December 13, 2012 Energy Efficient Cooling Information Service Webinar Series Christine Brinker and Gearoid Foley CHP with Absorption Chilling

Size: px
Start display at page:

Download "December 13, 2012 Energy Efficient Cooling Information Service Webinar Series Christine Brinker and Gearoid Foley CHP with Absorption Chilling"

Transcription

1 December 13, 2012 Energy Efficient Cooling Information Service Webinar Series Christine Brinker and Gearoid Foley CHP with Absorption Chilling

2

3 Technical Assistance

4 Education and Outreach

5 Executive Order Calls for 40 GW new CHP by utedenergy/pdfs/chp_clean_energy_solution.pdf

6 Efficient Cooling Absorption Chilling Combined Heat and Power

7

8 Webinar Purpose Technology overview & insights Energy impact Challenges Opportunities

9 CHP Prime Movers Combustion Turbines MW Microturbines kw IC Engines 30 kw 3 MW Fuel Cells 200 kw 1 MW 75% - 60% HEAT 25% - 40% Electricity

10 Thermally Activated Technologies Hot Water HEX Boilers/Steam Generators Absorbers Technologies: Steam Turbines Desiccants Adsorbers Cooling Applications: Cooling Freezing Dehumidification

11 Thermally-Activated HVAC Technologies are Key to Improving Overall Efficiency of DG Distributed Generation Technologies Thermally-Activated Cooling Technologies 800ºF Gas-turbine I.C. Engine Exhaust 600ºF Exhaust Fired Absorber Micro-turbine Fuel Cell 360ºF Double-Effect Absorption Chiller Steam Turbine Centrifugal Chiller 180ºF I.C. Engine Coolant Single-Effect Absorption Chiller Desiccant Technology Adsorber

12 Absorption Flow Cycle Return water from the building boils the refrigerant inside the evaporator and changes its form to vapor. Evaporator 44 0 F 0.1 psia 42 0 F The latent energy used is drawn from the building water system sensible energy thus cooling it F Chilled Water Return Water Refrigerant Refrigerant Vapor

13 Absorption Flow Cycle The refrigerant vapor must be removed to maintain the vacuum so a LiBr solution is sprayed into the absorber. Evaporator 44 0 F 0.1 psia 42 0 F The LiBr bonds with the vapor in the absorption process and forms a dilute LiBr solution F Absorber Chilled Water Return Water Refrigerant Refrigerant Vapor Concentrated LiBr Dilute LiBr

14 Absorption Flow Cycle The dilute LiBr solution is directed to the generator where heat is applied to drive off the refrigerant vapor. The concentrated or re-generated LiBr solution is returned to the absorber to collect more refrigerant vapor. Evaporator 54 0 F 44 0 F Absorber 0.1 psia 42 0 F 14.0 psia F Heat Input Generator Chilled Water Return Water Refrigerant Refrigerant Vapor Concentrated LiBr Dilute LiBr

15 Absorption Flow Cycle A condenser is added to return the refrigerant vapor to its original liquid form before entering the evaporator to begin the cycle again. Condenser Evaporator 54 0 F 44 0 F Absorber 0.1 psia 42 0 F 14.0 psia F Heat Input Generator Chilled Water Return Water Refrigerant Refrigerant Vapor Concentrated LiBr Dilute LiBr

16 Absorption Flow Cycle Condenser water flows through the system to remove heat energy from the chiller and is sent to a cooling tower where the heat is released to the atmosphere F Condenser 44 0 F Generator Evaporator 0.1 psia 42 0 F 14.0 psia 54 0 F F Chilled Water Return Water Refrigerant 85 0 F Absorber Heat Input Refrigerant Vapor Concentrated LiBr Dilute LiBr Condenser Water

17 Absorption Chillers Hybrid HW & Exhaust Fired Absorber Single Effect: Low Temp Activation, 200 F Cost Effective Simple Good Efficiency 0.7 COP Double Effect: High Temp Activation, 350 F Expensive Complex High Efficiency 1.2 COP Wide range of models from <100 tons to >1,000 tons Activated by Steam (15 psi psi), Hot Water or Exhaust 4 to 5 GPM Condenser Water, Large & Heavy, Slower Response

18 Absorber Heat Exchangers Cooling Tower System Controls Cd Pump & By-Pass Heat Load Control Sensors, PV&F 3-Way Valves Components

19 Energy Impact Cooling output maximum during peak demand on utility Adds from 20% to 30% effective CHP power output when offsetting electric cooling Provides inlet air cooling to maintain generator at design capacity during peak demand Offsets highest electric rates for host site Reduces summer peak energy use Higher energy related emissions reductions as chiller offsets peaker plants

20 Simple Cycle Combustion Turbine CHP High temperature/high volume Flue Gas Heat Recovery Steam Generators High Pressure Steam Co-Firing Steam Turbine Chillers Steam Fired Absorbers Exhaust Fired Absorbers Heating & Cooling

21 CT CHP System HRSG provides high pressure steam to chillers or heating distribution system. Duct firing or co-firing increases thermal capacity and CHP efficiency. HRSG with Duct Burner provides variable thermal output. Additional cost for additional thermal capacity is minimal. Heat Recovery Steam Generator (HRSG) Gas Turbine: KW Gross 59 F Inlet Air, 500 Ft Ele, 60% RH: Total Auxiliary Power Consumption incl Compressor: Net Turbine Power Production: HRSG: Process Steam Pressure: Process Steam Temperature: Steam Contributed by Gas Turbine: Steam Contributed by Ductburners: Deaerator Steam Consumption: Boiler Steam Flow: Steam Flow to Process: Chillers: Steam Flow to Chiller System: Tons of Refrigeration 1.2 COP: Cycle Performance (lower heating value basis): Net Turbine Heat Rate: Gross Plant Heat Rate: Average Cycle Efficiency: 5,203 KW 64 KW 5,139 KW psig 366 F 29,367 lb/hr 36,379 lb/hr 4,551 lb/hr 65,747 lb/hr 61,196 lb/hr 61,196 lb/hr 6,120 Tons 11,670 BTU/KW 3,970 BTU/KW 86.0 %

