS MAY BE CLASSIFIED AS Section I Power Boilers - process boilers, power boilers and high pressure boilers boilers in which steam or other vapor is generated at a pressures exceeding 15 psig high temperature water boilers intended for operation at pressures exceeding 160 psig and or temperatures exceeding 250 degrees F Section IV Heating Boilers - commercial boilers, industrial boilers, heating boilers, low pressure boilers boilers in which steam or other vapor is generated at a pressures not exceeding 15 psig high temperature water boilers intended for operation at pressures not exceeding 160 psig and or temperatures exceeding 250 degrees F

6 CHARACTERISTICS OF HIGH PRESSURE BOILER Necessity of forced circulation for water Pressurized combustion Increased heat transfer area water tubes Improved medium heating

7 ADVANTAGES OF HIGH PRESSURE BOILERS The different advantages of high pressure boilers are listed below : 1. The tendency of scale formation is eliminated due to high velocity of water through the tubes. 2. Light weight tubes with better heating surface arrangement can be used. The space required is also less. The cost of foundation, the time of erection and cost are reduced due to less weight of the tubes used. 3. Due to use of forced circulation, there is more freedom in the arrangement of furnace, tubes and boiler components. 4. All the parts are uniformly heated, therefore the danger of overheating is reduced and thermal stress problem is simplified. 5. The differential expansion is reduced due to uniform temperature and this reduces the possibility of gas and air leakages.

8 6. The components can be arranged horizontally as high head required for natural circulation is eliminated using forced circulation. There is a greater flexibility in the components arrangement. 7. The steam can be raised quickly to meet the variable load requirements without the use of complicated control devices. 8. The efficiency of plant is increased up to 40 to 42% by using high pressure and high temperature steam. 9. A very rapid start from cold is possible if an external supply of power is available. Hence the boiler can be used for carrying peak loads or standby purposes with hydraulic station.

9 La Mont Boiler

10 A forced circulation boiler was first introduced in 1925 by La Mont. Working: The feed water from hot well is supplied to a storage and separating drum (boiler) through the economises. The most of the sensible heat is supplied to the feed water passing through the economiser. A centrifugal pump circulates the water equal to 8 to 10 times the weight of steam evaporated. This water is circulated through the evaporator tubes and the part of the water evaporated is separated in the separator drum. The steam separated in the boiler is further passed through the superheater as shown in Fig. and finally supplied to the prime mover. Capacity: These boilers have been built to generate 45 to 50 tons of superheated steam at a pressure of 120 bar. and at a temperature of 500 C.

11 Limitation The main difficulty experienced in the La Mont boiler is the formation and attachment of bubbles' on the inner surfaces of the heating tubes. The attached bubbles to the tube surfaces reduced the heat flow and steam generation as it offers high thermal resistance than water film. Benson Boiler Benson in 1922 argued that if the boiler pressure was raised to critical pressure (225 bar), the steam and water have the same density and therefore the danger of bubble formation can be easily eliminated. The technical development at that time did not allow to build turbines for such high pressures. The first high pressure Benson boiler was put into operation in 1927

12 During starting, the water is passed through the economiser, evaporator, superheater and back to the feed line via starting valve A. During starting the valve B is closed. As the steam generation starts and it becomes superheated, the valve A is closed and the valve B is opened. During starting, first During starting, first circulating pumps are started and then the burners are started to avoid the overheating of evaporator and superheater tubes.

13 Capacity The maximum working pressure obtained so far from commercial Benson boiler is 500 bar. The Benson boilers of 150 tones/ hr. generating capacity are in use. Boiler having as high as 650 C temperature of steam had been put in service. Advantages. 1. As there are no drums, the total weight of Benson boiler is 20% less than other boilers. This also reduces the cost of boiler. 2. The transfer of Benson's parts is easy as there is no drums and majority of the parts are carried to the site without pre-assembly. 3. The erection of Benson boiler is easier and quicker as all the parts are welded at sites and workshop job of tube expansion is altogether avoided. 4. The Benson boiler can be erected in a comparatively smaller floor area. The space problem does not control the size of Benson boiler used. 5. The furnace walls of the boiler can be more efficiently protected by using smaller diameter and closed pitched tubes. 6. The super heater in the Benson boiler is an integral part of forced circulation system, therefore no special starting arrangement for superheated is required. 7. The Benson boiler can be started very quickly because of welded joints.

14 Primary separator Primary Evaporator Primary Cricket Schmidt Hartmann Boiler

15 The arrangement of the boiler components is shown in Fig. The operation of the boiler is similar to an electric transformer. Two pressures are used to effect an intercharge of energy.

16 In the primary circuit, the steam at 100 bar is produced from distilled water. The generated steam is passed through a submerged heating coil which is located in an evaporater drum as shown in figure. The high pressure steam in this coil possesses sufficient thermal potential and steam at 60 bar with a heat transfer rate of 10,000 kj/m 2 -hr C is generated in the evaporator drum. Natural circulation is used in the primary circuit and this is sufficient to effect the desired rate of heat transfer and to overcome the thermo-siphon head of about 2 m to 10 m. In normal circumstances, the replenishment of distilled water in the primary circuit is not required as every care is taken in design and construction to prevent the leakage. But as a safeguard against leakage, a pressure gauge and safety valve are fitted in the circuit.

17 Advantages. 1. There is a rare chance of overheating or burning the highly heated components of the primary circuit as there is no chance of interruption to the circulation either by rust or any other material. The highly heated parts run very safely throughout the life of the boiler. 2. The salt deposited in the evaporator drum due to the circulation of impure water can be easily brushed off just by removing the submerged coil from the drum or by blowing off the water. 3. The wide fluctuations of load are easily taken by this boiler without undue priming or abnormal increase in the primary pressure due to high thermal and water capacity of the boiler. 4. The absence of water risers in the drum, and moderate temperature difference across the heating coil allows evaporation to proceed without priming.

