o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal

Size: px
Start display at page:

Download "o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal"

Transcription

1 Introduction Solar Energy A.Uses of Solar Energy o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Surbhi; Neumann, Oara; Nordlander, Peter; and Urban, Alexander. ACS Nano. Vol. 7 No. 1 November Pages Panels of pipes are heated by the sun Hot water is stored for use throughout the day Subwavelength metallic and carbon based nanoparticles increase efficiency particles absorb optical radiation and releases heat to the surroundings o Ref 2: Concentrating on Solar Electricity and Fuels. Müller-Steinhagen, Hans; Roeb, Martin. Science. Vol. 329 No August Pages Concentrating Solar Power (CSP) uses mirrors to focus solar radiation onto an absorber CSP generates temperatures from degrees Celsius This heat can be used to boil water to run steam turbines that generate electricity There are 630 CSP plants in the world today o Ref 3: Solar Photovoltaic Cells. Mickey, Charles D. Journal of Chemical Education. Vol. 58 No. 5 May Pages A direct conversion of solar radiation into electricity Excitation of electrons into the conduction band Separation forces electrons to return to ground state through a wire Directional flow of electrons through a wire produces electricity Solar power has many applications from electricity for the home to powering electronics o Ref 4: Photocatalytic Hydrogen Production by Direct Sunlight: A Laboratory Experiment. Koca, Atif; Sahin, Musa. Journal of Chemical Education. Vol. 80. No. 11 November Pages Photocatalysis of water produces hydrogen gas Hydrogen can be burned as a fuel or converted into electricity Hydrogen cars are currently too dangerous for mass production o Ref 5: Releasing Stored Solar energy within Pond Scum: Biodiesel from Algal Lipids. Blatti, Jillian L; Burkart, Micheal D. Journal of Chemical Education Vol.89. P Biodiesel is derived from the lipids and oils of microalgae 1

2 Biodiesel produces less pollution than petroleum, and the microalgae absorb CO 2. Unlike other biofuel, microalgae can live in a wide range of environments Unlike hydrogen fuel, current gas stations can be easily converted to biodiesel B. General Types of Solar Cells o Ref 3: Band gap is important when choosing a semiconductor. 1.5eV is ideal. Charge carriers can be controlled by doping N-type doping creates extra negative (electron) charge carries. Ex. Si-P P-type doping creates extra holes. Ex. Si-B P-n junction creates excess holes next to excess electrons to increase conduction Homojunction is the addition of small amounts of dopant to a pure material Heterojunction is the joining of two different semiconductors o Ref 6: Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO2 Films Modified with Inorganic Sensitizers. Meyer, Gerald. Journal of Chemical Education. Vol. 74 No. 6 June Pages Sensitizer donates electrons to the semiconductor The sensitizer is regenerated by electrons from the electrolyte Electric current can be generated at lower energies than the bandgap Electron transfer happens much more rapidly than recombination Ru(II)polypyridyl coordination compounds are stable and efficient sensitizers LHE (light-harvesting efficiency) is 99% o Ref 7: The Molecular Engineering of Organic Sensitizers for Solar-Cell Applications. Delcamp, Jared; Grätzel, Michael; Holcombe, Thomas W.; Nazeeruddin, Mohammad K.; and Yella, Aswani. Angew. Chem. Int. Ed No. 52. Pages Organic molecules would decrease cost, be lightweight, efficient, and flexible Work in the same way as inorganic sensitized solar cells Donor-pi-bridge-acceptor structure is most promising Both electron donating and accepting Multiple substitution sites for the creation of analogs The JD21 analog shows 8.4% power conversion efficiency o Ref 8: Significant Improvement of Polymer Solar Cell Stability. Krebs, Frederik C, Spanggaard, Holger. Chemistry of Materials. Vol. 17(21) P Polymer-based solar cells could become a cheap source of renewable energy 2

3 Many of the most efficient systems have a conjugated polymer such as polythiophene This polymer has alkyl side chains to stabilize it The widespread application of organic solar cells depends on the resolution of several factors One factor is the lifespan of the organic polymer, which is currently less than 1000 hours Another factor is cell efficiency, which is currently between 2% and 4% for cells C. Statement of Need and Outline of Approach Materials and Methods Results Discussion Conclusion References 3