22 CT CHP System Typical Application: 1.25 M sq ft Commercial Complex Electric based Design -Electric Demand w/ Electric Chillers = 6.2 MW -Electric Chiller Load = 25% / MW / 2,583 Tons -Net Demand w/o Electric Chiller = 5.25 MW CHP Design Smaller Generator Smaller Electrical Infrastructure Higher Efficiency = Lower Fossil Fuel Use Displace Boilers = Lower Emissions -CT Generator Electric Output = 5.25 MW -Steam Driven Chiller Output = 2,803 Tons -Total Effective Output = 6.2 MW

23 UMD CHP System Microturbine/Absorber/Desiccant Natural Gas MICROTURBINE 100 kw (340,000*) Exhaust 500 F 40 kw (140,000*) Exhaust 225 F DESICCANT SYSTEM 3000 CFM of Dry Air 262 kw (895,000*) * Btu/hr ABSORPTION CHILLER 70 kw (20 tons) Chilled Water Air to Zone 1 67 kw Electric Power HHV Efficiency: 25% generator only 64% with chiller 79% with desiccant

24 Comparative Effects Thermal Technologies Only 25% 25% Electric Demand Reduction & Improved IAQ

25 Challenges Absorbers are heavier and more expensive than electric chillers Absorbers have higher parasitics particularly condenser water flow Absorbers can require more TLC than electric chillers somewhat mitigated with single stage simplicity Some unique design requirements including CW temp control and flow variability High pressure steam may require licensed operators Lack of acceptance and engineering knowledge

26 Hot Water Fired Single Stage Absorbers Temperature of the coolant leaving the exhaust HEX as well as the jacket return requirement have a major impact on chiller system design. Capacity 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Single Stage Absorber Performance Capacity COP COP Lower temperatures reduce chiller capacity and COP. Absorber HW Inlet Temperature

27 Exhaust Fired Absorber Capacity and Efficiency vary directly with Waste Heat Temperature Control of hot exhaust gas at low pressure expensive and critical Co-firing mixes exhaust with gas to supplement unlimited tonnage Heating can be provided as well as cooling Capacity 100% Single Stage Waste Heat Fired COP.7 70% 500 F 600F 700 F.6

28 Opportunities Wide range of absorption choices to match facility needs Absorption required for high annual utilization of CHP thermal output in space conditioning applications Many Commercial and Intuitional facilities can benefit from CHP with absorption chilling Office Buildings, Retail, Malls, High Rise Residential Hotels, Schools, Colleges, Hospitals Process loads such as Data Centers ideally suited to CHP with absorption. Each kw used by a server requires a kw of cooling and CHP with absorption provides approx. 1 kw of cooling per kw of power

29 CHP Choices & Cooling T/E Ratio Generator Range Cooling TAT Av. Ton/kW Gas Turbine 1 > 3 MW 2E Absorber Exhaust Fired Microturbine < 1 MW 1E Absorber Exhaust Fired IC Engine.1 to 3 MW 1E Absorber Hybrid Abs Fuel Cell >.25 MW 1E Absorber Note 1: Double T/E Ratio with Duct Firing

30 System Optimization Electric refrigeration chiller cost can be reduced and its efficiency doubled by using a heat recovery absorber. Existing Chillers Performance CHP System Existing Refrigeration Chillers Power Generator Chiller Output Tons 500 Electric Output kw 2,388 Chiller Efficiency kw/tr 2 LHV Elec Efficiency % 39.1% Chiller Input kw 1,000 Fuel In MBH 22,936 CT Fan Input kw Air Cooled Total HR 3 MBH 8,500 Total Parasitics 1 kw 0 1E Absorber Output Tons 496 Abs/Cond Heat Rejection MBH 14,450 Replacement Chillers CHP Refrigeration Chiller Elec Centri Chiller Output Tons 500 Elec Chiller Efficiency kw/tr New Refrigeration Chillers Elec Chiller Input kw 347 Chiller Screw Output Tons 500 YK Cd Output MBH 7,185 Chiller Efficiency kw/tr Chiller Input kw CHP System Parasitics CT Fan 2 HP 30 Electric Chiller CT Fan 2,4 HP - Total Parasitics 1 kw 56 Absorber CT Fan 2 HP 50 Total Parasitics 1 kw 101 Notes: 1 Parasitics include cooling tower, condenser pump and absorber 2 Design wet bulb temperature = 73 F 3 Includes Jacket + Exhaust, excludes 2nd Stage Intercooler 4 CT not required when Abs operating or use Abs CT

31 Utility Advantage CHP with absorption provides highest impact on load reduction during peak demand on grid Levelizes both electric utility and gas utility demand profiles through 12 months Absorption cooling offsets last call peaker plants reduced energy cost and highest emissions reductions Offsets low load factor T&D and high temp line losses Dispatchable and does not interfere with base load Keep customer energy costs low and keep customer

32 Utility Assistance Programs Grant Program Bonus for adding Cooling to CHP NJ grant program has a 30% cap for CHP without Cooling and increases the cap to 40% for CHP with cooling Demand Reduction counts added effective kw reduction due to cooling component of CHP Need to calculate offset based on electric chilling efficiency Energy Reduction counts added effective kwh reduction due to cooling component of CHP Need to calculate offset based on electric chilling efficiency

33 Q & A No matter which basis is used to choose the prime mover, the degree of use of the available heat determines the overall system efficiency; this is the critical factor in economic feasibility. Therefore, the thermal/electric ratio of the prime mover and load must be analyzed as a first step towards making the best choice. Maximizing efficiency is generally not as important as thermal and electric utilization.. ASHRAE Design Guide, Chapter 7 CHP Systems

34 Stats In the U.S., at least 335 CHP systems comprising 3,846 megawatts of electrical generation currently use the waste heat to run absorption chillers.

35 Snowbird Ski Resort

36 Example Incentives Arizona $ /kW (Southwestern Public Service) New Mexico Custom measure Up to $400/kW

37 Next Steps Utilities Policymakers End Users

38 For More Info Christine Brinker Exec Director U.S. DOE Intermountain CEAC Gearoid Foley Senior Technical Advisor U.S. DOE Mid-Atlantic CEAC

Heat Recovery. Integrated CHP Systems Corp.