18

19 The major difficulty experienced in La Mont boiler is the deposition of salt and sediment on the inner surfaces of the water tubes. The deposition reduced the heat transfer and ultimately the generating capacity. This further increased the danger of overheating the tubes due to salt deposition as it has high thermal resistance. This difficulty was solved in Loeffler Boiler by preventing the flow of water into the boiler tubes. Most of the steam is generated outside from the feed water by using part of the superheated steam coming out from the boiler. Thermal PP, Ukai

20 LOEFFLER BOILER

21 The pressure feed pump draws the water through the economiser and delivers it into the evaporator dram. About 65 % of the steam coming out of superheater is passed through the evaporator dram in order to evaporate the feed water. The steam circulating pump draws the saturated steam from the evaporator drum and is passed through the radiant superheater and then convective superheater. About 35% of the steam coming out from the superheater is supplied to the HP steam turbine. The steam coming out from HP. turbine is passed through reheater before supplying to LP turbine. This boiler can carry higher salt concentration than any other type and is more compact than indirectly heated boilers having natural circulation. These qualities fit it for land or sea transport power generation. Capacity: Loeffler boilers with generating capacity of 100 tonnes/hr operating at 140 bar are already commissioned.

22 VELOX BOILER

23 The velocity of flue gases exceeds the velocity of sound, therefore the heat transfer from flue gases at a much greater rate than the achieved at low velocity. Air is compressed by air compressor which is run by gas turbine. The fuel and air are injected downwards into a vertical combustion chamber The combustion chamber consists of annulus water tubes. The product of combustion (flue gages) are deflected upwards with supersonic velocity. As a result, the heat is transferred from flue gases to water at a very high rate. Capacity: Steam generating capacity: 100 tones/hours Pressure: 84 bar Limitation: The size of the Velox boiler is limited (100 tones/hour) because more power is required for running the air compressor. Power produced by gas turbine is not sufficient to run the air compressor and hence balance power from external source must be supplied to the compressor.

24 SUPERCRITICAL BOILER As pressure of water or steam is raised, the enthalpy of evaporation is reduced. At critical pressure ( bar) the enthalpy of evaporation becomes zero. When water is heated at constant supercritical pressure suddenly it is converted into steam. the high pressure (above critical point) water enters the tube inlets and leaves at the outlet as the superheated steam. There is no drum, but there should be a transition section where the water is likely to flash in order to accommodate the large increase in volume. Guru Nanak Dev Thermal Plant in n Bathinda City

25 Supercritical Boiler

26 Advantages: Heat transfer rates are considerably large compared to subcritical boilers. There is no drum, less heat capacity of the generator and hence more stable and gives better response. There is no two phase mixture and hence the problem of erosion and corrosion are minimized. There is great ease of operation and their comparative simplicity and flexibility made them adaptable to load fluctuations. Higher thermal efficiency (about 40 to 42%) of power station can be achieved with use of supercritical boiler.

27 Limitations The high pressure and temperature of supercritical boiler have limits for use due to availability of material and difficulties experienced in the turbine and condenser operation because of large volumes. The additional problem is created due to the separation of solid impurities as phase changes. These solids remain in the tubes and block the passage for the flow of feed water. Therefore it is necessary to treat water thoroughly before supply to the boiler.

28 When the combustion is carried out under high pressure by supplying the compressed air then rate of heat transfer is increased and heating surfaces required is reduced. This theory is used in supercharged boiler. The high pressure compressed air is supplied to combustion chamber. Part of heat of hot gases in the furnace is absorbed by boiler tubes in which water evaporated and then it is superheated in superheater. The high pressure and temperature exhaust gases from combustion chamber are used to run gas turbine. The work produces by gas turbine is used to run air compressor. The exhaust gases coming from gas turbine passes over the economizer tubes. Then escape to the atmosphere through chimney. In economizer usually pressure of gas side is 5 bar and pressure to the steam side of 200 bar are preferred.

29 Supercharged boiler

30 Advantages Supercharged boiler requires 30 to 25% of heat transfer surface of conventional boiler due to very high overall heat transfer co-efficient. Due to small heat capacity of the boiler, boiler plant gives better response to control. Rapid start of the boiler is possible due to less heating surfaces and compactness. The part of the gas turbine output can be used to drive other auxiliaries. Comparatively less number of operators are required. Limitation: It requires tight passage for high pressure gas. Jaitapur Nuclear PP

31 Fluidized Bed Combustion It is a system in which fluidized bed which is composed of fuel and inert material is mixed with air/gas in an atmospheric or pressurized vessel and combustion take places in suspended condition of particles in gas stream. When air or other gas flows upward through bed, the bed solid particles are disturbed. If velocity increased further a stage is reached and the composed (packed) bed becomes turbulent and rapid mixing of particles occurs. The behavior of this mixture of solid particles and air or gas is like a fluid. Burning of a fuel in such a stage is known as fluidized bed combustion.

32 The mixture of fuel (crushed coal) and inert material (crushed dolomite* or limestone) are fed on a distribution plate and air is supplied from the bottom of distribution plate. The air is supplied at high velocity so that solid particles of feed material remains in suspension condition during burning. The evaporator tubes are directly immersed in the fluidized bed and direct contact between the burning coal particles and tubes produce very high heat transfer rates. * A kind of sedimentary rock resembling marble or limestone but rich in magnesium carbonate

33 The world power industry is trying to shift from oil / gas to old faithful fuel coal and this is possible by Fluidized bed combustion. There are two reasons for the rapid increase of fluidized bed combustion (FBC) in combustors. First, the liberty of choice in respect of fuels. Not only coal, there is possibility of using fuels which are difficult to burn using other technologies. This is an important advantage of fluidized bed combustion. The second reason, a low emission of nitric oxides and the possibility of removing sulfur in a simple manner by using limestone as bed material.

