CENTRE FOR WIND ENERGY TECHNOLOGY CHENNAI INDIAN WIND GRID CODE

Size: px
Start display at page:

Download "CENTRE FOR WIND ENERGY TECHNOLOGY CHENNAI INDIAN WIND GRID CODE"

Transcription

1 CHENNAI INDIAN WIND GRID CODE Rajesh Katyal Unit Chief, R&D Centre for Wind Energy Technology

2 OVERVIEW

3 NEED FOR INDIAN WIND GRID CODE Wind energy constitutes 6% of the installed capacity in the power scenario in India. Wind turbines are installed in windy sites, which may not have strong grids. Local impacts like voltage fluctuations, flicker, reactive power absorption when the penetration is low. With high penetration, overall power system gets affected. Grid code envisages to establish a standard operating practice for wind turbines to minimise these impacts and reap maximum benefits.

4 ELECTRICAL SYSTEM IN WIND TURBINES

5 ELECTRICAL SYSTEM IN WIND TURBINES Fixed speed wind turbine

6 ELECTRICAL SYSTEM IN WIND TURBINES Variable speed wind turbine with full-scale frequency converter

7 GRID BEHAVIOUR OF WIND TURBINES Majority of wind turbines use induction generators, unlike the conventional generators which are synchronous Induction generators need VAR support, for which capacitor banks are provided. Inadequate reactive power support will lead to drawal from grid, and affect the voltage profile at the point of interconnection. Wind turbines using synchronous generators do not need reactive power support, but may have to deal with other issues like harmonics. Grid code sets a standard operating practice for different type of generators.

8 GRID BEHAVIOUR OF WIND TURBINES Wind turbines disconnect from the grid when voltage at the point of connection drops Wind turbines can remain connected to the grid during a fault, only if adequate reactive power support is provided. Wind is variable in nature, hence wind generation cannot be scheduled.

9 WORLD SCENARIO Grid Codes have been enforced for countries like USA, Germany, Spain, Denmark, China, Nordic Countries, Canada and Ireland, which have substantial wind generation. The grid codes for wind, in general deal with the following technical requirements: Active power control Frequency Voltage and reactive power issues Fault ride through capability Protection Power quality issues like flicker, harmonics etc.

10 GRID CODE REQUIREMENTS

11 GRID CODE REQUIREMENTS Variation of active power output of wind farms with respect to frequency (as proposed in Grid Code)

12 GRID CODE REQUIREMENTS FREQUENCY REQUIREMENTS: System frequency is a major indicator of the power balance in the system. A decrease in generation vis-a-vis the demand causes the frequency to drop below the nominal frequency and vice versa. This imbalance can be mitigated by primary control and secondary control of conventional synchronous generators. High penetration of wind turbines can have a significant impact on the frequency of the grid. Power output of the wind turbine can be regulated during high frequency.

13 GRID CODE REQUIREMENTS VOLTAGE AND REACTIVE POWER ISSUES: Wind turbines with induction generators need reactive power support. Capacitor banks are the preferred method of reactive power compensation in wind farms. Reactive power drawl from the system can cause increased losses, overheating and de- rating of the lines. Doubly fed induction generators and synchronous generator based wind turbines do not have any constraints with respect to reactive power.

14 GRID CODE REQUIREMENTS REACTIVE POWER ISSUES: The wind farm should maintain a power factor of 0.95 lagging to 0.95 leading Voltage Vs Power factor characteristics of wind farms connected above 66 kv

15 GRID CODE REQUIREMENTS FAULT / LOW VOLTAGE RIDE THROUGH: Ability of the wind turbine to remain connected to the grid without tripping from the grid for a specified period of time during a voltage drop at the point of connection. period of fault ride through depends on magnitude of voltage drop at the Point of Common Coupling (PCC) during the fault time taken by the grid system to recover to the normal state. During system disturbances, if generators of large generating capacity connected to the grid continue their operation, this aids the system in returning to normal operation. During a fault that causes a voltage drop at the wind turbine terminals, the reactive power demand of induction generators increases. Unless a reactive power support is available at the generator terminals, the reactive power will be drawn from the grid and furtherinstability.

16 GRID CODE REQUIREMENTS FAULT / LOW VOLTAGE RIDE THROUGH (AS PER IWGC): Table 3: Fault clearing time and voltage limits Nominal system voltage (kv) Fault clearin g time, T(ms) Vpf (kv) Vf (kv) V f : 15% of nominal system voltage V pf : Minimum Voltage for normal operation of the wind turbine

17 GRID CODE REQUIREMENTS WIND FARM PROTECTION: The relay protection system of the wind turbine should take in to account: Normal operation of the system and support to network during andafter the fault. Secure wind farms from damage originating from faults in the network. Minimum requirement with respect to wind farm protection (IWGC): under/over voltage protection under/over frequencyprotection over currentand earth fault protection load unbalance (negative sequence) protection differential protection for the grid connecting transformer capacitor bank protection tele-protection channels (for use with distance protection) between the grid connection point circuit breaker and user connection point circuit breaker.

18 GRID CODE REQUIREMENTS POWER QUALITY ISSUES: Power Quality Ability of a power system to operate loads, without damaging or disturbing them, a property mainly concerned with voltage quality at points of common coupling & Ability of the loads to operate without disturbing or reducing the efficiency of the power system, a property mainly, but not exclusively, concerned withthe qualityof currentwaveform Assessment of power quality of wind farms IEC : Wind Turbine Generator Systems, Part 21: Measurement and Assessment of Power Quality Characteristics of Grid Connected Wind Turbines

19 GRID CODE REQUIREMENTS FLICKER: Visual fluctuations in the light intensity as a result of voltage fluctuations (1-10Hz) Caused during continuous operation: by tower shadow of wind turbine (1 2 Hz) Switching operation : by power fluctuations (both active and reactive power) Not a main concern for variable speed turbines. IWGC requirement : IEC : for voltage flicker limits. IEC :Guidelines on measurement of flicker.

