Ecology Lectures Intro Biology 1102 Spring 2002

Size: px
Start display at page:

Download "Ecology Lectures Intro Biology 1102 Spring 2002"

Transcription

1 Ecology Lectures Intro Biology 1102 Spring 2002 Ecology - Relevance to Today s Society Ecology is a relatively new science, only about 150 years old, and in reality, perhaps less than 100 in terms of doing experimental research. The early work was pretty much natural history and descriptive, not mechanistic. Since we only have three lectures left, I am going to concentrate on three major areas, all of them mostly applied ecology. They are: Ecosystem Ecology, Biodiversity, and Overpopulation. These are all inter-related, and cover only a small fraction of the material you should know, but these subjects are all critically important to society today, and will be so for the foreseeable future, thus they will affect you and your children as well. wrote: I think John Sawhill, former President of The Nature Conservancy, said it best when he In the end, our society will be defined not only by what we create, but by what we refuse to destroy. Ecosystem Ecology We can imagine an ecosystem as the sum total of all the creatures and the abiotic (non-living) portions of the landscape. This means that we are looking at the fluxes of elements, such as nutrients, and energy as affected by living organisms. Nutrients can be recycled, but not energy. Ecologists define ecosystems by their trophic levels: Base Level Autotrophs Plants (primary producers) Next Heterotrophs Animals that consume plants (primary consumers) Next Heterotrophs Secondary consumers Next Heterotrophs Tertiary consumers Detritivores Animals that consume dead material (Fungi, bacteria, dung beetles, etc.) Source of Energy The ultimate source of energy is the sun. About 1% of the sun s energy is used to convert sunlight into chemical energy through the process of photosynthesis. Some of the sun s energy is used to melt snow, move ocean currents, etc. Even with only 1% of the sun s energy, that is enough to produce 170 B metric tons of plant material per year. Annual Productivity of the Earth Plant productivity known as annual net primary productivity (ANPP). Total productivity would also include energy used in respiration, and is gross primary productivity. The relationship between the two is: ANPP = GPP + R But respiration releases energy off as heat and as CO2. What s left is the net primary

2 productivity. For most systems, ANPP is about 50-60% of GPP. Productivity by Ecosystem (g m -2 yr -1 ) Tropical Rainforests 2200 Savannah 900 Temperature Deciduous Forest 1200 Tundra 200 Coral Reefs 2500 Productivity a function of T, rainfall, nutrients, and seasonality. This represents the amount of energy stored in plant biomass each year. That is energy available to consumers. But as food moves up the trophic levels, energy is lost due to various processes, such as heat, indigestibility, feces, etc. What ends up in the consumer is only a small fraction of what is consumed. Raymond Lindemann was the first to work out these relationships, after studying food chains (actually webs) in a small pond, back in the 1940's. Here is an example of how energy is transferred from the leaves of a plant to a caterpillar: Energy Content in Joules Percent Caterpillar eats 48 gms of leaves % Amount consumed (edible parts) % Respiration uses 2/3 of absorbed energy 67 Remaining for growth 33 16% Generally, as food moves up trophic levels, approximately 90% of the energy is lost. That means that if we start with 100 J of energy, by the time it gets into a bird, only 1% of the energy of the original plant material remains. Obviously, this constrains how many food levels one can have - most food chains are 4-6 lengths long at most. See below: This also limits the number of higher order consumers - can t have as many lions as mice!! Number of organisms Trophic Level 3 Tertiary consumer 355,000 Secondary consumer 710,000 Primary consumer 5, 800,000 Primary producer Implications of Food Web and Trophic Energy Transfer Obviously, the more links food goes through, the less there is available for the next trophic level. If we eat lower down on the trophic chain, there will be more energy available. Thus, eating vegetarian will stretch the food over more people than eating meat. This has important implications for agriculture - raising cows for meat consumes a lot of energy and less is available for consumption by humans. China is now largest consumer of pork, and as a result, can no longer raise enough grain to feed itself, whereas before, when Chinese ate lower on the trophic scale, they were self-sufficient.