34 FBC systems fit into essentially two major groups, atmospheric systems (FBC) and pressurized systems (PFBC), and two minor subgroups, bubbling (BFB) and circulating fluidized bed (CFB). Conventional FBC Atmospheric fluidized beds use limestone or dolomite to capture sulfur released by the combustion of coal. Jets of air suspend the mixture of sorbent and burning coal during combustion, converting the mixture into a suspension of red-hot particles that flow like a fluid. These boilers operate at atmospheric pressure. PFBC The first-generation PFBC system also uses a sorbent and jets of air to suspend the mixture of sorbent and burning coal during combustion. However, these systems operate at elevated pressures and produce a high-pressure gas stream at temperatures that can drive a gas turbine. Steam generated from the heat in the fluidized bed is sent to a steam turbine, creating a highly efficient combined cycle system.

35 Conventional FBC The pressure inside the bed is atmospheric. The bed consisting about 97% limestone or inert material and 3% burning fuel, is suspended by hot primary air entering the bottom of the combustion chamber. There are two types of system based on the fuel feeding arrangement as underfeed and overfeed.

36 In case of underfeed fuel and limestone are introduced from bottom of the fluidized bed. The overfeed system is simple in operation and economical in running but results in smaller output per m 2 area and gives poor desulphurization performance. Under feed system provides positive load and a compact design but costly in operation. Limitation The main disadvantage using the conventional FBC is that incombustible particles (ash and metals) of fuel are came downwards and block the distributor when light materials like wood dust, agricultural waste etc. are used as a fuel. There for modifications are required for high combustion efficiency.

37 Bubbling fluidized bed (BFB) Bubbling caps For plants with a nominal boiler capacity of over 20 MW is suitable. In BFB furnaces, a bed material is located in the bottom part.

38 The primary air is supplied over a nozzle distributor plate and fluidises the bed. The bed material is usually silica sand of about 1.0 mm in diameter; the fluidisation velocity of the air varies between 1.0 and 2.5 m/s. The secondary air is introduced through several inlets in the form of groups of horizontally arranged nozzles at the beginning of the upper part of the furnace (called freeboard) to ensure a staged-air supply to reduce NOx emissions. The fuel amounts only to 1 to 2% of the bed material and the bed has to be heated (internally or externally) before the fuel is introduced. The advantage of BFB furnaces is their flexibility concerning particle size and moisture content of the biomass fuels. Furthermore, it is also possible to use mixtures of different kinds of biomass or to co-fire them with other fuels. One big disadvantage of BFB furnaces, the difficulties they have at partial load operation, is solved in modern furnaces by splitting or staging the bed.

39

40 Circulation FBC System.

41 To increases the efficiency of combustion - provide non uniform fluidizing velocities over the bed, - provide slope to one of the FBC walls - provide sloping distributor plate to give an air slide particles. Due to above there is significant improvement and allowed to use light materials as fuels most successfully. Light materials were burned within the bed and heavy incombustibles (ash and metals) gathered at the bottom of the sloping distributor. The solid fuel enters the furnace from the side of walls. The low velocity (LV), medium velocity (MV) and high velocity (HV) air supplied at different points along the sloping surface of the distributor plate. The secondary air is supplied over the bed. The ash port is provided at lower end of the distributor plate.

42

43

44 In this system pressurized air (10 bar approximately) is used for fluidization and combustion. Boiler exit gas contain enough energy about temperature 850 to 900 C to drive a gas turbine. The power output of gas turbine is utilized to run the air compressor and the electric generator. Here, the product of combustion have to be sufficient clean for gas turbine to prevent excessive erosion, corrosion or fouling of the turbine. Hence, the flue gases from the combustion chamber are passed through a cyclone separator. Advantages: In PFBC system, high rate of coal loading and burning is achieved. Comparatively less volume of furnace is required, hence plant size is reduced. It has improved desulphurization and low NOx emission. Disadvantages : (1) The controlling is difficult to control. With compare to conventional plant, life is low.

Chapter 2.6: FBC Boilers

Chapter 2.6: FBC Boilers Part-I: Objective type questions and answers Chapter 2.6: FBC Boilers 1. In FBC boilers fluidization depends largely on --------- a) Particle size b) Air velocity c) Both (a) and (b) d) Neither (a) nor

More information

BOILERS. Outline. Introduction. Types of Boilers. Assessment of a Boiler. Energy Efficiency Opportunities 2/16/2014

BOILERS. Outline. Introduction. Types of Boilers. Assessment of a Boiler. Energy Efficiency Opportunities 2/16/2014 BOILERS Maravillo, Shiela May Molina, Marc Andrei Outline Introduction Types of Boilers Assessment of a Boiler Energy Efficiency Opportunities 1 I n t r o d u c t i o n What is a Boiler? pressure vessel

More information

Steam Power Station (Thermal Station)

Steam Power Station (Thermal Station) Steam Power Station (Thermal Station) A generating station which converts heat energy into electrical energy through turning water into heated steam is known as a steam power station. A steam power station

More information

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN (EXECUTIVE SESSION) November, 2007 JAPAN EXTERNAL TRADE ORGANIZATION JAPAN CONSULTING INSTITUTE SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN 1. Power Generation

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea

Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea Samcheok Green Power 4 x 550 MW e Supercritical Circulating Fluidized-Bed Steam Generators in South Korea Timo Jäntti, Kalle Nuortimo, Marko Ruuskanen, Juha Kalenius Foster Wheeler Energia Oy Finland Abstract