Heat Recovery. Integrated CHP Systems Corp. Heat Recovery In order to achieve CHP efficiencies of 80% the recovery of waste heat for useful purposes is more significant than the electric efficiency This isn t necessarily in sync with the economics

More information

CEE NATIONAL MARKET TRANSFORMATION COMBINED HEAT & POWER. Gearoid Foley, Sr. Advisor DOE s Mid-Atlantic CHP TAP April 1, 2014

CEE NATIONAL MARKET TRANSFORMATION COMBINED HEAT & POWER. Gearoid Foley, Sr. Advisor DOE s Mid-Atlantic CHP TAP April 1, 2014 CEE NATIONAL MARKET TRANSFORMATION COMBINED HEAT & POWER Gearoid Foley, Sr. Advisor DOE s Mid-Atlantic CHP TAP April 1, 2014 Outline Who we are What is CHP Drivers & Applications Key Activities CHP Technical

More information

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Cogeneration and Thermal Chillers.. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Agenda Cogeneration Interest and Application Basics Equipment Matching Thermal Chiller Overview Steam Components

More information

Industrial Waste Heat Recovery

Industrial Waste Heat Recovery Industrial Waste Heat Recovery Industrial Energy RoundTable Kathey Ferland Project Manager Texas Industries of the Future kferland@mail.utexas.edu Riyaz Papar, PE, CEM Director, Energy Assets & Optimization

More information

2. Chilled Water Storage: A 4.4-million gallon chilled water storage tank improves Cornell s ability to meet peak cooling needs.

2. Chilled Water Storage: A 4.4-million gallon chilled water storage tank improves Cornell s ability to meet peak cooling needs. SECTION 018130 ENERGY MODELING GUIDELINES APPENDIX A Modeling the District Heating and Cooling Systems of Cornell University for LEED Projects PART 1: GENERAL 1.01 PURPOSE A. Cornell is continually improving

More information

A. Cornell s district energy systems include the following components:

A. Cornell s district energy systems include the following components: SECTION 018130 ENERGY MODELING GUIDELINES APPENDIX A Modeling the District Heating and Cooling Systems of Cornell University for LEED Projects PART 1: GENERAL 1.01 PURPOSE A. Cornell is continually improving

More information

The Milton S. Hershey Medical Center Academic Support Building. AE Senior Thesis Kari Anne Donovan Mechanical Option

The Milton S. Hershey Medical Center Academic Support Building. AE Senior Thesis Kari Anne Donovan Mechanical Option The Milton S. Hershey Medical Center Academic Support Building AE Senior Thesis Kari Anne Donovan Mechanical Option Presentation Outline Existing Conditions Distributed Chilled Water Feasibility Study

More information

BUILDING FOR THE FUTURE

BUILDING FOR THE FUTURE BUILDING FOR THE FUTURE The following article was published in ASHRAE Journal, September 4. Copyright 4 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented

More information

Absorption Chillers Use in America Today

Absorption Chillers Use in America Today Absorption Chillers Use in America Today Gearoid Foley Richard Sweetser ABSTRACT President Bush s National Energy Policy, Clear Skies and the Global Climate Change Initiatives form a comprehensive roadmap

More information

ADVANCED ABSORPTION CHILLER CONVERTS TURBINE EXHAUST TO AIR CONDITIONING

ADVANCED ABSORPTION CHILLER CONVERTS TURBINE EXHAUST TO AIR CONDITIONING International Sorption Heat Pump Conference June 22 24, 2005; Denver, CO, USA ISHPC-095-2005 ADVANCED ABSORPTION CHILLER CONVERTS TURBINE EXHAUST TO AIR CONDITIONING Jeanette B. Berry* Rod Schwass James

More information

Packaged AHR (Advanced Heat Recovery) Systems for Engines, Gas Turbines, & Industrial Waste Heat. Tom Pierson

Packaged AHR (Advanced Heat Recovery) Systems for Engines, Gas Turbines, & Industrial Waste Heat. Tom Pierson Packaged AHR (Advanced Heat Recovery) Systems for Engines, Gas Turbines, & Industrial Waste Heat Tom Pierson Last Field Erected CHP Project- Calpine Clear Lake, TX 1999 Evolution of Packaged Concept 500,000+

More information

Energy Efficiency Strategies Waste Heat Recovery & Emission Reductions

Energy Efficiency Strategies Waste Heat Recovery & Emission Reductions Energy Efficiency Strategies Waste Heat Recovery & Emission Reductions TUR Continuing Education Conference Sturbridge Host Hotel April 14, 2010 With fuel prices increasing and environmental pressure to

More information

Combined Heat & Power An Overview

Combined Heat & Power An Overview Combined Heat & Power An Overview 6 Distributed Generation DG is An Electric Generator Located At a Substation or Near a Building / Facility Generates at least a portion of the Electric Load DG Technologies..

More information

Gregory W. Stevens and Ronald K. Ishii, Alternative Energy Systems Consulting, Inc.

Gregory W. Stevens and Ronald K. Ishii, Alternative Energy Systems Consulting, Inc. A Study of Optimizing the System Integration of Combined Heat and Power (CHP) with Absorption Cooling for Cold Storage Applications: Design Considerations, Modeling and Life Cycle Costing Gregory W. Stevens

More information

24th World Gas Conference ARGENTINA WOC 5.1: Industrial Utilisation CHP - Sharing on Gas District Cooling (GDC) in Malaysia

24th World Gas Conference ARGENTINA WOC 5.1: Industrial Utilisation CHP - Sharing on Gas District Cooling (GDC) in Malaysia WOC 5.1: Industrial Utilisation CHP - Sharing on Gas District Cooling (GDC) in Malaysia By Mohd FAIROS Roslan and Mohd ROZI Othman Malaysian Gas Association (MGA) One of the energy solutions using natural

More information

Gas Turbine Inlet Air Cooling System

Gas Turbine Inlet Air Cooling System Gas Turbine Inlet Air Cooling System Presented by Bob Omidvar Heavy Duty GT - Effects of Ambient Temp 110% 105% 100% 95% 90% 85% 80% 75% 0 5 10 15 20 25 30 35 40 45 GT Inlet Temp (deg C) Heat rate kj/kwh