3 Elemental Cycling When ecosystems function to cycle elements, we often call this biogeochemical cycling. Plants, in fact, are the largest miners of minerals in the world. They routinely extract from the ground nearly 10X what humans do, and they do it in pure form every day!! mainly Some elements cycle as gases, such as SO2, CO2, and N. Others cycle primarily as solids, dissolved in water. component ecosystem Soil Major s of an include: Living Plants Dead Material Atmosphere Water We can better understand some of these cycles by studying individual elements. Let s look at three such cycles: C, N, and water. Carbon has a complex cycle - it can be taken out of the atmosphere by photosynthesis, stored in living biomass, or dissolved in the oceans, where some is deep-sixed to great depths. There, it may remain for many millions of years. Carbon is also released whenever fossil fuels are burned. See cycle below: Man s been altering the activities have C cycle. The

4 burning of fossil fuels, as well as the clearing of forests, is putting more C in the air than can be taken out by photosynthesis or dissolution in the ocean. Charles Keeling began measuring atmospheric carbon dioxide in the late 1950's in Mauna Loa, HI, and the measurements continue to today. We can see that it is rising rapidly, at about 2-3 ppm per year. The jiggles in the line reflect the seasonal differences in atmospheric carbon dioxide - going down in the summer, and up in the winter. What has been the historical trend? The graph below, obtained from ice core data (ice cores can trap bubbles of air and preserve them for thousands of years) shows that this increase is a fairly recent phenomenon, mainly associated with the industrial revolution. Now, you might wonder, so what? Is there any reason to be concerned about this rising carbon dioxide? Look at the next graph. It shows the correlation between changes in atmospheric carbon dioxide and global mean temperatures.

5 Here, it is very easy to see that whenever carbon dioxide goes up, so does global mean temperatures. Thus, carbon dioxide is the atmospheric gas of most concern with regards to rising global temperatures. However, other gases, such as methane, and nitrous oxides, also contribute to global warming, but carbon dioxide is the one of most concern. We see very clearly that humans are altering the global mean temperature and the cycling of C. Even if we were to stop putting C into the atmosphere today, the time lags of mixing are such that the concentration would continue to rise for several decades afterwards. The Nitrogen Cycle Nitrogen cycles similarly to C, but has several other pathways not available to C. For example, there are organisms, particular bacteria, that can fix N out of the atmosphere into forms used by plants. The main forms of N are: N=N or N 2, nitrate (NO 3 -), ammonium ion (NH 4 +), and urea. Plants can t fix N out of the air, but legumes have bacteria in their roots that can. Humans have been altering the N cycle by adding fertilizers to agricultural fields. Normally, growth in most ecosystems is strongly limited by N. Now, N is less limiting, and there is greater cycling than there used to be. In addition, NOx, added to the atmosphere by burning fossil fuels, contributes to acidic deposition. This is converted to nitric acid, which then falls to the ground, and contributes to acidification of lakes and streams, and forests. An diagram of the N cycle is shown on the next page.

6 N al rces of N include lightening, which can add nitrate to ecosystems. Bacteria can also release N by a process called denitrifying, which turns nitrate N or ammonium N back into N 2. When too much N enters an ecosystem, it causes N saturation. When more comes in than can be taken up by the plants, the only place for it to go, if not into the atmosphere, is the stream water. This can cause nitrates to build up in the water supply, which is toxic to humans. atur sou Water Cycle The global water cycle is fairly simple. The drawing below shows the major pathways. Water will most likely become the most limiting element constraining further growth of the human population. Plants can substantially alter the