20 GRID CODE REQUIREMENTS HARMONICS: Generated by variable speed turbines with power converters, like doubly fed generator and full variable speed wind turbine. IEC recommends measurement of harmonic emissions only for variable speed turbines.

21 GRID CODE REQUIREMENTS HARMONICS: Total harmonic distortion of voltage, where V n : n th harmonic of voltage V 1 : fundamental frequency (50 Hz) voltage Voltage harmonic limits System Voltage (kv) Total Harmonic Distortion (%) Individual Harmonic of any Particular frequency (%)

22 GRID CODE REQUIREMENTS HARMONICS: Harmonic content of the supply current : Current harmonic limits (IWGC) Voltage level <69 kv >69 kv ITHD 5% 2.5% Where I n : n th harmonic of current I 1 : fundamental frequency (50 Hz) current

23 GRID CODE REQUIREMENTS VOLTAGE UNBALANCE: Ratio of the deviation between the highest and lowest line voltage to the average of the three line voltages. Can cause negative sequence current to flow in the rotor of the generator and affect its performance same voltage requirements for unbalance as for conventional generators. Voltage unbalance limits for wind farms Voltage level (kv) Unbalance (%) <220 3

24 REQUIREMENTS OF IWGC Planning Code for transmission systems evacuating wind power Connection code for wind farms Operating code for wind farms

25 PLANNING CODE FOR TRANSMISSION SYSTEMS EVACUATING WIND POWER Wind power evacuation should be a part of the overall grid planning. Planning criterion for wind: System peak load with high wind generation System light load with high wind generation Local light load with high wind generation

26 PLANNING CODE FOR TRANSMISSION SYSTEMS EVACUATING WIND POWER N-1 contingency criteria :Wind farms connected above 220 kv or of capacity 100 MW and above at 220 kv levels. The Wind power addition plan for every five years issued by the Ministry of New and Renewable Energy to be considered for planning of transmission lines.

27 CONNECTION CODE FOR WIND FARMS Minimum technical standards to be adopted for wind turbines Voltage withstand limits for wind farms Voltage (kv) Nominal % Limit of variation Maximum Minimum % to -10% % to -9% % to -9% % to -12.5% % to -9% % to -10%

28 CONNECTION CODE FOR WIND FARMS Frequency tolerance range Hz. Beyond this: manufacturer specific. Wind farms shall be able to withstand change in frequency up to 0.5 Hz/sec.

29 CONNECTION CODE FOR WIND FARMS Voltage unbalance Reactive power capability Active power control Low voltage ride through Protection schemes for wind farm protection

30 OPERATING CODE FOR WIND FARMS For safe and reliable operation of grid Operating voltage limits for wind farms Voltage (kv) Nominal % Limit of variation Maximum Minimum % to -10% % to -9% % to -9% % to -12.5% % to -9% % to -10%

31 OPERATING CODE FOR WIND FARMS Frequency of operation for wind farms Shall not be started above 51.5 Hz.

32 OPERATING CODE FOR WIND FARMS Reactive power and voltage control VAR drawl from the grid at voltages below 97 % of nominal will be penalized. VAR injection into the grid at voltages below 97 % of nominal will be given incentive. VAR drawl from the grid at voltages above 103 % of nominal will be given incentive. VAR injection into the grid at voltages above 103 % of nominal will be penalized

33 OPERATING CODE FOR WIND FARMS Ramp rate limits Aims at regulating the active power generated from the WTG and minimizing the sudden variations in generated power due to variations in the wind. Ramp rate limits for wind farms Wind Farm installed capacity (MW) 10 min Maximum Ramp (MW) 1 min Maximum Ramp (MW) Installed Capacity/1.5 Installed Capacity/5 >

34 OPERATING CODE FOR WIND FARMS Flicker IEC : for voltage flicker limits. IEC :Guidelines on measurement of flicker. Harmonics Voltage harmonic limits : as per Indian Electricity Grid Code Current harmonic limits: IEEE STD

35 OPERATING CODE FOR WIND FARMS Operation during transmission congestion As per instructions of system operator. Wind shall be considered like overflowing reservoir in Merit Order Dispatch Demand estimation Wind Energy Forecasting- Day ahead forecast: for assessing the probable wind energy that can be scheduled for the next day. Hourly forecast :To minimize the forecasting error that can occur in the day ahead forecasting.

36 SUMMARY Grid code brings wind at par with conventional generators. Technical requirements have been appropriately recommended for small wind farms and large wind farms. Conditions like fault ride through capability and forecasting to be implemented taking into account the penetration levels of wind energy, cost of implementation, tariff structure and usefulness in terms of grid management strategies.

37

Indian Wind Grid Code

Indian Wind Grid Code Draft Report On Indian Wind Grid Code Submitted to Centre for Wind Energy Technology Velachery - Tambaram Main Road, Pallikaranai, Chennai - 600 100, Tamil Nadu, INDIA July 2009 Power Research and Development

More information

Lesson Learned Loss of Wind Turbines due to Transient Voltage Disturbances on the Bulk Transmission System

Lesson Learned Loss of Wind Turbines due to Transient Voltage Disturbances on the Bulk Transmission System Lesson Learned Loss of Wind Turbines due to Transient Voltage Disturbances on the Bulk Transmission System Primary Interest Groups Balancing Authorities (BAs) Transmission Operators (TOPs) Generator Operators

More information

WIND TURBINES IN WEAK GRIDS CONSTRAINTS AND SOLUTIONS. J O G Tande and K Uhlen. SINTEF Energy Research, Norway SUMMARY

WIND TURBINES IN WEAK GRIDS CONSTRAINTS AND SOLUTIONS. J O G Tande and K Uhlen. SINTEF Energy Research, Norway SUMMARY WIND TURBINES IN WEAK GRIDS CONSTRAINTS AND SOLUTIONS J O G Tande and K Uhlen SINTEF Energy Research, Norway SUMMARY Cost efficient utilisation of the wind energy resource requires wind farms to be located