4 Solar Energy Introduction A. Uses of Solar Energy As the world begins to use up all of its oilfields and coal mines, a new power supply is in increasing demand. Converting solar radiation into a renewable power source is a promising solution. There are five main types of solar power: heating, concentrating solar power (CSP), solar cells, photocatalysis, and biomass fuels. The first type of solar power is heating large panels of water pipes. The hot water can be stored for use throughout the day. Nanoparticles are being developed to increase the efficiency of heating. 1 The sub-wavelength metallic and carbon nanoparticles absorb solar radiation and dissipate the energy as heat to the surrounding fluid. 1 Heating has practical applications for homes and businesses which receive large amounts of sunlight during the day. The second type of solar power is CSP. CSP plants use thousands of mirrors to concentrate solar radiation on an absorber which can reach temperatures from 200 to 1000 degrees Celsius. 2 The heat can boil water used to power steam turbines which generate electricity. There are already 630 CSP plants in the world. 2 The third type of solar power is solar cells. Solar cells directly convert solar radiation to electricity. Electrons absorb solar radiation and are excited into the conduction band. 3 The electrons are forced to return to ground state through a wire generating electrical current. 3 Most solar power research is in the field of solar cells. The application of solar cells ranges from powering entire houses in the daytime to powering personal electronic devices. The fourth type of solar energy is photocatalysis, which uses sunlight to create hydrogen from water. 4 Hydrogen can be burned as fuel or used to generate electricity. 4 Hydrogen was initially of great interest as an alternative fuel for cars, but due to the high combustibility of hydrogen and difficulty with storage, interest is waning. The fifth form of solar power is biodiesel synthesized from the oils and lipids of microalgae. 5 Microalgae can be grown in a wide range of environments, even in contaminated water that is unsuitable for human and animal consumption. The biodiesel produces less greenhouse gas than petroleum, and gas that is produced would be consumed by the next generation of microalgae. 5 Also, biodiesel would not require a large change to the current infrastructure because existing gas stations can be converted to biodiesel. B. General Types of Solar Cells There are four main types of solar cells: semiconductor, sensitized inorganic, organic dye, and organic polymer solar cells. Semiconductor solar cells absorb solar radiation and excite electrons into the conduction band. 3 Electrons that fall back to ground state are energetically useless, but electrons that are forced through a wire generate an electric current. Conductivity of 4

5 the semiconductor material depends on the number of charge carriers (electrons) and the band gap. 3 Materials with a band gap of 1.5 ev are ideal. 3 Silicon, for example, has a band gap of 1.8 ev which is a little higher than ideal. 3 The number of charge carriers is more easily controlled by doping. There are two types of doping. P-type doping increase the number of holes, or positive charges. 3 For example, silicon can be doped with boron, which can be satisfied with three bonds, leading to the creation of a hole. N-type doping increases the number of electrons, or negative charge carriers. 3 Silicon can be n-type doped with phosphorus, which can hold an fifth electron pair. To further increase conduction, p-type doped material can be placed next to n-type doped material to form a p-n junction. 3 Junctions can be either homojunctions where small amounts of dopants are added to pure material or heterojunctions in which two different semiconductor materials are used. 3 The second type of solar cells, sensitized inorganic solar cells, work much the same as semiconductor cells but use a sensitizer to push electrons into the semiconductor material. 6 The sensitizer is regenerated by electrons in the electrolyte. 6 This method allows electric currents to be generated at lower energies than the bandgap because electron transfer happens much more quickly than recombination. 6 Ru(II)polypyridyl coordination compounds have been found to be stable and efficient sensitizers and have lightharvesting efficiencies (LHE) of 99%. 6 The third type of solar cells, organic dye sensitized solar cells, work the same way as sensitized inorganic solar cells but use organic materials which would decrease production cost and weight and increase efficiency and flexibility. 7 Compounds containing a donor-pi-bridge-acceptor structure are the most promising partly because they are both electron donating and accepting. 7 These compounds also contain multiple substitution sites for analog engineering. 7 Grätzel was able to construct the JD21 analog which showed 8.4% power conversion efficiency. 7 The fourth type of solar cell is organic polymer solar cells, or plastic solar cell. Organic polymer cells are a cheaper alternative to inorganic cells. 8 Organic polymer cells have a conjugated polymer with side chains to stabilize it. 8 A few issues with organic polymer cells still need to be addressed. One of these issues is the efficiency of the cells, which currently is still below those of inorganic cells. 8 Another issue is the durability of the organic polymers, which start break down after around 1000 hours. 8 While this is enough for some applications, powering houses or other large scale applications will require more durable cells. C. Statement of Need and Outline of Approach Materials and Methods Results Discussion 5

6 Conclusion References (1) Solar Vapor Generation Enabled by Nanoparticles. Day, J.; Halas, N.; Lal, S.; Neumann, O.; Nordlander, P.; Urban, A. ACS Nano. 2012, 7, (2) Concentrating on Solar Electricity and Fuels. Müller-Steinhagen, H.; Roeb, M. Science 2012, 329, (3) Solar Photovoltaic Cells. Mickey, C. D. J. Chem. Educ. 1981, 58, (4) Photocatalytic Hydrogen Production by Direct Sunlight: A Laboratory Experiment. Koca, A.; Sahin, M. J. Chem. Educ. 2003, 80, (5) Releasing Stored Solar energy within Pond Scum: Biodiesel from Algal Lipids. Blatti, J. L.; Burkart, M. D. J. Chem. Educ. 2012, 89, (6) Efficient Light-to-Electrical Energy Conversion: Nanocrystalline TiO 2 Films Modified with Inorganic Sensitizers. Meyer, G. J. Chem. Educ. 1997, 74, (7) The Molecular Engineering of Organic Sensitizers for Solar-Cell Applications. Delcamp, J.; Grätzel, M.; Holcombe, T. W.; Nazeeruddin, M. K.; Yella, A. Angew. Chem. Int. Ed. 2013, 52, (8) Significant Improvement of Polymer Solar Cell Stability. Krebs, F. C.; Spanggaard, H. Chem. Mater. 2005, 17,