More information

Towards New Milestones In CFB Boiler Technology CFB 800MWe

Towards New Milestones In CFB Boiler Technology CFB 800MWe Towards New Milestones In CFB Boiler Technology CFB 800MWe Arto Hotta, Kari Kauppinen, Ari Kettunen Foster Wheeler Energia Oy Finland Presented at Coal Gen Europe Warsaw, Poland February 14 16, 2012 ABSTRACT

More information

FLEXI BURN CFB WP4: Boiler design and performance

FLEXI BURN CFB WP4: Boiler design and performance Development of High Efficiency CFB Technology to Provide Flexible Air/Oxy Operation for Power Plant with CCS FLEXI BURN CFB WP4: Boiler design and performance 2 nd Project Workshop, 6 th February 2013,

More information

Cooling & Heating. POWERMAX TM Bi - drum, water tube, high efficiency boiler

Cooling & Heating. POWERMAX TM Bi - drum, water tube, high efficiency boiler Cooling & Heating POWERMAX Bi - drum, water tube, high efficiency boiler Improving your business is our business Thermax offers products, systems and solutions in energy and environment engineering to

More information

Gas turbine power plant. Contacts: Mail: Web:

Gas turbine power plant. Contacts: Mail: Web: Gas turbine power plant Contacts: Mail: poddar05@gmail.com Web: http://www.ajourneywithtime.weebly.com/ Contents Gas turbine power plant Elements of gas turbine power plants Gas turbine fuels Cogeneration

More information

Your partner for the right solution

Your partner for the right solution Your partner for the right solution Project engineering of power stations Environment protection in energy sector Equipment supplying Supervision of installation of the equipment supplied Commissioning

More information

Performance Optimization of Steam Power Plant through Energy and Exergy Analysis

Performance Optimization of Steam Power Plant through Energy and Exergy Analysis I NPRESSCO NTERNATIONAL PRESS CORPORATION International Journal of Current Engineering and Technology, Vol.2, No.3 (Sept. 2012) ISSN 2277-4106 Research Article Performance Optimization of Steam Power Plant

More information

Optimization of Air Preheater Design for the Enhancement of Heat Transfer Coefficient

Optimization of Air Preheater Design for the Enhancement of Heat Transfer Coefficient Optimization of Air Preheater Design for the Enhancement of Heat Transfer Coefficient P. N. Sapkal 1, P. R. Baviskar 2, M. J. Sable 3 & P. A. Makasare 4 Department of Mechanical Engineering, Rajarshi Shahu

More information

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+,

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+, Power Plant Overview Training Module ALSTOM (Switzerland) Ltd )*+, We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without

More information

Understand boiler performance characteristics. Use these suggestions when buying, designing or optimizing steam generators

Understand boiler performance characteristics. Use these suggestions when buying, designing or optimizing steam generators Understand boiler performance characteristics Use these suggestions when buying, designing or optimizing steam generators V Ganapathy, ABCO Industries, Abilene, An understanding of the major differences

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

PRIMARY OR ALTERNATIVE OPERATING SCENARIO

PRIMARY OR ALTERNATIVE OPERATING SCENARIO EMISSION SOURCE (Fuel Combustion Source) Instructions for Form B2 Form B2 should be completed for all fuel combustion emission sources (e.g., generators, boilers, burn-off ovens, bakeon ovens, bakery ovens,

More information

Downsizing a Claus Sulfur Recovery Unit

Downsizing a Claus Sulfur Recovery Unit INFRASTRUCTURE MINING & METALS NUCLEAR, SECURITY & ENVIRONMENTAL Downsizing a Claus Sulfur Recovery Unit OIL, GAS & CHEMICALS By Charles L. Kimtantas and Martin A. Taylor ckimtant@bechtel.com & mataylo1@bechtel.com

More information

Circulating Fluidized Bed Technology Towards 800 MWe Scale Lagisza 460 MWe Supercritical CFB Operation Experience

Circulating Fluidized Bed Technology Towards 800 MWe Scale Lagisza 460 MWe Supercritical CFB Operation Experience Circulating Fluidized Bed Technology Towards 800 MWe Scale Lagisza 460 MWe Supercritical CFB Operation Experience Timo Jäntti, Kimmo Räsänen Foster Wheeler Energia Oy Varkaus, Finland Presented at Power

More information

CFB Combustion Control System for Multiple Fuels

CFB Combustion Control System for Multiple Fuels JFE TECHNICAL REPORT No. 16 (Mar. 2011) CFB Combustion Control System for Multiple Fuels NAKAO Nobuyuki *1 SHIMAMOTO Hiroyuki *2 YAMAMOTO Koji *3 Abstract: JFE Engineering has developed a new combustion

More information

Development of Integrated Flexi-Burn Dual Oxidant CFB Power Plant

Development of Integrated Flexi-Burn Dual Oxidant CFB Power Plant Development of Integrated Flexi-Burn Dual Oxidant CFB Power Plant Horst Hack Zhen Fan Andrew Seltzer Foster Wheeler North America Corp., USA Timo Eriksson Ossi Sippu Arto Hotta Foster Wheeler Energia Oy,

More information

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes

Design of a Small Scale CFB Boiler Combustion Chamber for Laboratory Purposes International Journal of Emerging Engineering Research and Technology Volume 3, Issue 9, September, 2015, PP 1-7 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Design of a Small Scale CFB Boiler Combustion

More information

Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke

Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke Circulating Fluidized Bed Technology for Large Scale Power Generation Using Coal and Petroleum Coke Timo Jäntti Kalle Nuortimo Foster Wheeler Energia Oy Finland Presented at Russia Power Moscow, Russia