More information

Impacts of the Decentralized Wind Energy Resources on the Grid

Impacts of the Decentralized Wind Energy Resources on the Grid 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2013 Grid of the Future Symposium Impacts of the Decentralized Wind Energy Resources on the Grid Babak Enayati, PhD, Senior

More information

Grid Interconnection Issues for Wind Generation

Grid Interconnection Issues for Wind Generation Grid Interconnection Issues for Wind Generation NRECA APPA - DOE Teleconference December 8, 2005 By Thomas A. Wind, PE Wind Utility Consulting Jefferson, Iowa Topics I Will Cover What are the key technical

More information

Power Flow Control Scheme for Wind Energy Conversion System

Power Flow Control Scheme for Wind Energy Conversion System Vol.2, Issue.3, May-June 2012 pp-644-648 ISSN: 2249-6645 Power Flow Control Scheme for Wind Energy Conversion System using FACTS Controller R. Vibin 1, K. Malarvizhi 2 1 PG Scholar, Department of EEE,

More information

Grid Power Quality Improvement and Battery Energy Storage in Wind Energy System by PI and Fuzzy Based STATCOM Controller

Grid Power Quality Improvement and Battery Energy Storage in Wind Energy System by PI and Fuzzy Based STATCOM Controller Grid Power Quality Improvement and Battery Energy Storage in Wind Energy System by PI and Fuzzy Based STATCOM Controller Suhashini.D 1, Ambika.A 2 1 PG Scholar, Department of EEE, Sri Sairam Engineering

More information

Investigation of Impacts of Solar PV on Transmission System Voltage Stability Considering Load Characteristics and Protection

Investigation of Impacts of Solar PV on Transmission System Voltage Stability Considering Load Characteristics and Protection 7th Solar Integration Workshop, 24-25 October 2017, Berlin, Germany Investigation of Impacts of Solar PV on Transmission System Voltage Stability Considering Load Characteristics and Protection Baheej

More information

Wind Power Grid Interconnection:

Wind Power Grid Interconnection: Wind Power Grid Interconnection: Overview for the Massachusetts Wind Working Group Hull 1: Single OptiSlip on distribution line Renewable Energy Research Sally Wright, Laboratory, PE UMass Amherst Research

More information

POTOMAC ELECTRIC POWER COMPANY

POTOMAC ELECTRIC POWER COMPANY POTOMAC ELECTRIC POWER COMPANY FERC Form 715 (Part 4) - Transmission Planning Study Guidelines Transmission Reliability Guidelines 1. General Overview The reliability guidelines used to plan the transmission

More information

Technical considerations for integration of distributed renewables on the grid

Technical considerations for integration of distributed renewables on the grid Technical considerations for integration of distributed renewables on the grid A paper by Dr Charlotte Higgins, Dr Bunmi Adefajo & Kumbuyani Chisoro Kumbuyani Chisoro Manager Southern Africa TNEI Services

More information

Standard TPL Transmission System Planning Performance Requirements

Standard TPL Transmission System Planning Performance Requirements A. Introduction 1. Title: Transmission System Planning Performance Requirements 2. Number: TPL-001-4 3. Purpose: Establish Transmission system planning performance requirements within the planning horizon

More information

Technical Requirements for Distributed Generation Connection

Technical Requirements for Distributed Generation Connection Technical Requirements for Distributed Generation Connection Distributed Generation Connection Requirements SECTION 1: INTRODUCTION 1.1 General Purpose This document defines the requirements for connecting

More information

EDF and Integration of Distributed Energy Resources

EDF and Integration of Distributed Energy Resources IEEE Power Engineering Society Tuesday, June 20, 2006. Montreal EDF and Integration of Distributed Energy Resources Bruno Meyer (presenter) Director Power Systems Technology and Economics Yves Bamberger,

More information

Facility Interconnection Requirements

Facility Interconnection Requirements Facility Interconnection Effective 1/1/2016 1. Purpose Facility Interconnection Facility Interconnection (FAC-001-2) To avoid adverse impacts on the reliability of the Bulk Electric System (BES), RPU documents

More information

Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid

Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Power quality improvement by using STATCOM control scheme in wind energy generation interface to grid To cite this article: Sheeraz

More information

Standard Development Timeline

Standard Development Timeline Standard Development Timeline This section is maintained by the drafting team during the development of the standard and will be removed when the standard is adopted by the NERC Board of Trustees (Board).

More information

WIND TURBINE PLANT CAPABILITIES REPORT

WIND TURBINE PLANT CAPABILITIES REPORT WIND TURBINE PLANT CAPABILITIES REPORT 2013 Wind Integration Studies Published by AEMO Australian Energy Market Operator ABN 94 072 010 327 Copyright 2013 AEMO AEMO 2013 WIND TURBINE PLANT CAPABILITIES

More information

The Effect of the Volt/Var Control of Photovoltaic Systems on the Time-Series Steady-State Analysis of a Distribution Network

The Effect of the Volt/Var Control of Photovoltaic Systems on the Time-Series Steady-State Analysis of a Distribution Network The Effect of the Volt/Var Control of Photovoltaic Systems on the Time-Series Steady-State Analysis of a Distribution Network Insu Kim, Ronald G. Harley, and Raeey Regassa Georgia Institute of Technology,

More information

NERC Reliability Initiatives and Smart Grid

NERC Reliability Initiatives and Smart Grid NERC Reliability Initiatives and Smart Grid IEEE PES Late Breaking News July 28, 2009 Robert W. Cummings Director of Event Analysis & Information Exchange System Protection and Control Performance Improvement

More information

8 th Annual Electric Power Industry Conference

8 th Annual Electric Power Industry Conference 8 th Annual Electric Power Industry Conference STATCOM Application to Address Grid Stability and Reliability: Part I November 11 th, 2013 Authors: Donald Shoup, P.E. and Dr. Gregory Reed Support: Nick