Dye sensitized solar cells

Dye sensitized solar cells Dye sensitized solar cells What is DSSC A dye sensitized solar cell (DSSC) is a low cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo

More information

Overview of renewable energy

Overview of renewable energy Overview of renewable energy Outline What is renewable energy? Renewable energy sources Renewable energy technologies: - Characteristics - Uses What is renewable energy? Energy that doesn t run out! Energy

More information

Introduction to Green Chemistry: Solar Energy Devices Made with Natural Dyes

Introduction to Green Chemistry: Solar Energy Devices Made with Natural Dyes Introduction Introduction to Green Chemistry: Solar Energy Devices Made with Natural Dyes In the course of your lifetime, you have observed significant dependence of the economy on hydrocarbon-based fuels.

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

The Benefits of Solar Power

The Benefits of Solar Power The Benefits of Solar Power Solar Energy Solar energy is the light that comes from the sun and is the earth s most abundant energy source. Every day the sun radiates extraordinary amounts of energy into

More information

Course schedule. Universität Karlsruhe (TH)

Course schedule. Universität Karlsruhe (TH) Course schedule 1 Preliminary schedule 1. Introduction, The Sun 2. Semiconductor fundamentals 3. Solar cell working principles / pn-junction solar cell 4. Silicon solar cells 5. Copper-Indiumdiselenide

More information

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Introduction Natural photosynthesis, based on complex organic photoactive antennae and metal organic redox

More information

Solar Energy and Personal Behaviors

Solar Energy and Personal Behaviors Solar Energy and Personal Behaviors Emissions reductions need to be rapid and large - 80% reduction by 2050 to avoid worst scenarios Urgent need for alternate energy sources solar wind 1 Algae as a source

More information

Chapter 18: Electrical Properties

Chapter 18: Electrical Properties Chapter 18: Electrical Properties ISSUES TO ADDRESS... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Name Date Class. How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources?

Name Date Class. How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources? Chapter 12 Energy and Material Resources Section 1 Summary Fossil Fuels How do fuels provide energy? What are the three major fossil fuels? Why are fossil fuels considered nonrenewable resources? A fuel

More information

EPSc 116: Resources of the Earth. Lecture 15 on Ch. 6: Renewable Energy. Focal Points

EPSc 116: Resources of the Earth. Lecture 15 on Ch. 6: Renewable Energy. Focal Points EPSc 116: Resources of the Earth Lecture 15 on Ch. 6: Renewable Energy Focal Points What are the sources of renewable energy? How do we extract the energy from them and convert it to our use? What are

More information

HOW TO BUILD A PIZZA BOX SOLAR OVEN

HOW TO BUILD A PIZZA BOX SOLAR OVEN HOW TO BUILD A PIZZA BOX SOLAR OVEN ACTIVITY Get cooking with the sun! Use one of our MANY sunny days to learn how you can trap the sun s natural heat to make a homemade oven. KEY CONCEPTS ENERGY SOLAR

More information

Abstract-The Hydro-Mobile. The Hydro-Mobile is a salt-water, solar energy, and wind energy powered car. It uses a radio

Abstract-The Hydro-Mobile. The Hydro-Mobile is a salt-water, solar energy, and wind energy powered car. It uses a radio Abstract-The Hydro-Mobile The Hydro-Mobile is a salt-water, solar energy, and wind energy powered car. It uses a radio wave generator to ignite saltwater. The heat produced by the reaction will power an

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Chapter 18 Renewable Energy

Chapter 18 Renewable Energy Chapter 18 Renewable Energy MULTIPLE CHOICE 1. Habitat loss, soil erosion, and air pollution are disadvantages of which renewable energy source? a. solar c. biomass fuel b. wind d. moving water C DIF:

More information

Solar Hydrogen Production

Solar Hydrogen Production Solar Hydrogen Production University of Oslo Centre for Materials and Nanotechnology Athanasios Chatzitakis a.e.chatzitakis@smn.uio.no Japan-Norway Energy Science Week 2015 27-28 May 2015 Oslo Innovation

More information

Solar Energy Utilization

Solar Energy Utilization Solar Energy Utilization H 2 O O 2 CO 2 QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. sugar natural photosynthesis 50-200 C space, water heating 500-3000 C heat engines

More information

Four Solar Systems Passive heating Active heating Photovoltaic Water heating

Four Solar Systems Passive heating Active heating Photovoltaic Water heating ALTERNATIVE ENERGY Beyond Petroleum and Coal http://geothermal.marin.org/geopresentation/sld121.htm Alternative Energy Sources Solar Biomass Rivers, winds and tides Other fossil fuels Advancing Technologies

More information

OFFICE OF RESEARCH PUBLICATIONS

OFFICE OF RESEARCH PUBLICATIONS YOU ARE VIEWING A.PDF FILE FROM THE OFFICE OF RESEARCH PUBLICATIONS Please adjust your settings in Acrobat to Continuous Facing to properly view this file. Thank You. UF chemists and engineers seek to

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

ENVIRONMENTAL SCIENCE

ENVIRONMENTAL SCIENCE Advanced Placement ENVIRONMENTAL SCIENCE Renewable Energy STUDENT 2014 Renewable Energy The worldwide demand for energy has soared. Human population is increasing exponentially with the emergence of large

More information

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass.

Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass. Figure 16.31: Two-dimensional representations of (a) a quartz crystal and (b) a quartz glass. Figure 16.28: The p orbitals (a) perpendicular to the plane of th carbon ring system in graphite can combine

More information

Four Solar Systems Passive heating Active heating Photovoltaic Water heating

Four Solar Systems Passive heating Active heating Photovoltaic Water heating ALTERNATIVE ENERGY Beyond Petroleum and Coal http://geothermal.marin.org/geopresentation/sld121.htm Alternative Energy Sources Solar Biomass Rivers, winds and tides Other fossil fuels Advancing Technologies

More information

PHOTOVOLTAIC PRINCIPLE AND ENERGY ACCUMULATION R&D IN THE CZECH REPUBLIC

PHOTOVOLTAIC PRINCIPLE AND ENERGY ACCUMULATION R&D IN THE CZECH REPUBLIC PHOTOVOLTAIC PRINCIPLE AND ENERGY ACCUMULATION R&D IN THE CZECH REPUBLIC J. Kliment Solartec, Ltd. Televizní 2618, 756 61 Rožnov pod Radhoštěm Corresponding author: Jiří Kliment (jkliment@solartec.cz)

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK CONCENTRATED SOLAR POWER SHUBHAM MORE, NIVRUTTI UBHAD Prof. Ram Meghe Institute

More information

Energy From Electron Transfer. Chemistry in Context

Energy From Electron Transfer. Chemistry in Context Energy From Electron Transfer Chemistry in Context Energy Types Batteries Hybrid Cars (Electrical) H 2 (and Other) Fuel Cells Solar Fuel Cell Car Demo H 2 Fuel Cell Reactions Step 1: H 2 (g) 2H + (aq)

More information

Department of Chemistry, University of California, Davis, California 95616, USA 2

Department of Chemistry, University of California, Davis, California 95616, USA 2 Enhance Solar Water Splitting Performance by Utilizing Near Infrared Radiation with Composite Films of Hematite and Rare Earth Doped Upconversion Materials Ming Zhang, 1 Yongjing Lin, 2 Thomas J. Mullen,

More information

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1.

Physics 171, Physics and Society Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Quiz 1 1pm Thurs Sept 14, 2017 Each question has one correct answer, or none (choose e on the clicker). 1. Maria is riding her bicycle on a flat road at 10 mi/hr. Then she squeezes the brakes and comes

More information

Energy & Power Unit 5, Lesson 1 Explanation

Energy & Power Unit 5, Lesson 1 Explanation Energy & Power 5.1.1 Unit 5, Lesson 1 Explanation The Unit Big Idea The designed world is the product of a design process, which provides ways to turn resources - materials, tools and machines, people,

More information

Concentrated Solar Power

Concentrated Solar Power Professorship of Renewable Energy Carriers Institute of Energy Technology Concentrated Solar Power Martina Neises-von Puttkamer Department of Mechanical and Process Engineering, ETH Zurich 8092 Zurich,

More information

Name Class Date. The statements below are false. For each statement, replace the underlined term to make a true statement.

Name Class Date. The statements below are false. For each statement, replace the underlined term to make a true statement. Skills Worksheet Chapter Review USING KEY TERMS The statements below are false. For each statement, replace the underlined term to make a true statement. 1. A liquid mixture of complex hydrocarbon compounds

More information

THE ROLE OF THE HYDROGEN FUEL CELL IN PROVIDING CLEAN ENERGY OF THE FUTURE

THE ROLE OF THE HYDROGEN FUEL CELL IN PROVIDING CLEAN ENERGY OF THE FUTURE THE ROLE OF THE HYDROGEN FUEL CELL IN PROVIDING CLEAN ENERGY OF THE FUTURE ENVIRONMENTAL SUSTAINABILITY 1983 Brundtland Commission- Our Common Future 1987 Sustainable Development Development that meets

More information

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

Renewable Energy Today

Renewable Energy Today Chapter 18 Renewable Energy Today Renewable Energy energy from a source that is constantly being reformed. Many governments are planning to increase their use of renewable energy resources. This will reduce

