Waste Heat to Power (WHP) Technologies. Eric Maxeiner, PhD. May 24, 2017

Size: px
Start display at page:

Download "Waste Heat to Power (WHP) Technologies. Eric Maxeiner, PhD. May 24, 2017"

Transcription

1 Waste Heat to Power (WHP) Technologies Eric Maxeiner, PhD. May 24, 2017

2 Presentation Outline of WHP WHP Market : Thermoelectric Steam Organic Rankine Cycle (ORC) sco 2 power cycle

3 Overview of WHP: Definitions WHP vs. CHP (Waste Heat-to-Power vs Combined Heat & Power) WHP converts thermal energy to electricity (often most convenient) CHP keeps the heat as heat (most efficient) Types of WHP: Combined cycle Captures exhaust heat and adds to engine output Also called bottoming cycle or exhaust heat recovery (EHR) Waste heat recovery Captures heat from unrelated process Typically industrial process such as a furnace or kiln Primary power not considered WHP but often uses the same technology Coal, biomass, landfill gas, etc. Electrical vs. mechanical output Electrical: generator, alternator, thermoelectric Mechanical: shaft work (e.g. compressor), integrated with source engine (e.g. turbocharger) Temperature determines the quality of heat High grade heat >1,000 F Low grade heat < 500 F

4 Combined Cycle HR Heat radiation 0.6% Lube oil 2.9% 100% Jacket water 5.2% 90% Charge air cooler 16% 80% 70% 60% 25% 26% 26% Heat radiation 1.6% Lube oil 4.6% Jacket water 4.8% Charge air cooler 17% Engine energy balance 30% 1% 62% LSD: low speed diesel, T exhaust 480 o F MSD: med speed diesel, T exhaust 650 o F GT: gas turbine, T exhaust 1000 o F 50% Other 40% 30% 20% 49% 44% 37% Exhaust Shaft Power 10% 0% Note: typical values are shown LSD MSD GT (LM2500) Engine Type

5 Combined Cycle HR 100% 90% 80% 70% 25% 26% Engine energy balance 1% 49% LSD: low speed diesel, T exhaust 480 o F MSD: med speed diesel, T exhaust 650 o F GT: gas turbine, T exhaust 1000 o F 60% 23% 25% 50% 40% 2% 48% 50% 4% 13% Other Exhaust EHR 30% 20% 49% 44% 37% Shaft Power 10% 0% Note: typical values are shown LSD MSD GT (LM2500) Engine Type Heat recovery can reduce efficiency differences between engine types

6 WHP vs. CHP cont d Q out,1 Q out,2 HX Q cap Power cycle P elec,2 Q exh Total System Efficiency Fuel in Engine Engine output CHP: η CHP = (P elec,1 + Q cap )/Q in WHP: η WHP,elec = (P elec,1 + P elec,2 )/Q in Q in P elec,1 η WHP,therm = (P elec,1 + Q cap )/Q in η therm > η elec WHP and CHP should be compared on basis of value of P elec,2 vs. Q cap

7 Industrial WHP Market Potential 2008 DOE report on waste heat recovery: U.S. industry consumes 32 quadrillion BTU of energy per year (30% of all U.S. energy consumption) 20-50% of this is lost as waste heat Repurposing this waste heat would save $ billion/year in generation Three main energy use categories: Onsite generation of distributed power and other utilities Process energy (i.e. result of core purpose of plant) Non-process energy (e.g. HVAC, lighting) Significant emissions reduction potential Ohio grid average 1.5 lb CO 2 per kwh (US average is 1.1 lb) 1 MW of WHP offsets 6,000 ton CO 2 /year Low gas and electricity prices hurt WHP business case

8 Key WHP Markets Oil & Gas Gas Transmission, LNG Offshore Platform, FPSO (Gas Turbine, Gas Engine) Power Generation Fossil Fuel (Gas Turbine, Diesel) Marine Cruise Ship, LNG, Naval (Gas Turbine, Diesel) Oil & Gas Mechanical Drive (Gas Turbine) Power Generation Alternative/Renewable (Biomass, CSP, Nuclear, LFG) Industrial Cement, Steel, Glass (Process) 8