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator

Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Application of CFB (Circulating Fluidized Bed) to Sewage Sludge Incinerator Akira Nakamura*, Toshihiko Iwasaki**, Takashi Noto*, Hisanao Hashimoto***, Nobuyuki Sugiyama**** and Masahiro Hattori***** *

More information

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile

20/06/2011 Seminar on Geothermal Exploitation Santiago de Chile Contents Power Plants Steam Power plants Binary Power plants Geothermal Power Plants Single flash systems Binary systems 1 Equipment Well head Gathering piping system Steam separators and moisture separators

More information

John Thompson Boilers and latest developments

John Thompson Boilers and latest developments John Thompson Boilers and latest developments Etienne de Villiers 19 September 2013 Alstom John Thompson Packaged fir Packaged Firetube Boilers Firetube Boilers Produce saturated steam for process Capacities:

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

SUMMER 15 EXAMINATION

SUMMER 15 EXAMINATION SUMMER 15 EXAMINATION Subject Code: 17413 ( EME ) Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Challenges in Designing Fuel-Fired sco2 Heaters for Closed sco2 Brayton Cycle Power Plants

Challenges in Designing Fuel-Fired sco2 Heaters for Closed sco2 Brayton Cycle Power Plants 5th International Supercritical CO 2 Power Cycles Symposium March 29-31, 2016, San Antonio, Texas Challenges in Designing Fuel-Fired sco2 Heaters for Closed sco2 Brayton Cycle Power Plants David Thimsen

More information

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015

16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015 Regn No: Name : (To be written by the candidate) 16 th NATIONAL CERTIFICATION EXAMINATION FOR ENERGY MANAGERS & ENERGY AUDITORS September, 2015 PAPER 2: Energy Efficiency in Thermal Utilities Date: 19.09.2015

More information

HELIOSOLIDS FLUIDIZED BED INCINERATOR

HELIOSOLIDS FLUIDIZED BED INCINERATOR HELIOSOLIDS FLUIDIZED BED INCINERATOR THE POWER OF SLUDGE THE POWER OF SLUDGE Tons of sludge are leaving wastewater treatment plants each day. Spreading the sludge on agricultural land or in a sanitary

More information

To Study of Maximum Efficiency Of Power Generation in Thermal Power Plant

To Study of Maximum Efficiency Of Power Generation in Thermal Power Plant To Study of Maximum Efficiency Of Power Generation in Thermal Power Plant Md Saddam Hussain 1, M A Haque Khushroo 2 1 Department of Electrical & Electronics Engineering, 2 Department of Electronics & Communication

More information

High Bridge Combined Cycle Plant

High Bridge Combined Cycle Plant High Bridge Combined Cycle Plant Location: Down town St. Paul, on the Mississippi River Plant Description: High Bridge is a combined cycle generating facility. A combined cycle plant produces electricity

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

Design Advancements in USC Pulverized Coal Boilers. Dr Bin Xu Doosan Babcock Energy America LLC

Design Advancements in USC Pulverized Coal Boilers. Dr Bin Xu Doosan Babcock Energy America LLC Design Advancements in USC Pulverized Coal Boilers Dr Bin Xu Doosan Babcock Energy America LLC Presentation Summary The Drive for High Efficiency PC Power Plant European Status Evolution of POSIFLOW TM

More information

State of the art CFB technology for flexible large scale utility power production

State of the art CFB technology for flexible large scale utility power production State of the art CFB technology for flexible large scale utility power production Kalle Nuortimo Amec Foster Wheeler Varkaus, Finland Presented at PowerGen Russia Moscow Russia 3-5 March 2015 Amec Foster

More information

Green FSRU for the future

Green FSRU for the future Green FSRU for the future Presentation at GREEN4SEA Athens April 6 th 2016 Dr. John Kokarakis Vice President Technology & Business Development, Africa, S. Europe Hellenic, Black Sea & Middle East Zone

More information

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation

ADECOS II. Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 Separation Fakultät Maschinenwesen Institut für Energietechnik, Professur für Verbrennung, Wärme- & Stoffübertragung ADECOS II Advanced Development of the Coal-Fired Oxyfuel Process with CO 2 S. Grahl, A. Hiller,

More information

Steam balance optimisation strategies

Steam balance optimisation strategies Steam balance optimisation strategies Publicado en Chemical Engineering, Noviembre 2002 Background Optimising a steam balance in a plant with several steam mains pressures is not always a simple intuitive

More information

Thermal Stress and Creep Analysis of Failure tube of Secondary Super heater

Thermal Stress and Creep Analysis of Failure tube of Secondary Super heater Thermal Stress and Creep Analysis of Failure tube of Secondary Super heater Manasa Ponnoju M.Tech -Thermal Engineering, Department of Mechanical Engineering, Ellenki College of Engineering & Technology,

More information

Gasification of Municipal Solid Waste

Gasification of Municipal Solid Waste Gasification of Municipal Solid Waste Salman Zafar Renewable Energy Advisor INTRODUCTION The enormous increase in the quantum and diversity of waste materials and their potentially harmful effects on the

More information

PAPER-I (Conventional)

PAPER-I (Conventional) 1. a. PAPER-I (Conventional) 10 kg of pure ice at 10 ºC is separated from 6 kg of pure water at +10 O C in an adiabatic chamber using a thin adiabatic membrane. Upon rupture of the membrane, ice and water

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information

Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding

Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding Adoption of USC CFB Technology to Achieving Lower Cost Generation and Environmental Sustainability. Gerd Heiermann & Douglas Spalding 14 November 2014 EEC Conference Delhil Doosan and India a Total Solution

More information

High efficient multi-fuel CYMIC concept for biomass, rejects and coal for Hamburger Hungaria Katriina Jalkanen Valmet Technologies Oy