More information

Central Chiller Plants

Central Chiller Plants Central Chiller Plants Institute for Facilities Management New Orleans, LA January 18,2016 Course 319 Presenter: John Vucci Associate Director HVAC Systems University of Maryland College Park, Maryland

More information

Princeton University Facilities Engineering

Princeton University Facilities Engineering Princeton University Facilities Engineering Environmental & Energy Study Institute International District Energy Association District Energy & Combined Heat & Power at Princeton University Rayburn House

More information

Combined Heat and Power

Combined Heat and Power Lecture 12 Combined Heat and Power Combustion Turbines and Co-generation Combustion Turbines and Combined Heat and Power (CHP) Systems See B. K. Hodge, Chapter 5 and Chapter 11. ISBN: 978-0-470-14250-9

More information

Cogeneration a.k.a. Combined Heat & Power (CHP) Overview

Cogeneration a.k.a. Combined Heat & Power (CHP) Overview Union Gas Ltd. Electricity Costs Workshop Cogeneration a.k.a. Combined Heat & Power (CHP) Overview Prepared By: Martin Lensink, P. Eng. Principal-In-Charge Increasing Earnings by Reducing Energy Costs

More information

3 Mechanical System Redesign

3 Mechanical System Redesign 3 Mechanical System Redesign 3.1 Considered Alternatives The MAC building offered many opportunities to change the existing design and explore an alternative different than the solution the original design

More information

8Combined Cooling, Heating and Power Technologies (CHP): An Overview

8Combined Cooling, Heating and Power Technologies (CHP): An Overview 8Combined Cooling, Heating and Power Technologies (CHP): An Overview Ted Bronson Associate Director Distributed Energy Resource Center Gas Technology Institute GTI / NICOR Combined Heat and Power Symposium

More information

A STUDY OF ABSORPTION CHILLER/HEATER APPLICATION IN MARINE ENGINEERING

A STUDY OF ABSORPTION CHILLER/HEATER APPLICATION IN MARINE ENGINEERING A STUDY OF ABSORPTION CHILLER/HEATER APPLICATION IN MARINE ENGINEERING The 4 th Biennial Marine Transportation System (MTS) Research & Development Conference, June 21-23, 2016 Advantages of Applying Absorption

More information

Waste Heat Recovery at Compressor Stations

Waste Heat Recovery at Compressor Stations Waste Heat Recovery at Compressor Stations The path towards novel and high-impact technologies and their implementation Gas Electric Partnership Houston, TX Feb 10-11 2010 Presented by Southwest Research

More information

Optimizing Clean Energy Systems with Thermal Energy Storage and/or Turbine Inlet Cooling

Optimizing Clean Energy Systems with Thermal Energy Storage and/or Turbine Inlet Cooling Optimizing Clean Energy Systems with Thermal Energy Storage and/or Turbine Inlet Cooling Dharam V. Punwani, President Avalon Consulting, Inc. John S. Andrepont, President The Cool Solutions Company The

More information

Application of Steam Turbine Driven Chillers in CHP/DES System

Application of Steam Turbine Driven Chillers in CHP/DES System Application of Steam Turbine Driven Chillers in CHP/DES System Bradley Cochrane, M. Eng., P. Eng., CEM, Director, Energy Management, York University. Edy Chiarotto, HVAC Equipment Sales Manager, Johnson

More information

Turbine Inlet Cooling. A Valuable Tool to INCREASE Electric Energy Production

Turbine Inlet Cooling. A Valuable Tool to INCREASE Electric Energy Production Turbine Inlet Cooling A Valuable Tool to INCREASE Electric Energy Production March 2012 1 Peak Temperatures Are High Across the United States 2 Capacity of Combustion Turbine Power Plants is Reduced in

More information

WFM. Big Box Retail CCHP

WFM. Big Box Retail CCHP WFM Big Box Retail CCHP Integrating CHP with DG Big Box Store CCHP 11/14/14 Washington DC Douglas Davis Director Broad USA Hackensack NJ 201 951 5713 davis@broadusa.com AGENDA Modern Absorption/CCHP Technology

More information

Myth Busters Absorption Cooling Technology. Rajesh Dixit

Myth Busters Absorption Cooling Technology. Rajesh Dixit Myth Busters Absorption Cooling Technology Rajesh Dixit 1 Acknowledgements Hitachi-Johnson Controls A/C Japan Shuichiro Uchida Takashi Nishiyama Shigehiro Doi 2 Learning Objectives Busting Myths About

More information

Optimization of a Cogeneration System in the Automotive Industry

Optimization of a Cogeneration System in the Automotive Industry Optimization of a Cogeneration System in the Automotive Industry Steve Spentzas Energy Resources Center University of Illinois at Chicago Midwest CHP Application Center Overview Cogeneration in the Automotive

More information

Providing free cooling from low temperature waste heat

Providing free cooling from low temperature waste heat Providing free cooling from low temperature waste heat through By Dinesh Gupta Past President ASHRAE India chapter President, Bry-Air Asia A. THE TECHNOLOGY Comparing the adsorption cycle with the refrigeration

More information

There are many who believe that combined heat and

There are many who believe that combined heat and A few circumstances in a data center make it ripe for a CHP design to boost efficiency. Let s get into the options within both relevant chiller types, why payback may be shorter than expected, and the

More information

A TECHNOLOGY FOR TODAY. Atlanta 2010

A TECHNOLOGY FOR TODAY. Atlanta 2010 A TECHNOLOGY FOR TODAY Atlanta 2010 Mechanical Systems Manager Smith College, Northampton, MA Overview Cogeneration Benefits Technologies Case Studies Why do Colleges have Physical Plants? Power Houses?