More information

GRID CODE FOR ISOLATED SYSTEMS

GRID CODE FOR ISOLATED SYSTEMS 1 GRID CODE FOR ISOLATED SYSTEMS Susana Ludovino REDE ELÉCTRICA NACIONAL, S.A., 1749-061 Lisboa, PORTUGAL (e-mail: susana.ludovino@ren) Abstract The aim of this study is to verify the application of an

More information

Transmission Interconnection Requirements. Table of Contents

Transmission Interconnection Requirements. Table of Contents Transmission Interconnection Requirements Table of Contents I. Introduction II. Interconnection Agreement III. Facility Requirements IV. Interconnection Initiation I. Introduction A. Purpose and Scope

More information

Wind Power Grid Integration - Grid Code Requirements & Compliance Schemes The German Case Lessons and Experiences

Wind Power Grid Integration - Grid Code Requirements & Compliance Schemes The German Case Lessons and Experiences Wind Power Grid Integration - Grid Code Requirements & Compliance Schemes The German Case Lessons and Experiences Dipl.-Wirt.-Ing. Julian Langstädtler / FGH Certification Office Dipl.-Wirt.-Ing. Frederik

More information

MAY 1, Variable Generation Integration Costs

MAY 1, Variable Generation Integration Costs MAY 1, 2014 Variable Generation Integration Costs Executive Summary The addition of variable generation (wind and solar) to the electrical system introduces additional costs associated with unit dispatch

More information

Grid Code Compliance. For India S.Balasubramoniam, Senior Consultant. 08 September September 2017 SAFER, SMARTER, GREENER

Grid Code Compliance. For India S.Balasubramoniam, Senior Consultant. 08 September September 2017 SAFER, SMARTER, GREENER Grid Code Compliance For India S.Balasubramoniam, Senior Consultant 08 September 2017 1 DNV GL 2015 08 September 2017 SAFER, SMARTER, GREENER Organized to maximise customer value MARITIME OIL & GAS ENERGY

More information

Refinement of Hydel power by implementing FACTS at Narangwal hydroelectric power plant

Refinement of Hydel power by implementing FACTS at Narangwal hydroelectric power plant International Journal of Electronics Engineering Research. ISSN 0975-6450 Volume 9, Number 8 (2017) pp. 1323-1328 Research India Publications http://www.ripublication.com Refinement of Hydel power by implementing

More information

ANTICIPATING AND ADDRESSING SECURITY CHALLENGES IN AN EVOLVING POWER SYSTEM

ANTICIPATING AND ADDRESSING SECURITY CHALLENGES IN AN EVOLVING POWER SYSTEM ANTICIPATING AND ADDRESSING SECURITY CHALLENGES IN AN EVOLVING POWER SYSTEM January 2017 PRESENTED BY JENNY RIESZ SLIDE 1 AGENDA 1. Introduction to the NEM 2. Future Power System Security Program 3. Identifying

More information

Hydro-Quebec s experience with HYPERSIM Real-time Power System Simulator

Hydro-Quebec s experience with HYPERSIM Real-time Power System Simulator Hydro-Quebec s experience with HYPERSIM Real-time Power System Simulator Christian Larose, Power System Simulation, Hydro-Québec (CANADA) June 26, 2013 Presentation overview > Application of Hypersim at

More information

State of the Ar t. May Utility Wind Integration Group. American Public Power Association. Edison Electric Institute

State of the Ar t. May Utility Wind Integration Group. American Public Power Association. Edison Electric Institute Utility Wind Integration State of the Ar t Prepared By: Utility Wind Integration Group in cooperation with American Public Power Association Edison Electric Institute National Rural Electric Cooperative

More information

Renewable Integration at ERCOT

Renewable Integration at ERCOT Renewable Integration at ERCOT Dan Woodfin Director of System Operations ERCOT CIGRE Chile September 12, 2016 The ERCOT Region The interconnected electrical system serving most of Texas, with limited external

More information

Bulk Power System Integration of Variable Generation - Program 173

Bulk Power System Integration of Variable Generation - Program 173 Program Description Program Overview Environmentally driven regulations such as state-mandated renewable energy standards and federal air and water standards, along with improved economic viability for

More information

Summary of Studies on Rate of Change of Frequency events on the All-Island System

Summary of Studies on Rate of Change of Frequency events on the All-Island System Summary of Studies on Rate of Change of Frequency events on the All-Island System August 212 Authored by: Salim Temtem & Karen Creighton Checked by: David Cashman & Raymond Skillen Approved by: Jonathan

More information

Distribution Information Exchange Code

Distribution Information Exchange Code Distribution Information Exchange Code Version 5.1 Approved September 2007 Comments to this document can be forwarded to: The RSA Grid Code Secretariat Attention: Mr. Bernard Magoro Eskom, Transmission

More information

AORC Technical meeting 2014

AORC Technical meeting 2014 http : //www.cigre.org C5-1036 AORC Technical meeting 2014 Solar PV Rooftop System Connection to MEA s Distribution Network: Technic and Economic Aspects Tosak Thasananutariya Metropolitan Electricity

More information

Shunt Active Power Filter Wind Energy Conversion System

Shunt Active Power Filter Wind Energy Conversion System Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, July 24-26, 2007 249 Shunt Active Power Filter Wind Energy Conversion System

More information

Accommodating High Levels of Distributed Energy Resources

Accommodating High Levels of Distributed Energy Resources Accommodating High Levels of Distributed Energy Resources John Moura, Director of Reliability Assessment and System Analysis 2017 NARUC Winter Committee Meetings February 14, 2017 About NERC: Mission To

More information

Flexibility in Indian Power System

Flexibility in Indian Power System www.nsgm.gov.in Flexibility in Indian Power System Atul Bali, NSGM-PMU, INDIA Indian Power Sector Overview Installed Capacity 329 GW Thermal: 66.7% Hydro: 13.5% Nuclear: 2.1% Renewables: 17.7% Peak Demand