7 global water cycle. In the Amazon, for instance, nearly 50% of the water that falls on the forest is transpired comes from the trees below. Eliminating the trees greatly reduces evaporation into the atmosphere, and can lead to drying out of the ecosystem. Humans currently use nearly 60% of all available freshwater. How will we deal with the situation when the population doubles, if it can? How To Study Ecosystems Hubbard Brook - Herb Bormann and Gene Likens (see overheads) Hubbard was one of the first great ecosystem studies, done by two ecologists, Herb Bormann from Yale, and Gene Likens from Cornell. They studied how nutrients and energy are moved through and around a forested ecosystem in New Hampshire. With a host of graduate students and collaborators, they followed nutrients entering, being stored, and leaving the Hubbard Brook watersheds, a USFS site. Their strategy was this: Nutrients Entering - Nutrients Stored = Nutrients Leaving (in stream water) So, they measured the nutrients coming in the precipitation, how much was being stored in the forest each year, and the concentration going out in the stream water. The idea was that since the forests were underlain by solid granite, no water could leach out except in the streams. So it was a tight system. What did they find? There were many findings. Of importance were: 1. ph of the rain coming in was acidic. It was Herb Bormann and colleagues who coined the term acid rain. 2. Forests were crucial to the cycling of nutrients. When trees were cut, the ecosystem could not retain nutrients. They were washed out in the stream water. 3. As forests mature, their ability to retain nutrients varies - young forests are good at it, but as they mature, ecosystems tend to get leaky - growth slows down, and uptake of nutrients does also. Comparison of Temperate and Tropical Rainforest Nutrient Cycles Tropical rainforests cover about 6% of the earth s surface (about the size of the lower 48 states in the US). But they may contain nearly 50% or more of the world s species. Very important ecosystems. But they are being chopped down at alarming rates - nearly a football field each second, or 1% per year. Or the equivalent of half of Florida per year. Some think the rates even higher, at 2% per year, or all of Florida per year. Ecuador, Venezuela, and Bolivia, as well as Brazil, have very high deforestation rates. Already, 14% of the Amazon has been destroyed in one way or another, and most of it will likely disappear in your lifetime. What was the historical use history of the Amazonian rainforest? How did it persist for so long without being destroyed? In large part, it was because it was used up at a rate that balanced it s ability to regenerate. Let s look at how indigenous peoples used the Amazon. Slash and Burn Indigenous peoples used to burn a small area, maybe 1-2 hectares in size. Then, they planted native crops, like manihot (a starchy crop). The burning turned the downed trees to ash, which acted like a fertilizer. This promoted crop growth for a few years. But then, due to the high rainfall, the

8 ash was leached out of the soil, and crop productivity dropped. Since the soils were low in nutrients to begin with, further production was fruitless. So, the natives moved to another portion of the forest, and repeated the process. This nomadic life was necessary in this ecosystem. They would not return to an area for at least a century or more. This gave the cutover forest time to recover it s nutrient capital. But today, due to the loss of available forest land, they are returning at less than 75 year intervals, and the forest has not had a chance to recover fully. This is slowly wearing down productivity in the forest. Farmers who raise cattle in the Amazon do so only by applying large amounts of fertilizers to the land -otherwise the forest would encroach back in, or, the pasture productivity without fertilizers would be so low as to not be able to sustain cattle on it. Thus, the plants in the Amazon are used to low nutrients in the soil - how do they deal with it? Faced with high rainfalls, one might suppose that all the nutrients would be leached out of the system. But the plants have many adaptations that retain the nutrients in their bodies, and keep them from being leached out. Comparison of Temperate and Tropical Nutrient Pools Temperate Tropical 40-60% nutrients in soil 20-30% in soil 60-40% nutrients in plants 70-80% in plants moderate rainfall moderate productivity low leaching rates Recycle rates slow to moderate Efficiency of recycling moderate very high rainfall very high productivity very high potential leaching rates recycle rates very high Efficiency of recycling very high Adaptations to reduce leaching: 1. roots above ground, called a root mat or aerial roots 2. high uptake efficiency - take up nutrients at low concentrations 3. drip tips on leaves - dries leaves out so nutrients don t leach from leaves 4. mycorrhizae - very efficient in tropics. Figure to left shows mycorrhizal roots Figure to right shows aerial roots

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem.

Ecosystems. Studying Organisms In Their Environment. Division Ave. High School AP Biology. organism. population. community. ecosystem. Ecosystems Studying Organisms In Their Environment organism population community ecosystem biosphere 1 Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/

Guide 34. Ecosystem Ecology: Energy Flow and Nutrient Cycles. p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Guide 34 Ecosystem Ecology: Energy Flow and Nutrient Cycles p://www.mordantorange.com/blog/archives/comics_by_mike_bannon/mordant_singles/0511/ Overview: Ecosystems, Energy, and Matter An ecosystem consists

More information

IB Biology HL Year 2 Summer Assignment

IB Biology HL Year 2 Summer Assignment IB Biology HL Year 2 Summer Assignment Your Task: Read Chapter 4 Ecology Unit thoroughly. Complete the Cornell notes. Notes must be HAND WRITTEN. Answer end of section exercise questions. Type your responses.

More information

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Name Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Overview: An ecosystem is: All of the organisms living on Earth need to carry out life processes such as

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles

How Ecosystems Work: Energy Flow and Nutrient Cycles How Ecosystems Work: Energy Flow and Nutrient Cycles Bubble in your ID and the answer to the 25 questions. You can look up the answers to these question on line. 1. The flow of solar energy through an

More information

Ecosystems and the Biosphere Outline

Ecosystems and the Biosphere Outline Ecosystems and the Biosphere Outline Ecosystems Processes in an ecosystem Production, respiration, decomposition How energy and nutrients move through an ecosystem Biosphere Biogeochemical Cycles Gaia

More information

Elements essential for life also cycle through ecosystems.