More information

University of Illinois at Chicago

University of Illinois at Chicago University of Illinois at Chicago CHP Systems Implementation at UIC s East and West Campuses Presented by: Jeff Barrie Director, Utilities Management University of Illinois at Chicago March 18, 2009 University

More information

Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE

Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE Performance evaluation of a small-scale polygeneration plant including a desiccant cooling system and an innovative natural gas ICE Armando Portoraro Energetics Department Politecnico di Torino (Italy)

More information

CHP Technologies Update

CHP Technologies Update CHP Technologies Update CHP Operators Workshop Iowa Economic Development Authority (IEDA) November 6, 2014 Cliff Haefke Energy Resources Center (ERC) o o o o o Located within the College of Engineering

More information

Mechanical Project Proposal

Mechanical Project Proposal Mechanical Project Proposal Miller Children s Hospital Prepared for: Dr. James Freihaut Department of Architectural Engineering The Pennsylvania State University Prepared by: Stephen Haines December 18

More information

How Combined Heat and Power Saves Money, Reduces Emissions and Improves Energy Security. CHP Overview. Anne Hampson ICF International

How Combined Heat and Power Saves Money, Reduces Emissions and Improves Energy Security. CHP Overview. Anne Hampson ICF International How Combined Heat and Power Saves Money, Reduces Emissions and Improves Energy Security CHP Overview Anne Hampson ICF International Environmental and Energy Study Institute May 22, 2013 Over Two Thirds

More information

Chapter 4.3: Cogeneration, Turbines (Gas, Steam)

Chapter 4.3: Cogeneration, Turbines (Gas, Steam) Short type questions Chapter 4.3: Cogeneration, Turbines (Gas, Steam) 1. What could be the range of energy saving potential from co-generation systems? Co-generation offers energy savings in the range

More information

NEHES Conference-Sustainable Hospital

NEHES Conference-Sustainable Hospital NEHES Conference-Sustainable Hospital October 5 th, 2012 Springfield Mass $AVING MONEY & CON$ERVING ENERGY WITH BIOMA$$ IN HOSPITAL $Y$TEM$: BURNING WOOD FOR COMBINED HEAT & POWER John Lombardi Administrative

More information

MONITORING AND DATA COLLECTION FOR DISTRIBUTED GENERATION/ COMBINED HEAT AND POWER (DG/CHP) SYSTEMS AT ALLIED FROZEN FOODS BROCKPORT, NEW YORK.

MONITORING AND DATA COLLECTION FOR DISTRIBUTED GENERATION/ COMBINED HEAT AND POWER (DG/CHP) SYSTEMS AT ALLIED FROZEN FOODS BROCKPORT, NEW YORK. MONITORING AND DATA COLLECTION FOR DISTRIBUTED GENERATION/ COMBINED HEAT AND POWER (DG/CHP) SYSTEMS AT ALLIED FROZEN FOODS BROCKPORT, NEW YORK. SYSTEM OVERVIEW The power generation shall be delivered via

More information

Project Proposal Proposal for Investigation of Alternative Systems

Project Proposal Proposal for Investigation of Alternative Systems Project Proposal Proposal for Investigation of Alternative Systems 01.15.2010 Defense Media Activity Building Fort George G. Meade Penn State University Architectural Engineering Faculty Advisor: Dr. Treado

More information

Microturbine Combined Heat and Power Systems. September 14, 2017: AEE Northern Ohio Chapter. Presenter: Glenn Powers Operations Manager, GEM Energy

Microturbine Combined Heat and Power Systems. September 14, 2017: AEE Northern Ohio Chapter. Presenter: Glenn Powers Operations Manager, GEM Energy Microturbine Combined Heat and Power Systems September 14, 2017: AEE Northern Ohio Chapter Presenter: Glenn Powers Operations Manager, GEM Energy 2017 CCHP Concept Fuel Combined Cooling, Heat, and Power

More information

Equipment Design. Detailed Plant Conceptual Design. Version 7.0

Equipment Design.   Detailed Plant Conceptual Design. Version 7.0 Equipment Design Version 7.0 Detailed Plant Conceptual Design SOAPP CT sizes all major plant equipment, based on your Project Input, the process configuration derived from this input, and the results of

More information

for Hospitals Abington Memorial Hospital

for Hospitals Abington Memorial Hospital Combined Heat & Power for Hospitals Abington Memorial Hospital November 17, 2011 Mid Atlantic Clean Energy Application Center Department of Energy Program directed by Penn State AE Department Jim Freihaut

More information

Energy Efficiency and Security: Still Important in a World With Low-cost Fuel. E360 Forum Chicago, IL October 5, 2017

Energy Efficiency and Security: Still Important in a World With Low-cost Fuel. E360 Forum Chicago, IL October 5, 2017 Energy Efficiency and Security: Still Important in a World With Low-cost Fuel E360 Forum Chicago, IL October 5, 2017 Tom Hoopes Director, Marketing and Business Development Vilter Manufacturing Alan Simchick

More information

PECO CHP Symposium Mid Atlantic CHP Technical Assistance Partnership CHP Overview September 20, 2018

PECO CHP Symposium Mid Atlantic CHP Technical Assistance Partnership CHP Overview September 20, 2018 PECO CHP Symposium Mid Atlantic CHP Technical Assistance Partnership CHP Overview September 20, 2018 DOE CHP Technical Assistance Partnerships (CHP TAPs) End User Engagement Partner with strategic End

More information

Packaged Refrigerant Based Energy Storage (RBES) Air Conditioning System

Packaged Refrigerant Based Energy Storage (RBES) Air Conditioning System Packaged Refrigerant Based Energy Storage (RBES) Air Conditioning System Ram Narayanamurthy Ice Energy, Inc. this technology provides some of the largest opportunities we have right now to address the

More information

HIGH EFFICIENCY POLYGENERATION APPLICATIONS (HEGEL) I,II

HIGH EFFICIENCY POLYGENERATION APPLICATIONS (HEGEL) I,II 1st European Conference on Polygeneration HIGH EFFICIENCY POLYGENERATION APPLICATIONS (HEGEL) I,II Franco Anzioso Ph. D Centro Ricerche Fiat strada Torino 50 ORBASSANO (TO) franco.anzioso@crf.it ABSTRACT

More information

U.S. DOE Regional Clean Energy Application Centers

U.S. DOE Regional Clean Energy Application Centers U.S. DOE Regional Clean Energy Application Centers Ted Bronson CEAC Coordinator Power Equipment Associates Christine Brinker Executive Director Intermountain CEAC Southwest Energy Efficiency Project Heat

More information

Turbine Inlet Cooling : An Overview

Turbine Inlet Cooling : An Overview Turbine Inlet Cooling : An Overview Dharam V. Punwani President, Avalon Consulting, Inc. Presented at Turbine Inlet Cooling Association Webinar June 20, 2012 Presentation Outline Background: What is the