More information

UNIT 10: ENERGY ISABEL CORONADO ROMERO

UNIT 10: ENERGY ISABEL CORONADO ROMERO UNIT 10: ENERGY ISABEL CORONADO ROMERO 1. WHAT IS ENERGY? Definition: Energy is a physical quantity which produces a change or an effect Unit: International System Joule (J) Other Calorie (cal) 1cal =4,19J

More information

Nanopower. Nano SolarClean Photocatalyst Technology. Introducing. a green self-cleaning nanotechnology company

Nanopower. Nano SolarClean Photocatalyst Technology. Introducing. a green self-cleaning nanotechnology company Nanopower a green self-cleaning nanotechnology company Introducing Nano SolarClean Photocatalyst Technology Self-Cleans & Improves Solar Absorption by up to 6% and can extend life of PV Panels.Protecting

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

Avalanche Breakdown (Reverse biased PN junction)

Avalanche Breakdown (Reverse biased PN junction) Deviation from the Ideal Diode Ideal diode I The mechanism for breakdown 1. Avalanching 2. Zener Process -V BR -Io generation of carriers in the depletion region -I measured Real diode V A Ideal diode

More information

Sixth Grade Energy and Conservation Unit Parent Background Information

Sixth Grade Energy and Conservation Unit Parent Background Information Sixth Grade Energy and Conservation Unit Parent Background Information WHAT IS ENERGY? The nature of energy is very complex, but it is best described by these characteristics: energy is the ability to

More information

The Promise and Challenges of Microalgae as a Source of Transportation Fuel. November 17, Jerry Brand

The Promise and Challenges of Microalgae as a Source of Transportation Fuel. November 17, Jerry Brand The Promise and Challenges of Microalgae as a Source of Transportation Fuel November 17, 2011 Jerry Brand Algal Biomass Summit Minneapolis, MN Oct. 25 27, 2011 The current excitement about algae So why

More information

MITES. Middle School Introduction To Engineering Systems

MITES. Middle School Introduction To Engineering Systems MITES Middle School Introduction To Engineering Systems 2 A couple of reminders Today s lecture will be quite brief, (yay!)so please stay as quiet as you can and avoid playing with any of the items on

More information

Green Chemistry Five ways in which the Chemical industry can become Greener Changing to renewable sources Use of alternatives to hazardous chemicals

Green Chemistry Five ways in which the Chemical industry can become Greener Changing to renewable sources Use of alternatives to hazardous chemicals Green Chemistry Green Chemistry refers to the processes in the chemical industry that are being reinvented to make them more sustainable. The term sustain means to keep going. If we use resources faster

More information

Teacher Background Information Making Fuel from Algae Lesson Plan

Teacher Background Information Making Fuel from Algae Lesson Plan Teacher Background Information Making Fuel from Algae Lesson Plan 1. Fossil Fuels Fossil fuels are a finite resource including coal, oil, and natural gas. These were produced from materials such as algae

More information

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work

Energy Vocabulary. Word Definition Memory Aid the ability to cause an object to 1. energy move, change, or work the ability to cause an object to 1. move, change, or work 2. trade-off something that you do not want, but have to accept in order to have something that you want (disadvantage) 3. variable a changing

More information

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass Fabrication and testing of DSSC M. Mazalan*, M. Mohd Noh, Y.Wahab, M. N. Norizan, I. S. Mohamad Advanced Multidisciplinary

More information

Hydroelectric and Solar Power

Hydroelectric and Solar Power Hydroelectric and Solar Power By: Caitlin Kelliher James Manne-Nicholas Elise McGue Amanuel Zewdie 6 th Period IBSL/AP Physics Solar Power Introduction When photons, light particles, collide with atoms,

More information

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Electricity and Your Community. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 7 Earth s Natural Resources Section 1 Electricity and Your Community What Do You See? Learning Outcomes In this section, you will Compare energy resources used to generate electricity in the United

More information

Special Feature: Photovoltaic Generation Technologies

Special Feature: Photovoltaic Generation Technologies Special Feature: Photovoltaic Generation Technologies Almost all energy to sustain our economic activities is generated from fossil fuels such as finite petroleum and coal. Greenhouse gas emission from

More information

High-energy Hydrogen I Teacher Page

High-energy Hydrogen I Teacher Page High-energy Hydrogen I Teacher Page Hydrogen K-W-L Student Objective (intro activity) will know their level of knowledge of hydrogen technology (follow-up activity) will assess what they have learned about

More information

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable.