High efficient multi-fuel CYMIC concept for biomass, rejects and coal for Hamburger Hungaria Katriina Jalkanen Valmet Technologies Oy High efficient multi-fuel CYMIC concept for biomass, rejects and coal for Hamburger Hungaria 28.4.2016 Katriina Jalkanen Valmet Technologies Oy CYMIC Multi-Fuel Design Concept: general and case example

More information

Foster Wheeler Energia Oy P.O.BOX 201, FI Varkaus, Finland

Foster Wheeler Energia Oy P.O.BOX 201, FI Varkaus, Finland INITIAL OPERATING EXPERIENCES OF THE 135 MWe KLADNO LIGNITE FIRED POWER PLANT Riku Parkkonen, Kalle Nuortimo, Timo Jäntti Foster Wheeler Energia Oy P.O.BOX 201, FI-78201 Varkaus, Finland riku.parkkonen@fwfin.fwc.com

More information

Post Combustion CO 2 Capture Scale Up Study

Post Combustion CO 2 Capture Scale Up Study Post Combustion CO 2 Capture Scale Up Study Prachi Singh and Mike Haines International Greenhouse Gas R&D programme 6 th International Conference on Clean Coal Technologies (CCT 2013) 12-16 th May 2013

More information

Foster Wheeler BFB Boilers Licensee Expertise for Brazilian Markets. October 29, 2014

Foster Wheeler BFB Boilers Licensee Expertise for Brazilian Markets. October 29, 2014 Foster Wheeler BFB Boilers Licensee Expertise for Brazilian Markets October 29, 2014 Foster Wheeler Global Power Group Offices A global business with approximately 3,000 highly-skilled people Clinton,

More information

Efficient Combustion of Waste Fuel with Supercritical CFB Technology

Efficient Combustion of Waste Fuel with Supercritical CFB Technology Technical Paper BR-1924 Efficient Combustion of Waste Fuel with Supercritical CFB Technology Authors: S.B. Anderson Babcock & Wilcox Power Generation Group, Inc. Barberton, Ohio, U.S.A. R. Nair Thermax

More information

Gas turbines have been used for electricity generation. Gas turbines are ideal for this application as they can be started and stopped quickly.

Gas turbines have been used for electricity generation. Gas turbines are ideal for this application as they can be started and stopped quickly. WE LCOME Gas turbines have been used for electricity generation. Gas turbines are ideal for this application as they can be started and stopped quickly. There are two basic types of gas turbines Aero derivative

More information

Waste treatment technologies I

Waste treatment technologies I Waste treatment technologies I - Mechanical treatment, waste recycling, thermal treatment - INVENT Final Meetings Content 1. Waste recycling - basics 2. Mechanical waste treatment - Size reduction - Screening

More information

Welcome to. Kendal Power Station

Welcome to. Kendal Power Station Welcome to Kendal Power Station Technical Overview of the power station Scope General Overview Coal Handling Milling Plant Boiler Plant Turbine Train Steam Flow Path Ash Handling Generator HV Yard Cooling

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

Author: Andrea Milioni Chemical Engineer On Contract Cooperator University UCBM Rome (Italy)

Author: Andrea Milioni Chemical Engineer On Contract Cooperator University UCBM Rome (Italy) Gasification Process Author: Andrea Milioni Chemical Engineer On Contract Cooperator University UCBM Rome (Italy) 1. Theme description The gasification process is the thermochemical conversion of a carbonaceous

More information

Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices

Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices Journal of Physics: Conference Series Heat exchangers and thermal energy storage concepts for the off-gas heat of steelmaking devices To cite this article: T Steinparzer et al 2012 J. Phys.: Conf. Ser.

More information

Technical And Economical Aspects Of Thermal Efficiency Of Grate-Fired Waste-To- Energy Plants

Technical And Economical Aspects Of Thermal Efficiency Of Grate-Fired Waste-To- Energy Plants Technical And Economical Aspects Of Thermal Efficiency Of Grate-Fired Waste-To- Energy Plants CONTACT Dr. Volker Wiesendorf, Von Roll Inova Dr. Peter Benz, Von Roll Inova Contact name: Dr. Volker Wiesendorf

More information

Preparatory study for Steam Boilers Ecodesign

Preparatory study for Steam Boilers Ecodesign www.pwc.com Preparatory study for Steam Boilers Ecodesign Stakeholder Meeting Brussels, Task 1: Scope PwC - ICCS - Fraunhofer ISI Slide 2 Tasks structure Task 1: Scope Task 2: Task 3: Task 4: Markets Users

More information

MANAGEMENT OF PAPER MILL SLUDGES

MANAGEMENT OF PAPER MILL SLUDGES MANAGEMENT OF PAPER MILL SLUDGES Bob Laughlin Ph.D. P.Eng and Niel Erasmus Torftech (Canada) Inc. 2380 Bristol Circle Unit 12 Oakville, Ontario, CANADA L6H 6M5 905 829 1333 email bob.laughlin@torftech.com

More information

Design and Operation of Biomass Circulating Fluidized Bed Boiler with High Steam Parameter

Design and Operation of Biomass Circulating Fluidized Bed Boiler with High Steam Parameter Engineering Conferences International ECI Digital Archives 10th International Conference on Circulating Fluidized Beds and Fluidization Technology - CFB-10 Refereed Proceedings Spring 5-3-2011 Design and

More information

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY

NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING CENTRE COURSE 134 FOR ONTARIO HYDRO USE ONLY NUCLEAR TRAINING COURSE COURSE 134 1 - Level 3 - Equipment & System Principles 4 - TURBINE, GENERATOR & AUXILIARIES Index 134.00-0 Objectives