9 WHP as Renewable Energy Note: Ohio enacted 2-year freeze on clean energy standards in 2014 Source: Heat is Power,

10 Thermoelectric WHP Solid state device that converts heat directly to electricity Utilizes Seebeck effect in which thermal gradient between two dissimilar conductors creates an electrical current Slow development since mid 1850 s, accelerated with advent of semiconductors Applications: gas pipelines, vehicle engines (<10 kw) Advantages: no moving parts, remote operation, simple, installation can be non-invasive Disadvantages: inefficient (~5%), bulky, expensive

11 Rankine Cycle Rankine cycle is the basis for steam, ORC and sco 2 systems 1. Liquid is fed into pump to bring up pressure 2. Heat is transferred to fluid at constant pressure to create vapor 3. Vapor expands through turbine (shaft work) 4. Fluid is cooled & condensed back to liquid

12 Steam WHP Applications: primary power (coal & nuclear), combined cycle, etc. Two primary components: Boiler or HRSG Water-tube boiler invented in 1876 by Babcock & Wilcox Steam turbine Modern version invented in 1884, first commercialized by Westinghouse Up to 1.75 GW output Advantages: ubiquitous, reliable, established, high specific heat Disadvantages: water chemistry, corrosion, complex auxiliary equipment, labor intensive

13 Steam System Diagram

14 Organic Rankine Cycle (ORC) WHP Uses refrigerant as working fluid instead of water Lower boiling temperature than water R134a, isobutane, pentane, naptha Requires separate thermal oil loop to separate heat source from ORC fluid (often flammable & toxic) First developed in 1883, recent proliferation due to advanced fluids Applications: applicable to smaller and cooler projects (<500F, <3 MW) than steam, geothermal, biomass, diesel engine exhaust Advantages: heat-matching fluid, established, dry working fluid Disadvantages: reduced efficiency from thermal oil loop and temperature limits, harmful fluid, scaling issues

15 ORC System Schematic Biomass system with district heating

16 WHP Technologies: sco 2 Uses supercritical carbon dioxide as working fluid Supercritical fluid has high density and compressibility No need for intermediate fluid loop Commercialization started in 2007 with Echogen. Several prototypes built including 8 MW EPS100 (1 st commercially available system). Applications: All WHP markets, >700 F, >1 MW Advantages: Clean & stable working fluid, water-free operation, compact, lower O&M costs, remote operation, made in Ohio Disadvantages: New technology, lack of supply base, relatively high operating pressure (3,400 psi)

17 Echogen sco 2 Cycle Critical point of CO 2 is 1,071 psi & 88 F 1. Liquid CO 2 pumped to supercritical pressure 2. CO 2 preheated at recuperator 3. Recovered waste heat added at waste heat exchanger 4. High energy CO 2 expanded at turbine drives generator 5. Expanded CO 2 is pre-cooled at recuperator 6. CO 2 is condensed to a liquid at condenser

18 EPS100 pilot unit

19 Resources and references Heat is Power organization ( BCS, Inc. 2008, Waste Heat Recovery Technology and Opportunities in U.S. Industry, U.S. DOE Industrial Technologies Program. Eric Maxeiner, PhD Engineering Business Development 365 Water St., Akron, OH Office: Web: echogen.com

Power cycle development

Power cycle development Power cycle development Steam cycles dominant for >300 yrs, mostly Rankine Gas Brayton cycles catching up last 50 years Organic Rankine Cycles (ORC) relatively recent 2 Why a new power cycle? Steam Good

More information

Waste Heat Recovery at Compressor Stations

Waste Heat Recovery at Compressor Stations Waste Heat Recovery at Compressor Stations The path towards novel and high-impact technologies and their implementation Gas Electric Partnership Houston, TX Feb 10-11 2010 Presented by Southwest Research

More information

ORC Technology for waste Heat Recovery Power Generation. Dr Vijayakumar Kunche, M.Tech., Ph.D.