More information

Enhancing Competitiveness, Increasing Reliability and Reducing Emissions with Combined Heat & Power

Enhancing Competitiveness, Increasing Reliability and Reducing Emissions with Combined Heat & Power Enhancing Competitiveness, Increasing Reliability and Reducing Emissions with Combined Heat & Power Gearoid Foley, Senior Technical Advisor Mid-Atlantic CHP Technical Assistance Partnership NCSL Natural

More information

Application of Advanced Energy Technologies

Application of Advanced Energy Technologies GLOBALCON 2002 Philadelphia, Pennsylvania March 27, 2002 Application of Advanced Energy Technologies Michael K. West, Ph.D., P.E. Building Systems Scientist Advantek Consulting, Inc. www.advantekinc.com

More information

Equipment Design. Detailed Plant Conceptual Design. Version 9.0

Equipment Design.  Detailed Plant Conceptual Design. Version 9.0 Equipment Design Version 9.0 Detailed Plant Conceptual Design SOAPP CT sizes all major plant equipment, based on your Project Input, the process configuration derived from this input, and the results of

More information

Thesis Final Presentation

Thesis Final Presentation Acoustical lanalysis Thesis Final Presentation Facility Information Mechanical Information Goals Facility Information Location: Total Cost: $56,000,000 Occupancy: Office, Media Center Delivery Method:

More information

Absorption Refrigeration Cycle Turbine Inlet Conditioning. Luke Buntz ARCTIC Engineer Kiewit Power Engineers Co. ARCTIC

Absorption Refrigeration Cycle Turbine Inlet Conditioning. Luke Buntz ARCTIC Engineer Kiewit Power Engineers Co. ARCTIC Absorption Refrigeration Cycle Turbine Inlet Conditioning Luke Buntz Engineer Kiewit Power Engineers Co. 1 Overview 2 Generator Output (MW) The Problem Why chill? Increased fuel efficiency (fewer emissions)

More information

Combined Heat & Power (CHP) in New Jersey

Combined Heat & Power (CHP) in New Jersey COMBINED HEAT & POWER PROJECTS IN NEW JERSEY Combined Heat & Power (CHP) in New Jersey Essex County Correctional Facility, Cogeneration Project financing plant frees capital dollars Public Project 20yr

More information

CHP, Waste Heat & District Energy

CHP, Waste Heat & District Energy 600 500 400 300 200 100 0 Electric Cooling T/E Ratio Electricity Consumption & Cooling T/E Ratio 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 CHP, Waste Heat & District Energy Module 5: in Pennsylvania

More information

CHP and the Industrial Sector (Recycling Energy)

CHP and the Industrial Sector (Recycling Energy) CHP and the Industrial Sector (Recycling Energy) Presentation to: Combined Heat & Power Conference Purdue University Calumet Campus December 7, 2005 Presented by: John J. Cuttica Midwest CHP Application

More information

INCENTIVE ESTIMATOR HVAC USER GUIDE CONTENTS FLORIDA CUSTOM INCENTIVE PROGRAM

INCENTIVE ESTIMATOR HVAC USER GUIDE CONTENTS FLORIDA CUSTOM INCENTIVE PROGRAM INCENTIVE ESTIMATOR HVAC USER GUIDE FLORIDA CUSTOM INCENTIVE PROGRAM CONTENTS 1. Getting Started... 2 2. Measure Tool Description... 3 2.1. Appropriate Use of the Tool... 3 2.2. Applicable Types of Air

More information

Union College Combined Cooling, Heat and Power Project

Union College Combined Cooling, Heat and Power Project Union College Combined Cooling, Heat and Power Project Presented by: Mark Donovan, PE Union College, Assistant Director of Utilities Aaron Bolhous, PEng CHA, Project Engineer Agenda Introduction to Union

More information

ACEEE Hot Water Forum February 23, 2016

ACEEE Hot Water Forum February 23, 2016 ACEEE Hot Water Forum February 23, 216 Water Heating with Gas Engine Driven Heat Pumps Ed Vineyard Oak Ridge National Laboratory Building Equipment Research 1 Program Name or Ancillary Text eere.energy.gov

More information

DEVELOPMENT OF A HYBRID AIR-CONDITIONING SYSTEM DRIVEN BY LOW TEMPERATURE WASTE HEAT

DEVELOPMENT OF A HYBRID AIR-CONDITIONING SYSTEM DRIVEN BY LOW TEMPERATURE WASTE HEAT DEVELOPMENT OF A HYBRID AIR-CONDITIONING SYSTEM DRIVEN BY LOW TEMPERATURE WASTE HEAT Hirofumi Sasaki, Hiroyuki Tsuda, Technology Development Dept., Tokyo Gas Co., Ltd., Tokyo, Japan ABSTRACT Waste water

More information

PAPER NUMBER 64-GTP-16 S. T. ROBINSON J. W. GLESSNER. Solar, A Division of International Harvester Company, San Diego, Calif. Mems. ASME.

PAPER NUMBER 64-GTP-16 S. T. ROBINSON J. W. GLESSNER. Solar, A Division of International Harvester Company, San Diego, Calif. Mems. ASME. PAPER NUMBER 4-GTP-1 Copyright 194 by ASME AN ASME PUBLICATION Total Turbine Energy in Refrigeration Cycles S. T. ROBINSON J. W. GLESSNER Solar, A Division of International Harvester Company, San Diego,

More information

Propane Tests at Chesapeake Building

Propane Tests at Chesapeake Building UNIVERSITY OF MARYLAND GLENN L. MARTIN INSTITUTE OF TECHNOLOGY A. JAMES CLARK SCHOOL OF ENGINEERING CENTER FOR ENVIRONMENTAL ENERGY ENGINEERING Propane Tests at Chesapeake Building by Xiaohong Liao, Matthew

More information

IDEA Synopsis Submission

IDEA Synopsis Submission IDEA Synopsis Submission University of Minnesota 2017 IDEA Annual Energy Conference Abstract Topic: District Cooling: A Heating Highway Submitted by: Scott McCord, PE, University of Minnesota Abstract

More information

CHP 201: Commercial & Critical Facilities

CHP 201: Commercial & Critical Facilities CHP 201: Commercial & Critical Facilities Energy Facilities Connections Conference Leavenworth, WA May 8, 2014 Dave Sjoding, Director DOE Northwest CHP Technical Assistance Partnership 1 President s Executive