Energy. Solar Energy. Energy Resource A natural resource that. humans use to generate energy. Can be renewable are nonrenewable. Energy Solar Energy Energy Resource A natural resource that humans use to generate energy. Can be renewable are nonrenewable. energy sources are replaced by natural processes at least as quickly as they

More information

SCI181 exam 2 test #3 Page 1

SCI181 exam 2 test #3 Page 1 SI181 exam 2 test #3 Page 1 Name: ate: 1 Which of the following would most reduce current U.S. reliance on foreign oil imports? Switching to energy-efficient lightbulbs ontinuing to raise the fuel efficiency

More information

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis:

Biomass. Coal. 10 Intermediate Energy Infobook Activities. Description of biomass: Renewable or nonrenewable: Description of photosynthesis: Biomass Description of biomass: Description of photosynthesis: Ways we turn biomass into energy we can use: Who uses biomass and for what purposes: Effect of using biomass on the environment: Important

More information

Energy Junior Science. Easy to read Version

Energy Junior Science. Easy to read Version Energy Junior Science Easy to read Version 1 1a Energy makes things happen Energy is not a substance or an object that you can touch or hold, but substances and objects can possess energy Energy is something

More information

Natural Resources. Mr. Dvorin Muir Middle School

Natural Resources. Mr. Dvorin Muir Middle School Natural Resources Mr. Dvorin Muir Middle School NONRENEWABLE AND RENEWABLE RESOURCES HMMMM... What do you think nonrenewable resources are? Break it down... Nonrenewable? Resource? NONRENEWABLE RESOURCES

More information

TiO 2 particles - Fundamentals and Applications as photocatalyst

TiO 2 particles - Fundamentals and Applications as photocatalyst TiO 2 particles - Fundamentals and Applications as photocatalyst Most information taken from TiO2 photocatalysis Fundamentals and Applications by Akira Fujishima, Dr. Kazuhito Hashimoto, and Dr. Toshiya

More information

Nanotechnology for Next Generation Photovoltaics

Nanotechnology for Next Generation Photovoltaics 340 Nanotechnology for Next Generation Photovoltaics NARASIMHA RAO MAVILLA 1,2, CHETAN SINGH SOLANKI 1,3, JUZER VASI 1,2 * 1 National Centre for Photovoltaic Research & Education, IIT Bombay, Mumbai 400076,

More information

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio

Plasmonics using Metal Nanoparticles. Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio Plasmonics using Metal Nanoparticles Tammy K. Lee and Parama Pal ECE 580 Nano-Electro-Opto-Bio April 1, 2007 Motivation Why study plasmonics? Miniaturization of optics and photonics to subwavelength scales

More information

An Evaluation of Solar Photovoltaic Technologies

An Evaluation of Solar Photovoltaic Technologies An Evaluation of Solar Photovoltaic Technologies 15.965 Technology Strategy Paper 1, February 23, 2009 Introduction: Green thinking is the in topic these days. Companies are all claiming to be going green.

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project March 5 th, 2010 Investigators Nicholas Melosh, Department of Materials Science

More information

Solar Power Vs. Nuclear Power. By: G. H C. P S. J

Solar Power Vs. Nuclear Power. By: G. H C. P S. J Solar Power Vs. Nuclear Power By: G. H C. P S. J History Solar Energy Solar energy comes from the sun (photons) Sun light has been harnessed by humans since ancient times As early as 400 BC Ancient Greeks

More information

future-proof energy with photovoltaic systems

future-proof energy with photovoltaic systems future-proof energy with photovoltaic systems DESIGN STRATEGIES SOLAR PANELS FOR ON-SITE ENERGY PHOTOVOLTAIC SYSTEMS The direct conversion of sunlight into electricity with solar cells connected in a series

More information

Topics Relevant to CdTe Thin Film Solar Cells

Topics Relevant to CdTe Thin Film Solar Cells Topics Relevant to CdTe Thin Film Solar Cells March 13, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Algae Balls. Investigating Photosynthesis. Student Materials. Introduction Lab Protocol Data Collection Worksheet... 5

Algae Balls. Investigating Photosynthesis. Student Materials. Introduction Lab Protocol Data Collection Worksheet... 5 Algae Balls Investigating Photosynthesis Student Materials Introduction... 2 Lab Protocol... 4 Data Collection Worksheet... 5 Pre-Lab Questions... 8 Post-Lab Questions and Analysis... 9 Last updated: October

More information

Renewable Energy Sources. Lesson Plan: NRES F1-2

Renewable Energy Sources. Lesson Plan: NRES F1-2 Renewable Energy Sources Lesson Plan: NRES F1-2 1 Anticipated Problems 1. What are renewable energy sources? 2. What are advantages and disadvantages of renewable energy sources? 2 Terms biomass biopower

More information

Evins 1. Sarah Evins Professor Scarlatos HON 301 March 25, 2012

Evins 1. Sarah Evins Professor Scarlatos HON 301 March 25, 2012 Evins 1 Sarah Evins Professor Scarlatos HON 301 March 25, 2012 Abstract: This report seeks to clarify the current state of nanotechnology as it enables new innovations in solar technology. The report first

More information

Reliant on fossil fuels (coal, oil, natural gas)

Reliant on fossil fuels (coal, oil, natural gas) Reliant on fossil fuels (coal, oil, natural gas) Those will not last forever, need to have a back up plan Using fossil fuels creates greenhouse gases, which impact climate change Renewable energy is better

More information

10. Why is photosynthesis necessary for biofuel production?

10. Why is photosynthesis necessary for biofuel production? Biomass 1. Describe Biomass. 3. How much did the percentage of energy that biomass gives change from the mid-1800s to today? 4. What replaced biomass as the main source of our energy? 5. How does biomass