Elements essential for life also cycle through ecosystems. 13.5 Cycling of Matter KEY CONCEPT Matter cycles in and out of an ecosystem. MAIN IDEAS Water cycles through the environment. Elements essential for life also cycle through ecosystems. VOCABULARY hydrologic

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

Biology: Life on Earth

Biology: Life on Earth Biology: Life on Earth Eighth Edition Lecture for Chapter 28 How Do Ecosystems Work? Chapter 28 Outline 28.1 What Are the Pathways of Energy and Nutrients? p. 560 28.2 How Does Energy Flow Through Communities?

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece

Chapter 54. Ecosystems. PowerPoint Lectures for Biology, Seventh Edition. Neil Campbell and Jane Reece Chapter 54 Ecosystems PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Overview: Ecosystems, Energy, and Matter An ecosystem consists of all the organisms living in a community,

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

Chapter 3 Ecosystem Ecology. Reading Questions

Chapter 3 Ecosystem Ecology. Reading Questions APES Name 22 Module 7 Chapter 3 Ecosystem Ecology Monday Tuesday Wednesday Thursday Friday 17 Module 6 The Movement of Energy 18 Ecosystem Field Walk 19 Module 7 The 23 Module 8 Responses to Disturbances

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

Ecology: Part 2. Biology Mrs. Bradbury

Ecology: Part 2. Biology Mrs. Bradbury Ecology: Part 2 Biology Mrs. Bradbury Model 1: Food Chains Food Chain simple model showing the movement of matter and energy through ecosystems. Autotrophs Heterotrophs Decomposers Arrows show energy transfer

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Vocabulary An organism is a living thing. E.g. a fish

Vocabulary An organism is a living thing. E.g. a fish Organisms in their Environment Vocabulary An organism is a living thing. E.g. a fish Vocabulary A habitat is where an organism lives E.g. a pond Vocabulary A group of the same kind of organisms living

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

Chapter 29. How Do Ecosystems Work? Lectures by Gregory Ahearn. Ammended by John Crocker. University of North Florida

Chapter 29. How Do Ecosystems Work? Lectures by Gregory Ahearn. Ammended by John Crocker. University of North Florida Chapter 29 How Do Ecosystems Work? Lectures by Gregory Ahearn University of North Florida Ammended by John Crocker Copyright 2009 Pearson Education, Inc.. 29.1 How Do Ecosystems Obtain Energy And Nutrients?

More information

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez Ecosystem Ecology: Part 1 September 22, 2014 Mr. Alvarez Ecosystems Ecosystem- a particular location on Earth distinguished by its particular mix of interacting biotic and abiotic components. Forest Ecosystem

More information

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE

CALIFORNIA EDUCATION AND THE ENVIRONMENT INITIATIVE Water Vapor: A GHG Lesson 3 page 1 of 2 Water Vapor: A GHG Water vapor in our atmosphere is an important greenhouse gas (GHG). On a cloudy day we can see evidence of the amount of water vapor in our atmosphere.

More information

Chapter 36: Population Growth

Chapter 36: Population Growth Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

Environmental Science Energy Flow in Ecosystems

Environmental Science Energy Flow in Ecosystems Environmental Science Energy Flow in Ecosystems Name: Date: 1. Match the following fill in the blanks 1. Biodegration 2. Biomass 3. Consumer 4. Decomposers 5.Decomposition 6. Energy Flow 7. Food Chains

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

CHAPTER 49 ECOSYSTEMS

CHAPTER 49 ECOSYSTEMS CHAPTER 49 ECOSYSTEMS I. INTRODUCTION A. An ecosystem 1. Whereas a community consists of all the organisms in a certain boundary that are close enough for some sort of interaction, an ecosystem: -is defined

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007

7.014 Lecture 20: Biogeochemical Cycles April 1, 2007 Global Nutrient Cycling - Biogeochemical Cycles 7.14 Lecture 2: Biogeochemical Cycles April 1, 27 Uptake Bioelements in Solution Weathering Precipitation Terrestrial Biomass Decomposition Volatile Elements

More information

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka.