ORC Technology for waste Heat Recovery Power Generation. Dr Vijayakumar Kunche, M.Tech., Ph.D. ORC Technology for waste Heat Recovery Power Generation Dr Vijayakumar Kunche, M.Tech., Ph.D. Waste Heat - Present situation Industrial Processes use Oil, Gas, Coal or electricity for Heating Furnaces,

More information

Waste Heat Recovery Research at the Idaho National Laboratory

Waste Heat Recovery Research at the Idaho National Laboratory Waste Heat Recovery Research at the Idaho National Laboratory www.inl.gov Donna Post Guillen, PhD, PE Technology Forum: Low Temperature Waste Energy Recovery in Chemical Plants and Refineries, Houston,

More information

Organic Rankine Cycle Waste Heat Solutions And Opportunities In Natural Gas Compression > The renewable energy source

Organic Rankine Cycle Waste Heat Solutions And Opportunities In Natural Gas Compression > The renewable energy source Organic Rankine Cycle Waste Heat Solutions And Opportunities In Natural Gas Compression > The renewable energy source BY JOHN FOX t takes a significant amount of energy to transport the ever-growing supply

More information

TransPacific Energy Advantage: Case Studies

TransPacific Energy Advantage: Case Studies TransPacific Energy Advantage: Case Studies Typical Power Plant TPE-ORC 0.60 KWh ORC 2.3 KWh LP steam 0.35 KWh 30% (maximum) 2.05 KWh CHP Typical Power Generated 1.1 KWh Typical Power Wasted 2.31 KWh Typical

More information

Overview of Waste Heat Recovery Technologies for Power and Heat

Overview of Waste Heat Recovery Technologies for Power and Heat Overview of Waste Heat Recovery Technologies for Power and Heat Carolyn Roos, Ph.D. Northwest Clean Energy Application Center Washington State University Extension Energy Program September 29, 2010 1 A

More information

The answer is... yes!

The answer is... yes! The answer is... yes! TURN YOUR HEAT INTO ELECTRICITY NO FUEL, ZERO EMISSION Can plain machines save costs and energy at the same time as saving our beautiful planet? ENERGY CONCERN Today s society is

More information

Waste Heat to Power Economic Tradeoffs and Considerations

Waste Heat to Power Economic Tradeoffs and Considerations Waste Heat to Power Economic Tradeoffs and Considerations By Dr. Arvind C. Thekdi E3M, Inc. Presented at 3 rd Annual Waste Heat to Power Workshop 2007 September 25, 2007 Houston, TX. Waste Heat Sources

More information

September 10, Megan Huang* & Dr. Chandrashekhar Sonwane

September 10, Megan Huang* & Dr. Chandrashekhar Sonwane THERMODYNAMICS OF CONVENTIONAL AND NON- CONVENTIONAL SCO 2 RECOMPRESSION BRAYTON CYCLES WITH DIRECT AND INDIRECT HEATING September 10, 2014 Megan Huang* & Dr. Chandrashekhar Sonwane Agenda Efficiency of

More information

Landfill Biogas (LFG) Technology Applications

Landfill Biogas (LFG) Technology Applications Landfill Biogas (LFG) Technology Applications Agenda LFG Utilization - General Direct Use Medium BTU Direct Use High BTU Electricity Production Combined Heat and Power 2 Why Use Biogas (LFG)? Local, available

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

A TECHNOLOGY FOR TODAY. Atlanta 2010

A TECHNOLOGY FOR TODAY. Atlanta 2010 A TECHNOLOGY FOR TODAY Atlanta 2010 Mechanical Systems Manager Smith College, Northampton, MA Overview Cogeneration Benefits Technologies Case Studies Why do Colleges have Physical Plants? Power Houses?

More information

WASTE HEAT RECOVERY INCREASE YOUR ENERGY EFFICIENCY WITH ORC TECHNOLOGY.