More information

Planetary Energy Balance

Planetary Energy Balance Planetary Energy Balance Overview of Planetary Energy Balance Energy coming into the Earth s atmosphere from the sun is always in balance with the energy leaving Earth s atmosphere going back out into

More information

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Nanomaterials Course - June 28, 2006 Energy & Global Warming M.I. Hoffert et al., Nature,, 1998, 395,, p 881 Energy Implications of Future

More information

Chapter 13 Renewable Energy and Conservation

Chapter 13 Renewable Energy and Conservation Chapter 13 Renewable Energy and Conservation Overview of Chapter 13 Direct Solar Energy Indirect Solar Energy Wind Biomass Hydropower Geothermal Tidal High and Low Technology Energy Solution Direct Solar

More information

CHAPTER 1 THE CHEMICAL PROCESS INDUSTRY THE CHEMICAL PROCESS INDUSTRY

CHAPTER 1 THE CHEMICAL PROCESS INDUSTRY THE CHEMICAL PROCESS INDUSTRY CHAPTER 1 INTRODUCTION AN OVERVIEW OF THE CHEMICAL PROCESS AND PRIMARY RAW MATERIALS THE CHEMICAL PROCESS The chemical process industry includes those manufacturing facilities whose products result from:

More information

Semiconductor Very Basics

Semiconductor Very Basics Semiconductor Very Basics Material (mostly) from Semiconductor Devices, Physics & Technology, S.M. Sze, John Wiley & Sons Semiconductor Detectors, H. Spieler (notes) July 3, 2003 Conductors, Semi-Conductors,

More information

Environmental Science Sixth Edition

Environmental Science Sixth Edition Environmental Science Sixth Edition Daniel B. Botkin Edward A. Keller 978--47-499-7 CHAPTER 19 Alternative Energy and the Environment Introduction Fossil Fuels supply about 9% of energy All others are

More information

Voltage: electrical energy that is used to push electricity through a wire

Voltage: electrical energy that is used to push electricity through a wire Energy Resources Wednesday, March 25 th, 2015 EQ#12 Block #3 EQ: What is a KWH? How big is it? Kilo-Watt Hour, 3,600,000 J AA: If the period of a pendulum is 3 s when the bob has a mass of 100 g, what

More information

Organic Solar Cells. Green River Project

Organic Solar Cells. Green River Project Organic Solar Cells Green River Project Silicon Cells Silicon semiconductors Advantages: Efficiencies Lifetimes Disadvantages: High manufacturing costs Inflexible http://en.wikipedia.org Organic semiconductors

More information

NONRENEWABLE RESOURCES

NONRENEWABLE RESOURCES ENERGY RESOURCES NONRENEWABLE RESOURCES Energy is the ability to cause change. Fossil fuels com from the remains of ancient animals. They include: petroleum, coal, and natural gas and are nonrenewable,

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

Alternative Energy. 1. Solar 2. Biofuels (biomass) 3. Nuclear. 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power)

Alternative Energy. 1. Solar 2. Biofuels (biomass) 3. Nuclear. 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power) Alternative Energy 1. Solar 2. Biofuels (biomass) 3. Nuclear a. Fusion b. Fission 4. Fuel Cells 5. Wind 6. Hydroelectric 7. Geothermal 8. Tidal (wave power) Solar Energy Solar energy uses energy from the

More information

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel

Halbleiter Prof. Yong Lei Prof. Thomas Hannappel Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilmenau.de thomas.hannappel@tu-ilmenau.de http://www.tu-ilmenau.de/nanostruk/ Solid State Structure of Semiconductor Semiconductor manufacturing

More information

Efficiency of Solar Cell Design and Materials

Efficiency of Solar Cell Design and Materials S&T s Peer to Peer Volume 1 Issue 2 Article 7 May 2017 Efficiency of Solar Cell Design and Materials Grant VonderHaar Follow this and additional works at: http://scholarsmine.mst.edu/peer2peer Part of

More information

Biobased Product Testing

Biobased Product Testing Biobased Product Testing Analytical Background: The Carbon Cycle The carbon cycle is a biogeochemical system or cycle through which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere

More information

Author: Marcello De Falco, Associate Professor, University UCBM Rome (Italy)

Author: Marcello De Falco, Associate Professor, University UCBM Rome (Italy) Renewable Technologies Energy Key Author: Marcello De Falco, Associate Professor, University UCBM Rome (Italy) 1. Theme description Human technology has always looked for solutions to exploit the wide

More information

Advanced Analytical Chemistry Lecture 9. Chem 4631

Advanced Analytical Chemistry Lecture 9. Chem 4631 Advanced Analytical Chemistry Lecture 9 Chem 4631 Solar Cell Research Solar Cell Research Solar Cell Research Solar Cell Research Thin film technologies Candidates for thin-film solar cells: Crystalline