2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE. nutrients: aka. 2.2 Nutrient Cycles in Ecosystems Name: Date: (Reference: BC Science 10 pp. 68 to 91) Block: NUTRIENT CYCLING IN THE BIOSPHERE nutrients: stores: aka Nutrients are accumulated for short or long periods

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology?

Name Hour. Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology? Name Hour Section 3-1 What Is Ecology? (pages 63-65) Interactions and Interdependence (page 63) 1. What is ecology? 2. What does the biosphere contain? _ Levels of Organization (page 64) 3. Why do ecologists

More information

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont.

06/10/2015. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems PYRAMID OF NUMBERS. Pyramid of Numbers. Pyramid of numbers cont. Lecture 3: Ecological Pyramids and the Transfer of Energy in Ecosystems ECOLOGICAL PYRAMIDS The trophic levels of an ecosystem can be arranged into in a pyramid and these are called the ecological pyramids

More information

3 3 Cycles of Matter. EOC Review

3 3 Cycles of Matter. EOC Review EOC Review A freshwater plant is placed in a salt marsh. Predict the direction in which water will move across the plant s cell wall, and the effect of that movement on the plant. a. Water would move out

More information

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at

Figure 1 - Global Temperatures - A plot from the EarthScience Centre at GLOBAL WARMING Global warming is evidenced by a steady rise in average global temperatures, changing climate, the fact that snow cover has decreased 10% over the past half-century and that glaciers have

More information

Dynamics of Ecosystems Grade 10 Science Glenlawn Collegiate

Dynamics of Ecosystems Grade 10 Science Glenlawn Collegiate Ecosystems Unit Have you ever wondered where the substances from which you and other living things are made come from? Why do they not run out? Where do the chemicals that we spray on the ground and on

More information

Cycles in Nature Standard 1 Objective 2:

Cycles in Nature Standard 1 Objective 2: Cycles in Nature Standard 1 Objective 2: Explain relationships between matter cycles and Energy a) use diagrams to trace the movement of matter through a cycle b) Explain how water is a limiting factor

More information

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Life Depends on the Sun Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

OTBA. THEME: Forests - Friends for Life

OTBA. THEME: Forests - Friends for Life OTBA THEME: Forests - Friends for Life The forest is a complex ecosystem consisting mainly of trees that have formed a buffer for the earth to protect life forms. The trees which make up the main area

More information

Human perturbations to the global Nitrogen cycle

Human perturbations to the global Nitrogen cycle Human perturbations to the global Nitrogen cycle Lecture for Biogeochemistry and Global Change Edzo Veldkamp The pace of human caused global change has increased in modern history, but none so rapidly

More information

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid?

2.2 Nutrient Cycles in Ecosystems. Review How energy flows What is the difference between a food chain, food web, and food pyramid? 2.2 Nutrient Cycles in Ecosystems Review How energy flows What is the difference between a food chain, food web, and food pyramid? https://www.youtube.com/watch?v=xhr1iebeops https://www.youtube.com/watch?v=alusi_6ol8m

More information

Chapter 3 Ecosystem Ecology

Chapter 3 Ecosystem Ecology Chapter 3 Ecosystem Ecology Ecosystem Ecology Examines Interactions Between the Living and Non-Living World Ecosystem- A particular location on Earth distinguished by its particular mix of interacting

More information

2.2 Nutrient Cycles in Ecosystems

2.2 Nutrient Cycles in Ecosystems 2.2 Nutrient Cycles in Ecosystems CARBON CYCLE A. Carbon Facts: Carbon is found in all living matter. Places that carbon is found are called stores or sinks Short-term Stores Long-term Stores - living

More information

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein!

WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! Nitrogen Cycle 2.2 WHY DO WE NEED NITROGEN?? Nitrogen is needed to make up DNA and protein! In animals, proteins are vital for muscle function. In plants, nitrogen is important for growth. NITROGEN Nitrogen

More information

Biol 210 Environmental Biology Exam 1C Spring 2016

Biol 210 Environmental Biology Exam 1C Spring 2016 Biol 210 Environmental Biology Exam 1C Spring 2016 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Abundant light and constant nutrient input make

More information

Ecology Part 2: How Ecosystems Work

Ecology Part 2: How Ecosystems Work Ecology Part 2: How Ecosystems Work Name: Unit 2 1 In this second part of Unit 2, our big idea questions are: SECTION 1 How is energy transferred from the Sun to producers and then to consumers? Why do