More information

Ancillary Services Market Organization in Germany

Ancillary Services Market Organization in Germany Page 1 Ancillary Services Market Organization in Germany Dr. Bernhard Ernst bernhard.ernst@iwes.fraunhofer.de Page 2 Ancillary Services Market Organization in Germany German Power System Ancillary Services

More information

PUTTING WINd ON ThE GRId by John Douglas

PUTTING WINd ON ThE GRId by John Douglas putting wind on the grid by John Douglas The Story in Brief photo courtesy ge energy Over the last twenty years, technological advances and manufacturing experience have driven down the cost of electricity

More information

FRT-Testing and Direct TSO-Control of Reactive Power Output of Large Wind Farms

FRT-Testing and Direct TSO-Control of Reactive Power Output of Large Wind Farms FRT-Testing and Direct TSO-Control of Reactive Power Output of Large Wind Farms Peter Van Roy, H. Lemmens, T. Springuel, A. Dabin (Elia) Eckard Quitman (Enercon), Jaap-Jan Ferweda (WindVision) Background

More information

Wind power in modern power systems

Wind power in modern power systems J. Mod. Power Syst. Clean Energy (2013) 1(1):2 13 DOI 10.1007/s40565-013-0012-4 Wind power in modern power systems Zhe CHEN (&) Abstract In recent years, wind power is experiencing a rapid growth, and

More information

Distribution System Design General Requirements

Distribution System Design General Requirements Electricity Policy Document 279 Issue 7 September 2017 Distribution System Design General Requirements Contents 1 Introduction 2 Scope 3 Definitions 4 General Requirements 5 Documents Referenced 6 Keywords

More information

Power Quality Measurement and Evaluation of a Wind Farm Connected to Distribution Grid

Power Quality Measurement and Evaluation of a Wind Farm Connected to Distribution Grid Available online at www.sciencedirect.com ScienceDirect Procedia - Social and Behavioral Sciences 195 ( 2015 ) 2370 2375 World Conference on Technology, Innovation and Entrepreneurship Power Quality Measurement

More information

Impact study of PV integration in Bornholm power system

Impact study of PV integration in Bornholm power system Downloaded from orbit.dtu.dk on: Jan 31, 2018 Impact study of PV integration in Bornholm power system Korompili, Asimenia; Zimmermann, Jakob Kjær; Wu, Qiuwei Publication date: 2014 Document Version Publisher's

More information

Essential Reliability Services Task Force

Essential Reliability Services Task Force Essential Reliability Services Task Force A Concept Paper on Essential Reliability Services that Characterizes Bulk Power System Reliability October 2014 I Table of Contents Preface... ii Executive Summary...

More information

ENABLING FREQUENCY AND VOLTAGE REGULATION IN MICROGRIDS USING WIND POWER PLANTS

ENABLING FREQUENCY AND VOLTAGE REGULATION IN MICROGRIDS USING WIND POWER PLANTS Proceedings of the 6th Annual ISC Graduate Research Symposium ISC-GRS 2012 April 13, 2012, Rolla, Missouri ENABLING FREQUENCY AND VOLTAGE REGULATION IN MICROGRIDS USING WIND POWER PLANTS ABSTRACT With

More information

Standard PRC-002-NPCC-01 Disturbance Monitoring

Standard PRC-002-NPCC-01 Disturbance Monitoring A. Introduction 1. Title: Disturbance Monitoring 2. Number: PRC-002-NPCC-01 3. Purpose: Ensure that adequate disturbance data is available to facilitate Bulk Electric System event analyses. All references

More information

The Impact of Wind Generation on System Services in Ireland

The Impact of Wind Generation on System Services in Ireland The Impact of Wind Generation on System Services in Ireland Renewable Energies, an Opportunity and Challenge for Electricity Systems October 8th 2009 Dr Ivan Dudurych, EirGrid 4000 600 3600 480 Load, MW

More information

Frequency Response. Straw Proposal

Frequency Response. Straw Proposal Frequency Response Straw Proposal October 12, 2015 Table of Contents 1. Executive Summary... 3 2. Stakeholder Process and Timetable... 4 3. The New Frequency Response Obligation... 4 3.1. Frequency Response

More information

LARGE WIND FARM AGGREGATION AND MODEL VALIDATION MULUMBA PROSPER PANUMPABI THESIS

LARGE WIND FARM AGGREGATION AND MODEL VALIDATION MULUMBA PROSPER PANUMPABI THESIS LARGE WIND FARM AGGREGATION AND MODEL VALIDATION BY MULUMBA PROSPER PANUMPABI THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer

More information

R2 TESTING GUIDELINE. PREPARED BY: Network Models Systems Capability VERSION: Final RELEASE DATE: 28 June 2013

R2 TESTING GUIDELINE. PREPARED BY: Network Models Systems Capability VERSION: Final RELEASE DATE: 28 June 2013 PREPARED BY: Network Models Systems Capability VERSION: Final RELEASE DATE: 28 June 2013 Version Release History Version Date By Approved By Changes 0.1 June 2013 BB MS This document has been created by

More information

Multi-objective reactive power support from wind farms for network performance enhancement

Multi-objective reactive power support from wind farms for network performance enhancement University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2013 Multi-objective reactive power support from

More information

Integrating variable renewables: Implications for energy resilience

Integrating variable renewables: Implications for energy resilience Integrating variable renewables: Implications for energy resilience Peerapat Vithaya, Energy Analyst System Integration of Renewables Enhancing Energy Sector Climate Resilience in Asia Asia Clean Energy

More information

Rule 21 Sheet 1 GENERATING FACILITY INTERCONNECTIONS

Rule 21 Sheet 1 GENERATING FACILITY INTERCONNECTIONS Southern California Edison Revised Cal. PUC Sheet No. 31574-E Rosemead, California Cancelling Revised Cal. PUC Sheet No. 30685-E Rule 21 Sheet 1 A. Applicability 1. This Rule describes the Interconnection,