WASTE HEAT RECOVERY INCREASE YOUR ENERGY EFFICIENCY WITH ORC TECHNOLOGY. WASTE HEAT RECOVERY INCREASE YOUR ENERGY EFFICIENCY WITH ORC TECHNOLOGY. They believe in us Turn waste heat into useful power Turboden Organic Rankine Cycle (ORC) units enable power production by converting

More information

Combined Heat and Power

Combined Heat and Power Lecture 12 Combined Heat and Power Combustion Turbines and Co-generation Combustion Turbines and Combined Heat and Power (CHP) Systems See B. K. Hodge, Chapter 5 and Chapter 11. ISBN: 978-0-470-14250-9

More information

Chapter 9: Vapor Power Systems

Chapter 9: Vapor Power Systems Chapter 9: Vapor Power Systems Table of Contents Introduction... 2 Analyzing the Rankine Cycle... 4 Rankine Cycle Performance Parameters... 5 Ideal Rankine Cycle... 6 Example... 7 Rankine Cycle Including

More information

Alex Alexandrovich, P.E.

Alex Alexandrovich, P.E. Alex Alexandrovich, P.E. Free Energy Potential The Rankine Cycle Barriers to The Rankine Cycle The Organic Rankin Cycle (ORC) Applications Packaged System Approach The majority of the heat resulting from

More information

Chapter 2.7: Cogeneration

Chapter 2.7: Cogeneration Chapter 2.7: Cogeneration Part-I: Objective type questions and answers 1. In cogeneration, the system efficiencies can go up to ------ a) 70% b) 80% c) 90% d) 60% 2. Cogeneration is the simultaneous generation

More information

Exhaust Heat Exchangers and their maturity and related current offerings and success Renaud Le Pierres

Exhaust Heat Exchangers and their maturity and related current offerings and success Renaud Le Pierres Exhaust Heat Exchangers and their maturity and related current offerings and success Renaud Le Pierres Waste Heat Recovery Many different heat sources available: Gas turbine exhaust 450-600 C Many turbines

More information

ORGANIC RANKINE CYCLE TECHNOLOGY PRODUCTS AND APPLICATIONS APRIL 2013 EAR 99 - NLR

ORGANIC RANKINE CYCLE TECHNOLOGY PRODUCTS AND APPLICATIONS APRIL 2013 EAR 99 - NLR ORGANIC RANKINE CYCLE TECHNOLOGY PRODUCTS AND APPLICATIONS APRIL 2013 UNITED TECHNOLOGIES CORP. Hamilton Sundstrand Pratt & Whitney Sikorsky Otis UTC Fire & Security UTC Power Carrier 2 TURBODEN OVERVIEW

More information

2016 BioCleantech Forum TURBODEN ORC TECHNOLOGY: STATE-OF-THE-ART. Ilaria Peretti. Manager, Sales and Business Development North America

2016 BioCleantech Forum TURBODEN ORC TECHNOLOGY: STATE-OF-THE-ART. Ilaria Peretti. Manager, Sales and Business Development North America 2016 BioCleantech Forum TURBODEN ORC TECHNOLOGY: STATE-OF-THE-ART Ilaria Peretti Manager, Sales and Business Development North America Ottawa, November 3rd, 2016 Table of Contents Who is Turboden and What

More information

Gensets and cogeneration

Gensets and cogeneration Gensets and cogeneration Combined heat and power applications from Alfa Laval The full benefits of energy efficiency Cogeneration or combined heat and power application is a very effective and efficient

More information

Conventional and Emerging Technology Applications for Utilizing Landfill Gas

Conventional and Emerging Technology Applications for Utilizing Landfill Gas Conventional and Emerging Technology Applications for Utilizing Landfill Gas Presented by: Rachel Goldstein US EPA LMOP March 1, 2005 California Biomass Collaborative Forum Sacramento, California 1 Agenda

More information

Chapter 4.3: Cogeneration, Turbines (Gas, Steam)

Chapter 4.3: Cogeneration, Turbines (Gas, Steam) Short type questions Chapter 4.3: Cogeneration, Turbines (Gas, Steam) 1. What could be the range of energy saving potential from co-generation systems? Co-generation offers energy savings in the range

More information

Organic Rankine Cycles for Waste Heat Recovery

Organic Rankine Cycles for Waste Heat Recovery Organic Rankine Cycles for Waste Heat Recovery NASA/C3P - 2009 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ALTERNATIVE ENERGY Global Collaboration in Environmental and Alternative Energy Strategies 11. November

More information

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Cogeneration and Thermal Chillers.. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Agenda Cogeneration Interest and Application Basics Equipment Matching Thermal Chiller Overview Steam Components

More information

Waste Heat to Power: Emissions Free Power & Industrial Competitiveness

Waste Heat to Power: Emissions Free Power & Industrial Competitiveness Waste Heat to Power: Emissions Free Power & Industrial Competitiveness Kelsey Southerland Director of Government Relations- TAS Energy Executive Director- The Heat is Power Association ksoutherland@tas.com

More information

Waste Heat Management Options Industrial Process Heating Systems. Dr. Arvind C. Thekdi E3M, Inc.