More information

Chapter 13 Principles of Ecology Lecture Guide, Day 1

Chapter 13 Principles of Ecology Lecture Guide, Day 1 Chapter 13 Principles of Ecology Lecture Guide, Day 1 What is Ecology? It is the scientific study of interactions among organisms and between organisms or surroundings. The Nonliving Environment - Abiotic

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life MILLER/SPOOLMAN ESSENTIALS OF ECOLOGY 6 TH Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface CHAPTER 3 Ecosystems: What Are They and How Do They Work? Contain

More information

Unit 6: Ecosystems Module 15: Ecological Principles

Unit 6: Ecosystems Module 15: Ecological Principles Unit 6: Ecosystems Module 15: Ecological Principles NC Essential Standard: 2.1 Analyze the interdependence of living organisms within their environments Did you know The water you poop in today is the

More information

Page 1 of According to your text what percent of the earths surface is covered by the oceans? A. 10% B. 25% C. 56% D. 70% E.

Page 1 of According to your text what percent of the earths surface is covered by the oceans? A. 10% B. 25% C. 56% D. 70% E. Page 1 of 5 ECOLOGY and EVOLUTION FINAL EXAM COMPREHENSIVE PORTION - will include all materials presented in class including Chapters 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, and 16 of the text NON-COMPREHENSIVE

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

Energy Flow Through an Ecosystem:

Energy Flow Through an Ecosystem: Energy Flow Through an Ecosystem: The vast majority of life on Earth depends on sunlight as its source of energy. Of all the radiant energy that reaches the earth, some of it penetrates the earth's atmosphere

More information

Ecology: Chapters Worksheet

Ecology: Chapters Worksheet Ecology: Chapters 34 36 Worksheet Name: Chapter 34: The Biosphere Concept 34.1 The biosphere is the global ecosystem. (pp. 744 749) The scientific study of the interactions among organisms and between

More information

What is Ecology? Abiotic (non-living) Biotic (living)

What is Ecology? Abiotic (non-living) Biotic (living) ECOLOGY What is Ecology? The scientific study of interactions among organisms and between organisms and their environment, or surroundings Factors involved in ecology Abiotic (non-living) Biotic (living)

More information

Acid deposition accumulation of potential acid-forming particles on a surface acids can result from natural causes

Acid deposition accumulation of potential acid-forming particles on a surface acids can result from natural causes 1 Air Quality Issues: Part 2 - Acid Deposition, Greenhouse Gases EVPP 111 Lecture Dr. Largen 2 Air Quality Issues Air Pollution Indoor Air Pollution Acid Deposition Greenhouse Gases & Global Warming 3

More information

Multiple Choice. Name Class Date

Multiple Choice. Name Class Date Chapter 3 The Biosphere Chapter Test A Multiple Choice Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following descriptions about the

More information

Unit 6: Ecosystems Module 15: Ecological Principles

Unit 6: Ecosystems Module 15: Ecological Principles Unit 6: Ecosystems Module 15: Ecological Principles NC Essential Standard: 2.1 Analyze the interdependence of living organisms within their environments Did you know The water you poop in today is the

More information

Science 1206 Mid-term Review Assignment

Science 1206 Mid-term Review Assignment 1 Science 1206 Mid-term Review Assignment Jens-Haven Memorial January 2011 Name: Multiple Choice: /40 Diagrams: /10 Extended Response: /44 Total: /94 This exam contains 10 pages including this one. Make

More information

Class IX Chapter 14 Natural Resources Science

Class IX Chapter 14 Natural Resources Science Question 1: How is our atmosphere different from the atmospheres on Venus and Mars? Earth s atmosphere is different from those of Venus and Mars. This difference lies essentially in their compositions.

More information

Chapter 3 The Biosphere. Section Objectives:

Chapter 3 The Biosphere. Section Objectives: Chapter 3 The Biosphere Section Objectives: Distinguish between the biotic and abiotic factors in the environment. Compare the different levels of biological organization and living relationships important

More information

Food web Diagram that shows how food chains are linked together in a complex feeding relationship

Food web Diagram that shows how food chains are linked together in a complex feeding relationship Energy Flow Food web Diagram that shows how food chains are linked together in a complex feeding relationship The food web has a number of advantages over a food chains including: More than one producer

More information

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions.