More information

Electricity generation, electricity consumption, system integration, production and consumption balance

Electricity generation, electricity consumption, system integration, production and consumption balance Prof. Dr. Andrej Gubina University of Ljubljana, Faculty of Electrical Engineering Electricity generation, electricity consumption, system integration, production and consumption balance Maribor, Slovenia,

More information

WIND ENERGY INTEGRATION IMPACT ON POWER QUALITY IN ESTONIA

WIND ENERGY INTEGRATION IMPACT ON POWER QUALITY IN ESTONIA WIND ENERGY INTEGRATION IMPACT ON POWER QUALITY IN ESTONIA Hannes Agabus 1, Ivo Palu 2 1 Estonian National Gird (Estonian TSO), grid analyst, doctoral student, M.Sc, Address: Kadaka tee 42, Tallinn 12915,

More information

A Multi Stakeholder Perspective

A Multi Stakeholder Perspective A Multi Stakeholder Perspective 1 Agenda Wind Vision Initiative Setting up of Wind Vision : 200 GW by 2032 Recommendations Wind Project Development Regulatory Incentives Financing Wind Vision 2032 Grid

More information

Modeling of the Dynamic Behavior of the Island Power System of Cyprus

Modeling of the Dynamic Behavior of the Island Power System of Cyprus Transmission System Operator CYPRUS Modeling of the Dynamic Behavior of the Island Power System of Cyprus Andreas G. Petoussis Stavros Stavrinos Session 6: Modeling and Power Quality Friday, 24 September

More information

NPP Grid Interface Key Areas

NPP Grid Interface Key Areas IAEA Technical Meeting on Flexible (Non-Baseload) Operation for Load Follow and Frequency Control in New Nuclear Power Plants Erlangen, Germany, 6-8 October 2014 NPP Grid Interface Key Areas David Ward

More information

AORC Technical meeting 2014

AORC Technical meeting 2014 http : //www.cigre.org B4-053 AORC Technical meeting 204 Optimized Operation of Hydropower Plant with VSC HVDC Unit Connection Xiaobo Yang, Chao Yang, Chengyan Yue, Dawei Yao, Chunming Yuan Corporate Research,

More information

Solar Integration into the PJM Grid

Solar Integration into the PJM Grid Solar Integration into the PJM Grid Ken Schuyler Manager, Renewable Services PJM Interconnection September 14, 2017 Integrating Solar in PJM PJM Background PJM Initiatives to Address Impacts Analysis of

More information

GRID CODE COMPLIANCE TESTING OF RENEWABLES NEW REQUIREMENTS AND TESTING EXPERIENCES

GRID CODE COMPLIANCE TESTING OF RENEWABLES NEW REQUIREMENTS AND TESTING EXPERIENCES GRID CODE COMPLIANCE TESTING OF RENEWABLES NEW REQUIREMENTS AND TESTING EXPERIENCES Nils Schäfer, Dr. Gunter Arnold, Wolfram Heckmann Fraunhofer Institute for Wind Energy and Energy System Technology Kassel,

More information

La regulación del incierto futuro de los sistemas eléctricos

La regulación del incierto futuro de los sistemas eléctricos La regulación del incierto futuro de los sistemas eléctricos Foro XM-2017 El futuro de la energía eléctrica en Colombia 25 de mayo, Cartagena, Colombia Carlos Batlle https://energy.mit.edu/profile/carlos-batlle

More information

California Independent System Operator Corporation Fifth Replacement Electronic Tariff

California Independent System Operator Corporation Fifth Replacement Electronic Tariff Table of Contents California Independent System Operator Corporation 8. Ancillary Services... 3 8.1 Scope... 3 8.2 Ancillary Services Standards... 4 8.2.1 Determination Of Ancillary Service Standards...

More information

SMALL GENERATOR INTERCONNECTION REQUEST (Application Form)

SMALL GENERATOR INTERCONNECTION REQUEST (Application Form) SMALL GENERATOR INTERCONNECTION REQUEST (Application Form) Attachment 2 Transmission Provider: Bluestem Electric Cooperative, Inc. Designated Contact Person: Kevin Heptig Address: P.O. Box 5, Wamego, Kansas

More information

Modeling and Operation Analysis of Meshed Distribution Systems with Distributed Generation

Modeling and Operation Analysis of Meshed Distribution Systems with Distributed Generation Modeling and Operation Analysis of Meshed Distribution Systems with Distributed Generation WEN-CHIH YANG Department of Electrical Engineering Technology and Science Institute of Northern Taiwan No.2, Syueyuan

More information

Dispatching Variable Generation Resources

Dispatching Variable Generation Resources Dispatching Variable Generation Resources A Discussion Paper for Stakeholder Engagement 91 (Renewable Integration) Table of Contents Introduction... 3 IESO Dispatch Processes... 5 Registration... 5 Dispatch

More information

International Journal of Engineering, Business and Enterprise Applications (IJEBEA)

International Journal of Engineering, Business and Enterprise Applications (IJEBEA) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0020 ISSN (Online): 2279-0039 International

More information

Contribution of PV Power Plants to Flicker Severity in Power Distribution Grids

Contribution of PV Power Plants to Flicker Severity in Power Distribution Grids Contribution of PV Power Plants to Flicker Severity in Power Distribution Grids Denisa G. Rusinaru, Leonardo G. Manescu, Adelaida, M. Duinea and Cristian C. Bratu Abstract This paper presents some results

More information

Large-scale Wind Power Integration and Voltage Stability Limits in Regional Networks

Large-scale Wind Power Integration and Voltage Stability Limits in Regional Networks Large-scale Wind Power Integration and Voltage Stability Limits in Regional Networks Magni Þ. Pálsson, Trond Toftevaag, Member IEEE, Kjetil Uhlen, Member IEEE, John Olav Giæver Tande SINTEF Energy Research