More information

DUBAL Energy Optimization Absorption Chiller Pilot Project

DUBAL Energy Optimization Absorption Chiller Pilot Project DUBAL Energy Optimization Absorption Chiller Pilot Project Global Sustainable Cities Network - 2014 23 January 2014 Tariq Alzarooni Manager: Asset Management: Power and Desalination Innovation in energy-conservation

More information

MICRO COMBINED COOLING AND POWER

MICRO COMBINED COOLING AND POWER MICRO COMBINED COOLING AND POWER Kyle Gluesenkamp, Oak Ridge National Laboratory, Oak Ridge, TN Reinhard Radermacher, Yunho Hwang, Center for Environmental Energy Engineering, University of Maryland, College

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

Tim A. Hansen, P.E. Southern Research Institute NDIA E2S2 May 2012

Tim A. Hansen, P.E. Southern Research Institute NDIA E2S2 May 2012 Tim A. Hansen, P.E. Southern Research Institute NDIA E2S2 May 2012 Lead Organization: Southern Research Institute Co-Performers: U.S. EPA s Environmental Technology Verification (ETV) Program FlexEnergy

More information

A Study on the Integration of a Novel Absorption Chiller into a Microscale Combined Cooling, Heating, and Power (Micro-CCHP) System

A Study on the Integration of a Novel Absorption Chiller into a Microscale Combined Cooling, Heating, and Power (Micro-CCHP) System University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-20-2013 A Study on the Integration of a Novel Absorption Chiller into a Microscale

More information

Comfort Cooling Application Using Fixed Focus Solar Parabolic Dish Concentrator Integrated with Double Effect Vapor Absorption Machine

Comfort Cooling Application Using Fixed Focus Solar Parabolic Dish Concentrator Integrated with Double Effect Vapor Absorption Machine Comfort Cooling Application Using Fixed Focus Solar Parabolic Dish Concentrator Integrated with Double Effect Vapor Absorption Machine Anagha Pathak 1*, Kiran Deshpande 1, Niranjan Kurhe 1, Pravin Baste

More information

TransPacific Energy Advantage: Case Studies

TransPacific Energy Advantage: Case Studies TransPacific Energy Advantage: Case Studies Typical Power Plant TPE-ORC 0.60 KWh ORC 2.3 KWh LP steam 0.35 KWh 30% (maximum) 2.05 KWh CHP Typical Power Generated 1.1 KWh Typical Power Wasted 2.31 KWh Typical

More information

Energy Upgrade Screening Study

Energy Upgrade Screening Study Energy Upgrade Screening Study Prepared for: The University of Maine Orono, ME Prepared by: R.G. Vanderweil Engineers, LLP 274 Summer Street Boston, MA 02210 Vanderweil Project No.: 28471.00 October 28,

More information

Explanation of JCM Feasibility Study in Thailand & Applicable Low CO2 Emission Technology

Explanation of JCM Feasibility Study in Thailand & Applicable Low CO2 Emission Technology The Seminar on Low Carbon Technologies At the Regional Environmental Centre for Central and Eastern Europe (REC) July 6-7 2015, Szentendre, The REC Conference Center Explanation of JCM Feasibility Study

More information

Combined Heat and Power (CHP) in Ohio and Available Technical Assistance

Combined Heat and Power (CHP) in Ohio and Available Technical Assistance Combined Heat and Power (CHP) in Ohio and Available Technical Assistance Dive into Process Efficiency Workshop October 14, 2017 Graeme Miller US DOE Midwest CHP TAP 1 Agenda US DOE CHP TAPs CHP Overview

More information

Big Batteries that Enhance Turbine Inlet Cooling Systems

Big Batteries that Enhance Turbine Inlet Cooling Systems Big Batteries that Enhance Turbine Inlet Cooling Systems Guy Frankenfield, PE (972) 823-3300 Guy.Frankenfield@dntanks.com www.dntanks.com Sponsored by: February 13, 2013; 1 PM (U.S. Central Time) http://www.meetingzone.com/presenter/default.aspx?partcec=414

More information

John S. Andrepont, President The Cool Solutions Company. ECOSTOCK 2006 Absecon, New Jersey, U.S.A. - June 1, 2006

John S. Andrepont, President The Cool Solutions Company. ECOSTOCK 2006 Absecon, New Jersey, U.S.A. - June 1, 2006 Practical Developments in Sensible Heat, Diurnal Cool Thermal Energy Storage (TES): Large Applications, Low Temps, Energy Efficiency, and Operating Plus Capital Savings John S. Andrepont, President The

More information

Combined Heat and Power. Applications and Guidelines Jeffrey Ihnen, P.E.

Combined Heat and Power. Applications and Guidelines Jeffrey Ihnen, P.E. Combined Heat and Power Applications and Guidelines Jeffrey Ihnen, P.E. Portions of this Presentation Brought to you by: Views, opinions and bad ideas are mine alone 2 Content CHP Perspectives Status Quo

More information

Analysis of Distributed Energy Supplying Technologies From the Viewpoint of Waste Heat

Analysis of Distributed Energy Supplying Technologies From the Viewpoint of Waste Heat Analysis of Distributed Energy Supplying Technologies From the Viewpoint of Waste Heat Yutaka Nagata, Central Research Institute of Electric Power Industry ABSTRACT In Japan and other countries cogeneration

More information

Waste Heat to Power (WHP) Technologies. Eric Maxeiner, PhD. May 24, 2017

Waste Heat to Power (WHP) Technologies. Eric Maxeiner, PhD. May 24, 2017 Waste Heat to Power (WHP) Technologies Eric Maxeiner, PhD. May 24, 2017 Presentation Outline of WHP WHP Market : Thermoelectric Steam Organic Rankine Cycle (ORC) sco 2 power cycle Overview of WHP: Definitions

More information

6 Cost Analysis. Table 6.1 Initial System Costs

6 Cost Analysis. Table 6.1 Initial System Costs 6.1 Considerations 6 Analysis There are two parts that need to be considered when looking into a cost analysis. The first is determining the initial cost of the system to determine whether or not a simple