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Ecology What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions. Biotic Factors Living things in the environment. Animals Plants Fungi Protists Bacteria Abiotic

More information

Ecosystem consists of the organism which live in a particular area, the relationship between them, and their physical environment.

Ecosystem consists of the organism which live in a particular area, the relationship between them, and their physical environment. Ecosystem consists of the organism which live in a particular area, the relationship between them, and their physical environment. An ecosystem can be terrestrial (on land) or aquatic (in water) An ecosystem

More information

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004

TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 TIEE Teaching Issues and Experiments in Ecology - Volume 1, January 2004 ISSUES FIGURE SET Ecology of Disturbance Charlene D'Avanzo, School of Natural Sciences Hampshire College, Amherst, MA, 01002 cdavanzo@hampshire.edu

More information

Energy Transfer p

Energy Transfer p Energy Transfer 22-1 p. 415-419 Essential Questions 1. Identify and describe the main types of producers and consumers in an ecosystem. 2. Calculate the amount of energy stored in biomass transferred from

More information

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work?

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work? MILLER/SPOOLMAN LIVING IN THE ENVIRONMENT 17 TH CHAPTER 3 Ecosystems: What Are They and How Do They Work? Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface

More information

Principles of Ecology

Principles of Ecology Principles of Ecology Ecology Study of interactions that take place between organisms and their environments Living things are affected by nonliving and living parts of the environment Abiotic factors:

More information

CHAPTER. Evolution and Community Ecology

CHAPTER. Evolution and Community Ecology CHAPTER 5 Evolution and Community Ecology Lesson 5.3 Ecological Communities https://www.youtube.com/watch?v=gu2ezaisvqu The sun provides the energy for almost all of the ecological communities and species

More information

Trout Lake Big Lake Lake Balance NO 3

Trout Lake Big Lake Lake Balance NO 3 1. You are a limnologist studying several lakes in northern Ontario. The lakes have little input of nutrients from streams. You measure the concentrations of nitrate and phosphate every two months, and

More information

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy

an ecosystem is a community of different species interacting with one another and with their nonliving environment of matter and energy 1 Ecocsystems: Energy Flow and Materials Cycling 2 EVPP 111 Lecture Dr. Largen Spring 2004 Energy Flow and Matter Cycling Energy flow s through ecosystems ecosystems global energy budget physical laws

More information

Conservation Biology and Global Change

Conservation Biology and Global Change LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 56 Conservation Biology and Global

More information

COMMUNITY ECOLOGY. Interspecific Interactions. Ecosystems unit

COMMUNITY ECOLOGY. Interspecific Interactions. Ecosystems unit COMMUNITY ECOLOGY Ecosystems unit Today s Big Ideas: An organism s biotic environment includes Other individuals in its own population Populations of other species living in the same area An assemblage

More information

What is an ecosystem?

What is an ecosystem? 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community and its physical environment treated together

More information

2.1 Ecology & Ecosystem Structure

2.1 Ecology & Ecosystem Structure 2.1 Ecology & Ecosystem Structure Learning Goals: 1. Explain how biotic and abiotic factors influence 2. Explain how the flow of energy through ecosystems obeys the 2nd law of thermodynamics. 3. Calculate

More information

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht

Human Biology. Chapter 23 Global Ecology and Human Interferences Lecture Outline. Sylvia S. Mader Michael Windelspecht Human Biology Sylvia S. Mader Michael Windelspecht Chapter 23 Global Ecology and Human Interferences Lecture Outline See separate FlexArt PowerPoint slides for all figures and tables pre-inserted into

More information

Water cycles through ecosystems.

Water cycles through ecosystems. Water cycles through ecosystems. Water is stored on Earth s surface in lakes, rivers, and oceans. Water is found underground, filling the spaces between soil particles and cracks in rocks. Large amounts

More information

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere

Slide 1 / All of Earth's water, land, and atmosphere within which life exists is known as a. Population Community Biome Biosphere Slide 1 / 40 1 ll of Earth's water, land, and atmosphere within which life exists is known as a Population ommunity iome iosphere Slide 2 / 40 2 ll the plants, animals, fungi living in a pond make up a

More information

LIFE SCIENCE CHAPTER 20 & 21 FLASHCARDS

LIFE SCIENCE CHAPTER 20 & 21 FLASHCARDS LIFE SCIENCE CHAPTER 20 & 21 FLASHCARDS The base of the ocean s food chains is formed by A. blue whales. B. plankton. C. coral reefs. D. sargassums. The place where the ocean meets the land is the The