More information

Development of Foster Wheeler s Vision 21 Partial Gasification Module

Development of Foster Wheeler s Vision 21 Partial Gasification Module Development of Foster Wheeler s Vision 21 Partial Gasification Module A. Robertson, Foster Wheeler Development Corporation Presented at the Vision 21 Program Review Meeting Morgantown, West Virginia November

More information

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT Harendra Singh 1, Prashant Kumar Tayal 2 NeeruGoyal 3, Pankaj Mohan

More information

MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs

MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs MIT Carbon Sequestration Forum VII Pathways to Lower Capture Costs 1 October 1 November 2006 Royal Sonesta Hotel, Cambridge, MA Oxyfuel Pathways Rodney Allam Consultant Air Products PLC, UK Oxyfuel Technology

More information

Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture

Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture Design, Construction, and Commissioning of a Pilot-Scale Dual Fluidized Bed System for CO 2 Capture 5 th IEA-GHG Network Meeting September 2013 Robert Symonds*, Dennis Lu, and Scott Champagne CanmetENERGY

More information

Kalex Kalina Cycle Power Systems For Use as a Bottoming Cycle for Combined Cycle Applications

Kalex Kalina Cycle Power Systems For Use as a Bottoming Cycle for Combined Cycle Applications Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Use as a Bottoming Cycle for Combined Cycle Applications Copyright 2009, 2010, Kalex LLC. Kalex LLC's Kalina

More information

Lignite Properties and Boiler Performance

Lignite Properties and Boiler Performance Lignite Properties and Boiler Performance Energy Generation Conference: Reducing CO 2 Intensity in Power Plants Steve Benson Presented at the Energy Generation Conference Bismarck, ND January 28, 2015

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 016 ISSN (online): 31-0613 Thermodynamic Analysis of Thermal Power Plant Cycle Veeranagouda Patil 1 M. R. Nagaraj 1

More information

In The Name OF God Hampa E ner ner Ener y gy Engineering EEngineering & & Design Company Design Compan

In The Name OF God Hampa E ner ner Ener y gy Engineering EEngineering & & Design Company Design Compan In The Name OF God Hampa Energy Engineering & Design Company 1 Introduction Ammonia plants Methanol plants Hydrogen Plants Other plants 2 A Brief historical Review Greater capacity 3300 mtpd 20 rows with

More information

Stationary Combustion Systems Chapter 6

Stationary Combustion Systems Chapter 6 Stationary Combustion Systems Chapter 6 Stationary combustion systems presently supply most of the earth s electricity. Conversion will take time, so study of these systems in order to improve them is

More information

PRB COAL USERS GROUP at the ELECTRIC POWER 2008 Conference

PRB COAL USERS GROUP at the ELECTRIC POWER 2008 Conference A Technical Paper: The Domino Effect from Conversion to PRB Fuel Prepared for the: PRB COAL USERS GROUP at the ELECTRIC POWER 2008 Conference May 6-8, 2008 Baltimore, Maryland at the Baltimore Convention

More information

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS Muammer Alus, Milan V. Petrovic University of Belgrade-Faculty of Mechanical Engineering, Laboratory of Thermal

More information

SCHNEIDER-KESSEL BERLIN

SCHNEIDER-KESSEL BERLIN SCHNEIDER-KESSEL BERLIN STEAM BOILER and HOT WATER BOILER WASTE HEAT RECOVERY BOILER - Series AHK GENERAL Waste Heat Recovery boilers of Series AHK are steam generators in special smoke tube design to

More information

Decentralized Biomass Power Production

Decentralized Biomass Power Production Decentralized Biomass Power Production by Dr. Eric Bibeau University of Manitoba (Alternative Energy Research) Biomass Energy II Heat and Power Workshop November 13, 2003 Activity at U of M biomass alternative

More information

Module 2: Conventional Power Generation I

Module 2: Conventional Power Generation I Lecture 7 Module 2: Conventional Power Generation I Canada's Electricity Generating Capacity was 126,000 MW in 2007 Hydro 58.7% Coal 16.6% Fuel Oil 1.2% natural gas 6.6% Nuclear 15.5% Other (e.g., Wind,Tidal

More information

Finding Lost Megawatts at the Harrison Power Station

Finding Lost Megawatts at the Harrison Power Station Finding Lost Megawatts at the Harrison Power Station y William C. Kettenacker Scientech LLC Douglas L. Eakle Allegheny Energy Supply Introduction In today s climate of rising fuel costs, deregulation,

More information

Reducing Maintenance and Saving Fuel with Ellison s Portable Steam Calorimeter

Reducing Maintenance and Saving Fuel with Ellison s Portable Steam Calorimeter 900 SERIES ELLISON STEAM CALORIMETER OPERATION AND MAINTENANCE MANUAL Reducing Maintenance and Saving Fuel with Ellison s Portable Steam Calorimeter Ellison's unique Calorimeter combines the advantages

More information

Coal-Fired Boiler Optimization

Coal-Fired Boiler Optimization Hot Topic Coal-Fired Boiler Optimization Improving Boiler Efficiency September 27, 2012 By Richard F. (Dick) Storm, PE, CEO and Danny Storm, President Optimum Coal Fueled Steam Plant Performance Begins

More information

Course 0101 Combined Cycle Power Plant Fundamentals

Course 0101 Combined Cycle Power Plant Fundamentals Course 0101 Combined Cycle Power Plant Fundamentals Fossil Training 0101 CC Power Plant Fundamentals All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

More information

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis

COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan, Golam Mainuddin, Abu Sadat Mohammad Sayem, Nadeem Nafis Proceedings of the 4 th BSME-ASME International Conference on Thermal Engineering 7-9 December, 008, Dhaka, Bangladesh COOLING TOWER DESIGN FOR CENTRAL GENERATORS OF CUET, BANGLADESH. Mohammad Sharif Khan,