Waste Heat Management Options Industrial Process Heating Systems. Dr. Arvind C. Thekdi   E3M, Inc. Waste Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 Source of Waste Heat in Industries Waste heat is everywhere!

More information

WHR to Power Market Potential and Target Market Opportunities

WHR to Power Market Potential and Target Market Opportunities WHR to Power Market Potential and Target Market Opportunities Presented by: Ken Darrow September 29-30, 2010 icfi.com 2006 ICF International. All rights reserved. Topics WHR Markets Industrial Markets

More information

Ohio Senate Public Utilities Committee. Interested Party Written Testimony Ohio Senate Bill 58. April 23, 2013

Ohio Senate Public Utilities Committee. Interested Party Written Testimony Ohio Senate Bill 58. April 23, 2013 The Heat is Power Association 2215 South York Road Suite 202 Oak Brook, IL 60523 susan@heatispower.org Ohio Senate Public Utilities Committee Interested Party Written Testimony Ohio Senate Bill 58 April

More information

Stationary Combustion Systems Chapter 6

Stationary Combustion Systems Chapter 6 Stationary Combustion Systems Chapter 6 Stationary combustion systems presently supply most of the earth s electricity. Conversion will take time, so study of these systems in order to improve them is

More information

Application of Exergy Analysis. Value and Limitations

Application of Exergy Analysis. Value and Limitations Application of Exergy Analysis Value and Limitations Power Plant Exergy Flows and Destruction Stack 2 Other Losses 1 Fuel 92 27 65 20 Steam 43 7 Shaft Power 32 Combustion Heat Transfer Turbine Steam 3

More information

Lecture (5) on. Thermal Power Plant Unit Selection. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering.

Lecture (5) on. Thermal Power Plant Unit Selection. By Dr. Emad M. Saad. Mechanical Engineering Dept. Faculty of Engineering. 1 2 Lecture (5) on Thermal Power Plant Unit Selection By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical Engineering Dept. 2015-2016

More information

Combined Heat and Power. Applications and Guidelines Jeffrey Ihnen, P.E.

Combined Heat and Power. Applications and Guidelines Jeffrey Ihnen, P.E. Combined Heat and Power Applications and Guidelines Jeffrey Ihnen, P.E. Portions of this Presentation Brought to you by: Views, opinions and bad ideas are mine alone 2 Content CHP Perspectives Status Quo

More information

Metals Paper Plastic

Metals Paper Plastic Metals Paper Plastic Asphalt Shingles Carpet Tires Food waste Hot AIR??????????? Industrial Facilities have many waste stream Water, Waste, and stack emissions Heat goes up the stack There are relatively

More information

ORegen TM Waste Heat Recovery: Development and Applications. Andrea Burrato GE Oil & Gas Rotterdam October 8 th, 2013

ORegen TM Waste Heat Recovery: Development and Applications. Andrea Burrato GE Oil & Gas Rotterdam October 8 th, 2013 ORegen TM Waste Heat Recovery: Development and Applications Andrea Burrato GE Oil & Gas Rotterdam October 8 th, 2013 ORegen TM ORegen TM is GE Organic Rankine Cycle System designed to recover waste heat

More information

Optimal Design and Thermodynamic Analysis of Gas Turbine and Carbon Dioxide Combined Cycles

Optimal Design and Thermodynamic Analysis of Gas Turbine and Carbon Dioxide Combined Cycles The 6th International Supercritical CO 2 Power Cycles Symposium March 27-29, 2018, Pittsburgh, Pennsylvania Optimal Design and Thermodynamic Analysis of Gas Turbine and Carbon Dioxide Combined Cycles Yue