More information

CERTS Microgrids. Tom Jahns Professor, University of Wisconsin-Madison. LPPC Rates Roundtable May 21, 2013

CERTS Microgrids. Tom Jahns Professor, University of Wisconsin-Madison. LPPC Rates Roundtable May 21, 2013 CERTS Microgrids Tom Jahns Professor, University of Wisconsin-Madison LPPC Rates Roundtable May 21, 2013 Wisconsin Energy Institute WEI WEI provides linkage among all organizations associated with energy

More information

UNOFFICIAL TRANSLATION SUPPLY OF REACTIVE POWER AND MAINTENANCE OF REACTIVE POWER RESERVES

UNOFFICIAL TRANSLATION SUPPLY OF REACTIVE POWER AND MAINTENANCE OF REACTIVE POWER RESERVES UNOFFICIAL TRANSLATION SUPPLY OF REACTIVE POWER AND MAINTENANCE OF REACTIVE POWER RESERVES Guideline 1 (11) Contents 1 INTRODUCTION... 2 2 PRINCIPLES OF THE SUPPLY OF REACTIVE POWER... 2 2.1 Supply point

More information

PJM Interconnection, L.L.C. ( PJM ) submits hereby submits its responses to the United

PJM Interconnection, L.L.C. ( PJM ) submits hereby submits its responses to the United PJM Interconnection, L.L.C. 2750 Monroe Boulevard Audubon, PA 19403 Jacqulynn B. Hugee Associate General Counsel T: (610) 666-8208 F: (610) 666-8211 jacqulynn.hugee@pjm.com Via WPTORFI@ee.doe.gov Hoyt

More information

Power Quality Assessment of Large Motor Starting and Loading for the Integrated Steel-Making Cogeneration Facility

Power Quality Assessment of Large Motor Starting and Loading for the Integrated Steel-Making Cogeneration Facility Power Quality ssessment of Large Motor Starting and Loading for the Integrated Steel-Making Cogeneration Facility Cheng-Ting Hsu, Member, IEEE Department of Electrical Engineering Southern Taiwan University

More information

Managing Flexibility in MISO Markets

Managing Flexibility in MISO Markets Managing Flexibility in MISO Markets Clean Energy Regulatory Forum November 9, 2012 Outline Impacts of Variable Generation on Ancillary Services Dispatchable Intermittent Resources Introduction to Proposed

More information

1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY

1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY 1.818J/2.65J/3.564J/10.391J/11.371J/22.811J/ESD166J SUSTAINABLE ENERGY Prof. Michael W. Golay Nuclear Engineering Dept. 1 Energy Supply, Demand, and Storage Planning The Example of Electricity PRESENTATION

More information

The Global Grid. Prof. Damien Ernst University of Liège December 2013

The Global Grid. Prof. Damien Ernst University of Liège December 2013 The Global Grid Prof. Damien Ernst University of Liège December 2013 1 The Global Grid: what is it? Global Grid: Refers to an electrical grid spanning the whole planet and connecting most of the large

More information

Government of Gujarat Energy and Petrochemicals Department G.R. No.EDA B Sachivalaya, Gandhinagar. Dated the 25 July, 2013.

Government of Gujarat Energy and Petrochemicals Department G.R. No.EDA B Sachivalaya, Gandhinagar. Dated the 25 July, 2013. Wind Power Policy 2013 Government of Gujarat Energy and Petrochemicals Department G.R. No.EDA-102001-3054-B Sachivalaya, Gandhinagar. Dated the 25 July, 2013. Preamble Wind Power as an energy source is

More information

Advice on Power Factor and Accuracy of Temperature Dependant Outputs

Advice on Power Factor and Accuracy of Temperature Dependant Outputs Advice on Power Factor and Accuracy of Temperature Dependant Outputs REPORT WP03749-EE-RP-0001 Rev. 1 3 September 2009 Advice on Power Factor and Accuracy of Temperature Dependant Outputs REPORT WP03749-EE-RP-0001

More information

PSS E. High-Performance Transmission Planning Application for the Power Industry. Answers for energy.

PSS E. High-Performance Transmission Planning Application for the Power Industry. Answers for energy. PSS E High-Performance Transmission Planning Application for the Power Industry Answers for energy. PSS E architecture power flow, short circuit and dynamic simulation Siemens Power Technologies International

More information

04 June 2010 ALL ISLAND TSO FACILITATION OF RENEWABLES STUDIES. Final Report for Lot3/ENQEIR132. prepared for. EIRGRID plc

04 June 2010 ALL ISLAND TSO FACILITATION OF RENEWABLES STUDIES. Final Report for Lot3/ENQEIR132. prepared for. EIRGRID plc 4 June 21 ALL ISLAND TSO FACILITATION OF RENEWABLES STUDIES Final Report for Lot3/ENQEIR132 prepared for EIRGRID plc DIgSILENT GmbH Heinrich-Hertz-Strasse 9 D-7281 Gomaringen Tel.: +49 772 9168 - Fax:

More information

Electrical Networks and Integration of Wind Energy

Electrical Networks and Integration of Wind Energy Electrical Networks and Content: 1. Wind energy in Germany Dr. Boris Valov Institut für Solare Energieversorgungstechnik - ISET Division Engineering and Power Electronics 2. Change in operation of electrical

More information

ANALYSIS OF THE BEHAVIOR FOR REACTIVE POWER COMPENSATION USING SVC CONTROLLED HYBRID SOLAR/WIND POWER GENERATING SYSTEMS

ANALYSIS OF THE BEHAVIOR FOR REACTIVE POWER COMPENSATION USING SVC CONTROLLED HYBRID SOLAR/WIND POWER GENERATING SYSTEMS ANALYSIS OF THE BEHAVIOR FOR REACTIVE POWER COMPENSATION USING SVC CONTROLLED HYBRID SOLAR/WIND POWER GENERATING SYSTEMS Shadab Shakeel 1, Ameenuddin Ahmed 2 1 Student, M.Tech, 2 Asst. Prof., Department