More information

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

Food Chains, Food Webs, and the Transfer of Energy

Food Chains, Food Webs, and the Transfer of Energy Food Chains, Food Webs, and the Transfer of Energy What is Ecology? Ecology is the scientific study of interactions between different organisms and between organisms and their environment or surroundings

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter Ecosystems Table of Contents Section 1 Organisms and Their Releationships Section 2 Flow of Energy in an Ecosystem Section 3 Cycling of Matter Section 1 Organisms and Their Releationships Interactions

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Chapter Two: Cycles of Matter (pages 32-65) 2.2 Biogeochemical Cycles (pages 42 52) In order to survive and grow, organisms must obtain nutrients that serve as sources of energy or chemical building blocks,

More information

Chapter Two: Cycles of Matter (pages 32-65)

Chapter Two: Cycles of Matter (pages 32-65) Biology 20 Chapter 2.1_keyed Chapter Two: Cycles of Matter (pages 32-65) 2.1 The Role of Water in the Cycles of Matter (pages 34 40) Due to its ability to form hydrogen bonds, water has several unique

More information

NCERT solution for Natural Resources

NCERT solution for Natural Resources 1 NCERT solution for Natural Resources Question 1 How is our atmosphere different from the atmospheres on Venus and Mars? Earth's atmosphere is a mixture of nitrogen (79%), oxygen (20%), and a small fraction

More information

Environmental studies. Energy flow and nutrient cycles

Environmental studies. Energy flow and nutrient cycles Environmental studies Energy flow and nutrient cycles Energy Flow The sun is the source of all natural energy on earth Plants are able to absorb the energy from the sun by using a special pigment called

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

Carbon Dioxide and Global Warming Case Study

Carbon Dioxide and Global Warming Case Study Carbon Dioxide and Global Warming Case Study Key Concepts: Greenhouse Gas Carbon dioxide El Niño Global warming Greenhouse effect Greenhouse gas La Niña Land use Methane Nitrous oxide Radiative forcing

More information

Ecosystems- Matter and Energy. Ecosystems. Food Chains and Food Webs Food Chain linear flow chart of who eats whom. Ecosystems 9/30/2013

Ecosystems- Matter and Energy. Ecosystems. Food Chains and Food Webs Food Chain linear flow chart of who eats whom. Ecosystems 9/30/2013 Ecosystems- Matter and Energy Ecosystems 1 Food Chains and Food Webs Food Chain linear flow chart of who eats whom grass --> zebra --> lion --> vulture Food Webs expanded, more complete Trophic Levels

More information

Niche and Habitat a species plays in a community. What it does all

Niche and Habitat a species plays in a community. What it does all Ecosystem Dynamics What is ecology? Study of the interactions between parts of the environment Connections in nature Abiotic: soil comp. Biotic: and Abiotic and Biotic factors factors in the environment

More information

Biogeochemical Cycles Webquest

Biogeochemical Cycles Webquest Name: Date: Biogeochemical Cycles Webquest In this webquest you will search for information that will answer questions about the water, carbon/oxygen, nitrogen and phosphorous cycles using the listed websites.

More information

ENVIRONMENTAL BIOLOGY. Part 4

ENVIRONMENTAL BIOLOGY. Part 4 ENVIRONMENTAL BIOLOGY Part 4 Overview: A) THE BIOSPHERE B) POPULATION ECOLOGY C) COMMUNITY ECOLOGY D) ECOSYSTEM ECOLOGY E) THE CARBON & NITROGEN CYCLES F) ECOLOGICAL TECHNIQUES G) SIMPSON S RECIPROCAL

More information

Keystone Biology Remediation B4: Ecology

Keystone Biology Remediation B4: Ecology Keystone Biology Remediation B4: Ecology Assessment Anchors: to describe the levels of ecological organization (i.e. organism, population, community, ecosystem, biome, biosphere) (B.4.1.1) to describe

More information

Ecosystem Ecology. Community (biotic factors) interacts with abiotic factors

Ecosystem Ecology. Community (biotic factors) interacts with abiotic factors Ecosystem Ecology Community (biotic factors) interacts with abiotic factors Objectives Compare the processes of energy flow and chemical cycling as they relate to ecosystem dynamics. Define and list examples

More information