More information

Thermal Distribution in District Energy and Cogeneration Systems

Thermal Distribution in District Energy and Cogeneration Systems International District Energy Association Thermal Distribution in District Energy and Cogeneration Systems Presented by William A. Liegois, P.E. Stanley Consultants, Inc. Topics Principles of Hot Water

More information

Combined Heat and Power Plants Options & Solutions. Joe Riddle, PE, CEM, LEED AP Vice President AECOM Atlanta, GA

Combined Heat and Power Plants Options & Solutions. Joe Riddle, PE, CEM, LEED AP Vice President AECOM Atlanta, GA Combined Heat and Power Plants Options & Solutions Joe Riddle, PE, CEM, LEED AP Vice President AECOM Atlanta, GA What is CHP? (or Co-Generation) Combined Heat and Power (CHP) Integrates the production

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

ImprovIng energy efficiency with chp: how to evaluate potential cost savings

ImprovIng energy efficiency with chp: how to evaluate potential cost savings technical article ImprovIng energy efficiency with chp: how to evaluate potential cost savings Combined heat and power modules based on natural gas-fueled reciprocating engines promise increased energy

More information

Harley-Davidson Museum Milwaukee, WI. Jonathan Rumbaugh, BAE/MAE Mechanical Option. Advisor: Dr. William Bahnfleth

Harley-Davidson Museum Milwaukee, WI. Jonathan Rumbaugh, BAE/MAE Mechanical Option. Advisor: Dr. William Bahnfleth Harley-Davidson Museum Milwaukee, WI. Jonathan Rumbaugh, BAE/MAE Mechanical Option Advisor: Dr. William Bahnfleth PROJECT SPONSORS : Thermal Bridging : Air vs. Water CHP Feasibility PRESENTATION OUTLINE

More information

Overview of Waste Heat Recovery Technologies for Power and Heat

Overview of Waste Heat Recovery Technologies for Power and Heat Overview of Waste Heat Recovery Technologies for Power and Heat Carolyn Roos, Ph.D. Northwest Clean Energy Application Center Washington State University Extension Energy Program September 29, 2010 1 A

More information

Advanced heat driven cooling cycles for low-temperature waste heat recovery

Advanced heat driven cooling cycles for low-temperature waste heat recovery CDTI-NEDO Joint Workshop on Energy Saving Engineering - Effective Use of Thermal Energy Advanced heat driven cooling cycles for low-temperature waste heat recovery 02/13/2018 Tatsuo Fujii Research & Development

More information

The Present and Future of Refrigeration, Power Generation and Energy Storage. R.Z. Wang Shanghai Jiao Tong University

The Present and Future of Refrigeration, Power Generation and Energy Storage. R.Z. Wang Shanghai Jiao Tong University The Present and Future of Refrigeration, Power Generation and Energy Storage R.Z. Wang Shanghai Jiao Tong University Contents Introduction Refrigeration Power generation Energy storage Discussions Introduction

More information

THE ALL-IN-ONE INLET AIR COOLING AND FILTRATION SOLUTION USING YOUR WASTE HEAT FREUDENBERG FILTRATION TECHNOLOGIES

THE ALL-IN-ONE INLET AIR COOLING AND FILTRATION SOLUTION USING YOUR WASTE HEAT FREUDENBERG FILTRATION TECHNOLOGIES THE ALL-IN-ONE INLET AIR COOLING AND FILTRATION SOLUTION USING YOUR WASTE HEAT FREUDENBERG FILTRATION TECHNOLOGIES INTRODUCING VILEDON EEE.SY Viledon eee.sy is a complete turnkey system for filtering and

More information

TGG, TBG, TEG, TUG, 3.9 TBS, Gene-Link series

TGG, TBG, TEG, TUG, 3.9 TBS, Gene-Link series Absorption Chillers TGG, TBG, TEG, TUG, 3.9 TBS, Gene-Link series Stable Chilled Water Outlet Temperature PID control is applied to maintain constant chilled water outlet temperature. When the cooling

More information

Absorption Chillers in Industry

Absorption Chillers in Industry Absorption Chillers in Industry With deregulation and recent advances, absorption can be the best suited chiller option available. For Robust Performance Look to the Horizon Series of Absorption Chillers

More information

Exploring a University Based Microgrid

Exploring a University Based Microgrid Exploring a University Based Microgrid November 3, 2016 Greater Philadelphia Chapter of Association of Energy Engineers Meeting Thomas Nyquist, P.E. Executive Director of Facilities Engineering Princeton

More information

Gainesville Regional Utilities: Reciprocating Engine CHP

Gainesville Regional Utilities: Reciprocating Engine CHP Gainesville Regional Utilities: Reciprocating Engine CHP Chuck Heidt (GRU) Jamie Verschage (GRU) John Lee (BMcD) February 22, 2017 Agenda To provide a high level overview of the history of CHP at GRU and

More information

Gas vs. Diesel Generator Sets Performance Cost & Application Differences

Gas vs. Diesel Generator Sets Performance Cost & Application Differences Gas vs. Diesel Generator Sets Performance Cost & Application Differences Page 1 Agenda Introduction Distributed Energy Products Diesel, Gas and Turbine generator sets How Engines Accept Loads Gas Product

More information

Turbine Inlet Air Chilling

Turbine Inlet Air Chilling Turbine Inlet Air Chilling Stellar Energy Stellar Energy s TIAC solutions integrate proven chilling technology, comprehensive process design and state-ofthe art controls to deliver a TIAC system optimized

More information

Chapter 3.7: Cooling Towers

Chapter 3.7: Cooling Towers Part-I: Objective type questions and answers Chapter 3.7: Cooling Towers 1. The type of cooling towers with maximum heat transfer between air to water is. a) Natural draft b) Mechanical draft c) Both a

More information

NATIONAL CERTIFICATION EXAMINATION 2004 FOR ENERGY MANAGERS

NATIONAL CERTIFICATION EXAMINATION 2004 FOR ENERGY MANAGERS NATIONAL CERTIFICATION EXAMINATION 004 FOR ENERGY MANAGERS PAPER EM3: Energy Efficiency in Electrical Utilities Date: 3.05.004 Timings: 0930-30 HRS Duration: 3 HRS Max. Marks: 50 General instructions:

More information