More information

Overview, Status and Outline of the New Standards Series - IEC

Overview, Status and Outline of the New Standards Series - IEC Overview, Status and Outline of the New Standards Series - IEC 61400-21 Measurement and Assessment of Electrical Characteristics Part I - Wind turbines & Part II - Wind Power Plants Björn Andresen Aarhus

More information

Phasor measurement units gain credibility through improved test and calibration standards

Phasor measurement units gain credibility through improved test and calibration standards Phasor measurement units gain credibility through improved test and calibration standards Smart grid; PMU calibration position 1 The North American interconnection, or electric transmission grid, is a

More information

California Independent System Operator Corporation Fifth Replacement Tariff

California Independent System Operator Corporation Fifth Replacement Tariff Table of Contents Method to Assess Available Transfer Capability... 2 L.1 Description of Terms... 2 L.1.1 Available Transfer Capability (ATC)... 2 L.1.2 Total Transfer Capability (TTC)... 2 L.1.3 Existing

More information

Information Document Protection System Information ID# R

Information Document Protection System Information ID# R Information Documents are for information purposes only and are intended to provide guidance. In the event of any discrepancy between the Information Document and the related authoritative document(s)

More information

Non Nuclear Technology: Renewables

Non Nuclear Technology: Renewables WNU-SI in Canada 1 Non Nuclear Technology: Renewables July 9, 2008 Toshiya NANAHARA Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan Future Options for Energy to Cope with CO

More information

Overview of Interconnection Requirements for Wind Power Plants. Denver, Frank Martin, Siemens Wind Power A/S

Overview of Interconnection Requirements for Wind Power Plants. Denver, Frank Martin, Siemens Wind Power A/S Overview of Interconnection Requirements for Wind Power Plants Denver, 28.07.2015 Frank Martin, Siemens Wind Power A/S Agenda Introduction - Why relevant for WPP s Interconnection requirements an overview

More information

Operating Procedure PURPOSE... 2

Operating Procedure PURPOSE... 2 No. 3100 Table of Contents PURPOSE... 2 1. RESPONSIBILITIES... 2 2. SCOPE/APPLICABILITY... 3 2.1. Background... 3 2.2. Scope/ Applicability... 3 3. PROCEDURE DETAIL... 4 3.1. Acceptable System Performance

More information

Standard Development Roadmap

Standard Development Roadmap Standard Development Roadmap This section is maintained by the drafting team during the development of the standard and will be removed when the standard becomes effective. Development Steps Completed:

More information

Best Practices in Conducting Grid Integration Studies

Best Practices in Conducting Grid Integration Studies GREENING THE GRID Best Practices in Conducting Grid Integration Studies ENHANCING CAPACITY FOR LOW EMISSION DEVELOPMENT STRATEGIES (EC-LEDS) Agenda and Learning Objectives Part 1: Why conduct a grid integration

More information

Power System Integration of Offshore Wind Farms:

Power System Integration of Offshore Wind Farms: Power System Integration of Offshore Wind Farms: Challenges Towards Horizon 2020 Tobias Hennig, M.Sc. Fraunhofer IWES Agenda What is EERA JP Wind? Power system integration challenges towards 2020 Example

More information

Grid Connection and Power Quality Optimization of Wind Power Plants

Grid Connection and Power Quality Optimization of Wind Power Plants Grid Connection and Power Quality Optimization of Wind Power Plants Fikri Baris UZUNLAR 1, Onder GULER 2, Ozcan KALENDERLI 3 1, 2 Istanbul Technical University, Energy Institute, Istanbul, Turkey barisuzunlar@hotmail.com,

More information

Wind farm models and control strategies

Wind farm models and control strategies Risø-R-1464(EN) Wind farm models and control strategies Poul Sørensen, Anca D. Hansen, Florin Iov, Frede Blaabjerg and Martin H. Donovan Risø National Laboratory Roskilde Denmark August 2005 Author: Poul

More information

WWSIS - 3: Western Frequency Response and Transient Stability Study

WWSIS - 3: Western Frequency Response and Transient Stability Study WWSIS - 3: Western Frequency Response and Transient Stability Study GE Energy Nicholas W. Miller (PM) Miaolei Shao Slobodan Pajic Rob D Aquila NREL Kara Clark (PM) NERC ERSTF Briefing Atlanta December

More information

AGREEMENT FOR CONNECTION TO [EASTERN /LONDON / SOUTH EASTERN] POWER NETWORKS PLC S DISTRIBUTION SYSTEM

AGREEMENT FOR CONNECTION TO [EASTERN /LONDON / SOUTH EASTERN] POWER NETWORKS PLC S DISTRIBUTION SYSTEM AGREEMENT FOR CONNECTION TO [EASTERN /LONDON / SOUTH EASTERN] POWER NETWORKS PLC S DISTRIBUTION SYSTEM BETWEEN AND (1) [Eastern / London / South Eastern] Power Networks plc Company Number [02366906 / 03929195

More information

ESP ENERGY SYSTEM PLANNING (PTY) LTD COMPANY EXPERIENCE (PROJECTS) Cons ulting Group

ESP ENERGY SYSTEM PLANNING (PTY) LTD COMPANY EXPERIENCE (PROJECTS) Cons ulting Group ENERGY SYSTEM PLANNING (PTY) LTD COMPANY EXPERIENCE (PROJECTS) Suite 2B, 08 Arnold Road, Rosebank, 2196, Johannesburg, South Africa Tel: +27 11 447 9852; Website: http://www.espcg.com Transaction advisory

More information

Active Distribution Networks

Active Distribution Networks Active Distribution Networks Nikos Hatziargyriou nh@power.ece.ntua.gr NTUA, Greece Distributed Generation Technologies Examples Advanced Turbines Reciprocating Engines Fuel Cells Photovoltaics Wind Thermally

More information