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

Overview of cogeneration technology and application

Overview of cogeneration technology and application Overview of cogeneration technology and application Cogeneration Week Hanoi, 6 April 2004 Melia Hotel, Hanoi Leif Mortensen, Coal Expert Cogeneration or Combined Heat and Power (CHP) Sequential generation

More information

Working Fluid Developments for HT Heat Pumps and ORC Systems

Working Fluid Developments for HT Heat Pumps and ORC Systems Working Fluid Developments for HT Heat Pumps and ORC Systems at Renewable Energy, Heating and Cooling Applications Edinburgh, 21st January 211 -Created by- July 21 Nacer Achaichia Contents Waste Heat Recovery

More information

BCE Program March-2017 Electrical Power Systems Time: min Quiz 1 Model A رقم المجموعة:

BCE Program March-2017 Electrical Power Systems Time: min Quiz 1 Model A رقم المجموعة: Quiz 1 Model A (A) it is discovered since very long time (B) it can be generated by different power stations (C) it can be easy controlled 2. To install Nuclear Power plants it is required to have a very

More information

ORC technology and its applications to the RE sector

ORC technology and its applications to the RE sector ORC technology and its applications to the RE sector Marrakesk, November 15 th 2016 Cem Zulfikar Business Developer ORC: 130 Years of History The first ORC, featuring a reciprocating expander, fed by a

More information

PureCycle 200 Heat-to-Electricity Power System

PureCycle 200 Heat-to-Electricity Power System PureCycle 200 Heat-to-Electricity Power System Energy Savings Power Reliability Environmental Stewardship INDUSTRIAL PROCESSES RECIPROCATING ENGINES GAS TURBINES THERMAL OXIDIZERS FLARES / INCINERATORS

More information

An Otto Rankine Combined Cycle for High Efficiency Distributed Power Generation June 10, 2009

An Otto Rankine Combined Cycle for High Efficiency Distributed Power Generation June 10, 2009 An Otto Rankine Combined Cycle for High Efficiency Distributed Power Generation June 10, 2009 David Montgomery, Ph.D. Caterpillar ARES Program Manager ARES Advanced Natural Gas Reciprocating Engine Systems

More information

Organic Rankine Cycle Technology

Organic Rankine Cycle Technology Power Systems Pratt & Whitney Power Systems Organic Rankine Cycle Technology TM It s in our power. Pratt & Whitney Organic Rankine Cycle Technology Quality High-volume components produced to strict tolerances

More information

Combined Heat and Power (CHP)

Combined Heat and Power (CHP) February 3-4, 2009 Net Zero Energy Installation and Deployed Bases Workshop Colorado Springs, CO Session III: Power & Energy Architecture for NZE Cliff Haefke Energy Resources Center / University of Illinois

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Father of thermodynamics, Sadi Carnot said that man is the weakest animal on the earth yet dominates the entire world. only because of power. Best power plant cycle is the one in

More information

Electric Power Generation Using Waste Gas

Electric Power Generation Using Waste Gas 9.2.1. Electric Power Generation Using Waste Gas July 31, 2017 Description During production, processing, refining and other oil and gas operations, vast quantities of waste heat are sometimes produced.

More information

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle

1 st Renewable Energy Technologies, LP. Organic Rankine Cycle 11/18/2010 1 st Renewable Energy Technologies, LP 8147 Clear Shade Drive, Windber, PA 15963 Phone: (814) 467-0431 Fax: (814) 467-8675 Email: Sales@1stRET.com Web: www.1stret.com Organic Rankine Cycle The

More information

2. Chilled Water Storage: A 4.4-million gallon chilled water storage tank improves Cornell s ability to meet peak cooling needs.