More information

Solar Car. c t. r u. i o. n s. i n s t

Solar Car. c t. r u. i o. n s. i n s t Solar Car i n s t r u c t i o n s About KidWind The KidWind Project is a team of teachers, students, engineers, and practitioners exploring the science behind wind energy in classrooms around the US. Our

More information

Introduction to Renewable Technologies

Introduction to Renewable Technologies Course Syllabus Introduction to Renewable Technologies Course Description Interested in transforming energy? With concerns about climate change and growing populations effects on traditional energy supplies,

More information

Impact of Solar panels on global climate

Impact of Solar panels on global climate DOE/UCAR Cooperative Agreement Regional and Global Climate Modeling Program Impact of Solar panels on global climate Aixue Hu, Samuel Levis, Gerald A. Meehl, Weiqing Han, Warren M. Washington, Keith W.

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

ENERGY To be or not to be sustainable?

ENERGY To be or not to be sustainable? ENERGY To be or not to be sustainable? AESc 210: Globalization Spring 2018 OUR AGENDA Physical concepts of energy Renewable and non-renewable energy types Issues with non-renewables Issues with renewables

More information

Transmission Mode Photocathodes Covering the Spectral Range

Transmission Mode Photocathodes Covering the Spectral Range Transmission Mode Photocathodes Covering the Spectral Range 6/19/2002 New Developments in Photodetection 3 rd Beaune Conference June 17-21, 2002 Arlynn Smith, Keith Passmore, Roger Sillmon, Rudy Benz ITT

More information

The names and formulae of three hydrocarbons in the same homologous series are: Which homologous series contains ethane, propane and butane?

The names and formulae of three hydrocarbons in the same homologous series are: Which homologous series contains ethane, propane and butane? Q1.This question is about hydrocarbons. (a) The names and formulae of three hydrocarbons in the same homologous series are: Ethane C 2 H 6 Propane C 3 H 8 Butane C 4 H 10 The next member in the series

More information

Name: Laura Speegle Date submitted: 09/15/10 Teaching lesson grade: Course grade: Target Grades: 4, 5 and 6

Name: Laura Speegle Date submitted: 09/15/10 Teaching lesson grade: Course grade: Target Grades: 4, 5 and 6 Future Fuels from Forests Teacher Institute Teaching Unit Rubric Due Wednesday, Sept.1, 2010 to academic coordinator: jchadde@mtu.edu View past lessons at: http://wupcenter.mtu.edu/education/energy_education/index2008.html

More information

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS MATERIALS FOR SOLAR ENERGY: SOLAR CELLS ROBERTO MENDONÇA FARIA PRESIDENT OF Brazil-MRS (SBPMat) The concentration of CO 2 in Earth s atmosphere (2011) is approximately 392 ppm (parts per million) by volume,

More information

Deviation from the Ideal Diode. Ideal diode equation. I The mechanism for breakdown 1. Avalanching 2. Zener Process. Ideal diode

Deviation from the Ideal Diode. Ideal diode equation. I The mechanism for breakdown 1. Avalanching 2. Zener Process. Ideal diode Deviation from the Ideal Diode Ideal diode I The mechanism for breakdown 1. Avalanching 2. Zener Process -V BR -Io generation of carriers in the depletion region -I measured Real diode V A Ideal diode

More information

Lesson Plan Time Requirements: Objectives: Materials: Methods: Lesson Information: Clean, Green Power (Target: Grades 1-4)

Lesson Plan Time Requirements: Objectives: Materials: Methods: Lesson Information: Clean, Green Power (Target: Grades 1-4) Lesson Plan 050106 Clean, Green Power (Target: Grades 1-4) Time Requirements: 1. 30-minutes during science or reading time Objectives: 1. Create awareness for alternative energies 2. Create awareness for

More information

ALL THINGS FROM SOLAR

ALL THINGS FROM SOLAR SOLAR SOLAR POTENTIAL ALL THINGS FROM SOLAR Interesting note: nearly all of our energy sources originated from solar energy: Bio-mass/bio-fuels: Plants need the sun to grow. Coal, oil, natural gas: Solar

More information

Effects of Ambient Temperature on the Performance of a Photovoltaic Solar System in a Tropical Area.

Effects of Ambient Temperature on the Performance of a Photovoltaic Solar System in a Tropical Area. Effects of Temperature on the Performance of a Photovoltaic Solar System in a Tropical Area. Y.K. Sanusi 1* ; G.R. Fajinmi 1 ; and E.B. Babatunde 2 1 Department of Pure and Applied Physics, Ladoke Akintola

More information

New generation of solar cell technologies

New generation of solar cell technologies New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus

More information

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS

GENERATING ELECTRICITY AT A POWER PLANT ???? Law of Conservation of Energy. Three Major Components THE SCIENCE BEHIND ENERGY TRANSFORMATIONS THE SCIENCE BEHIND ENERGY TRANSFORMATIONS Q1 GENERATING ELECTRICITY AT A POWER PLANT Unit Essential Question: How are Earth s energy resources used to generate electricity What are the advantages and disadvantages

More information