More information

WASTE HEAT BOILERS FOR NITRIC ACID, CAPROLACTAM AND FORMALDEHYDE PLANTS

WASTE HEAT BOILERS FOR NITRIC ACID, CAPROLACTAM AND FORMALDEHYDE PLANTS WASTE HEAT BOILERS FOR NITRIC ACID, CAPROLACTAM AND FORMALDEHYDE PLANTS BORSIG The Company BORSIG Process Heat Exchanger GmbH, a member of the BORSIG Group, is the international leading manufacturer of

More information

DESIGN OF A NATURAL CIRCULATION CIRCUIT FOR 85 MW STEAM BOILER

DESIGN OF A NATURAL CIRCULATION CIRCUIT FOR 85 MW STEAM BOILER THERMAL SCIENCE: Year 2017, Vol. 21, No. 3, pp. 1503-1513 1503 DESIGN OF A NATURAL CIRCULATION CIRCUIT FOR 85 MW STEAM BOILER by Konstantin A. PLESHANOV a*, Ekaterina G. KHLYST b, Mikhail N. ZAICHENKO

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Rapid economic growth and industrialisation has led to significant reduction in ambient air quality. There is an ever increasing demand for power and to meet this demand

More information

1/9/2012. Energy Production Systems Engineering

1/9/2012. Energy Production Systems Engineering Welcome to Energy Production Systems Engineering Session 3: USF Polytechnic Engineering tom@thomasblairpe.com Session 3: Steam Plant Fundamentals & Spring 2012 First law of thermodynamics energy is neither

More information

Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle

Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton Cycle Available online at www.sciencedirect.com Energy Procedia 37 (2013 ) 1180 1186 GHGT-11 Conception of a Pulverized Coal Fired Power Plant with Carbon Capture around a Supercritical Carbon Dioxide Brayton

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

energytech.at energytech.at [ energy technology austria ] Cogeneration (CHP) TechnologyPortrait

energytech.at energytech.at [ energy technology austria ] Cogeneration (CHP) TechnologyPortrait energytech.at [ energy technology austria ] energytech.at The internet-platform for innovative energy technologies in the area of renewable energy sources and energy efficiency http://energytech.at TechnologyPortrait

More information

Retrofit of Rodenhuize 4 power station: The Max Green and Cold Back-up-projects

Retrofit of Rodenhuize 4 power station: The Max Green and Cold Back-up-projects Retrofit of Rodenhuize 4 power station: The Max Green and Cold Back-up-projects Dr. Stefan Hamel, Babcock Borsig Steinmüller GmbH Dr. Christian Storm, Babcock Borsig Steinmüller GmBH Peter Goorden, Project

More information

Treatment of Distillery Spent wash. Babu Alappat Professor Department of Civil Engineering I.I.T Delhi.

Treatment of Distillery Spent wash. Babu Alappat Professor Department of Civil Engineering I.I.T Delhi. Treatment of Distillery Spent wash Babu Alappat Professor Department of Civil Engineering I.I.T Delhi bjalappat@yahoo.com Problems with Anaerobic Systems Requirement of polishing Uncertainity involved

More information

Power-Cost Alternative De-NOx Solutions for Coal-Fired Power Plants

Power-Cost Alternative De-NOx Solutions for Coal-Fired Power Plants Power-Cost Alternative De-NOx Solutions for Coal-Fired Power Plants 12/21/2015 Power Engineering By Bin Xu, David Wilson, and Rob Broglio Traditionally, large coal-fired generating units have complied

More information

Wet granulation of blast furnace slag has been

Wet granulation of blast furnace slag has been INBA slag granulation system with environmental control of water and emissions As the demand for granulated BF slag continues to grow and environmental constraints become more severe, improvements to slag

More information

SYNGAS COOLER SYSTEMS FOR GASIFICATION PLANTS

SYNGAS COOLER SYSTEMS FOR GASIFICATION PLANTS SYNGAS COOLER SYSTEMS FOR GASIFICATION PLANTS 1 INTRODUCTION Hydrocarbons accompany us in all areas of life in a variety of chemical compounds such as plastics, fertilizers, paints, lubricants and fuels.

More information

A BASIC IMMERSION FIRETUBE FLOWNEX MODEL

A BASIC IMMERSION FIRETUBE FLOWNEX MODEL A BASIC IMMERSION FIRETUBE FLOWNEX MODEL This case study demonstrates the implementation of a basic immersion firetube model in Flownex and presents natural draft and forced draft examples. OIL AND GAS

More information

Finding the Root Cause is Critical

Finding the Root Cause is Critical Finding the Root Cause is Critical Have you ever repaired a tube leak and put the boiler back in service, only to be forced off-line by another leak? Identifying and correcting the root cause is essential.

More information

Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste

Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551 R.A. Penzin, G.A. Sarychev All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, Russia,

More information

Geothermal Power Plant

Geothermal Power Plant Geothermal Power Plant The Tokyo Electric Power Co., Inc., Japan Hachijo-jima Geothermal Power Plant 3,300kW 0A3-E-009 Outline All equipment and system except for the civil work and geothermal wells were

More information

ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat

ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat ENERGY EFFICIENT SYSTEMS Recover & recycle your waste heat Absorption Machines - Heat Pumps & Chillers Thermal Energy Storage Solutions Special Heat Exchangers Italy 65 MW Turnkey Waste-to-energy Plant

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

KEPCO KEPRI Kim eui hwan

KEPCO KEPRI Kim eui hwan 2015 KEPIC PERFORMANCE TEST SEMINAR New Start! Open Soft Speed AGAIN KEPCO! 2015. 9. 22 KEPCO KEPRI Kim eui hwan 1 2 3 test Steam turbine test 2/42 3/42 Thermal analysis of Power Plant Cycle Grasp of the

More information