2. Chilled Water Storage: A 4.4-million gallon chilled water storage tank improves Cornell s ability to meet peak cooling needs. SECTION 018130 ENERGY MODELING GUIDELINES APPENDIX A Modeling the District Heating and Cooling Systems of Cornell University for LEED Projects PART 1: GENERAL 1.01 PURPOSE A. Cornell is continually improving

More information

A. Cornell s district energy systems include the following components:

A. Cornell s district energy systems include the following components: SECTION 018130 ENERGY MODELING GUIDELINES APPENDIX A Modeling the District Heating and Cooling Systems of Cornell University for LEED Projects PART 1: GENERAL 1.01 PURPOSE A. Cornell is continually improving

More information

Electricity from heat Revolution in heat utilization New ORC & VCRC technology

Electricity from heat Revolution in heat utilization New ORC & VCRC technology www.sumecgeopower.com Electricity from heat Revolution in heat utilization New ORC & VCRC technology SUMEC GEOPOWER AG is a European division of SUMEC group focussing on wide range of innovative Renewable

More information

Conventional and Emerging Technology Applications for Utilizing Landfill Gas

Conventional and Emerging Technology Applications for Utilizing Landfill Gas Conventional and Emerging Technology Applications for Utilizing Landfill Gas Presented by: Sibyl Pappas SCS Engineers (contractor to US EPA LMOP) August 31, 2004 Baton Rouge, LA 1 Why Use Landfill Gas?

More information

Transient Modeling of a Supercritical CO 2 Power Cycle in GT-SUITE and Comparison with Test Data. Echogen Power Systems 1

Transient Modeling of a Supercritical CO 2 Power Cycle in GT-SUITE and Comparison with Test Data. Echogen Power Systems 1 Transient Modeling of a Supercritical CO 2 Power Cycle in GT-SUITE and Comparison with Test Data Dr. Vamshi K. Avadhanula Systems Engineer Dr. Timothy J. Held Chief Technology Officer 1 Synopsis for today

More information

Supercritical CO2 Brayton Cycles and Their Application as a Bottoming Cycle. Grant Kimzey UTSR Intern Project Summary Webcast September 7, 2012

Supercritical CO2 Brayton Cycles and Their Application as a Bottoming Cycle. Grant Kimzey UTSR Intern Project Summary Webcast September 7, 2012 Supercritical CO2 Brayton Cycles and Their Application as a Bottoming Cycle Grant Kimzey UTSR Intern Project Summary Webcast September 7, 2012 Contents Introduction Assumptions and Design Parameters Benchmarks

More information

Combined Heat and Power: Markets and Challenges

Combined Heat and Power: Markets and Challenges Combined Heat and Power: Markets and Challenges Bruce A. Hedman ICF International Roundtable on Industrial Energy Efficiency and CHP June 28, 2012 Acknowledgements Based on work supported by: DOE s Advanced

More information

7.1 BALANCE IN TYPICAL COAL FIRED POWER STATION

7.1 BALANCE IN TYPICAL COAL FIRED POWER STATION 7. COGENERATION Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials 7.1 Need for Cogeneration Thermal power plants are a major source of electricity supply

More information

GTI forward on sco 2 Power Supercritical Transformational Electric Power project

GTI forward on sco 2 Power Supercritical Transformational Electric Power project GTI forward on sco 2 Power Supercritical Transformational Electric Power project Vann Bush Managing Director, Energy Supply & Conversion 27 March 2018 sco 2 Power Symposium Pittsburgh, PA Working With

More information

Supercritical CO 2 Brayton Power Cycles Potential & Challenges

Supercritical CO 2 Brayton Power Cycles Potential & Challenges Supercritical CO 2 Brayton Power Cycles Potential & Challenges Dr. Jeffrey N. Phillips Senior Program Manager 5 th International Supercritical CO 2 Power Cycles Symposium March 30, 2016 Foundational Assumptions

More information

American Industry; (municipal solid waste from non-biogenic sources, and tire-derived fuels).

American Industry; (municipal solid waste from non-biogenic sources, and tire-derived fuels). The Facts Every Day in American Industry; Billions of Btu are Lost. (municipal solid waste from non-biogenic sources, and tire-derived fuels). The Facts 20% - 50% of all fuel burned by American Industry

More information

Waste Heat Recovery using Organic Rankine Cycle turbines

Waste Heat Recovery using Organic Rankine Cycle turbines Nicolas Bernier, 5ft June 2018 Waste Heat Recover using Organic Rankine Ccle turbines Industrial waste heat : the example of France (1) Heat balance, fuel furnace, permanent regime Fumes loss 25 to 60

More information

enertime CLEAN ENERGY HARVESTING THE FRENCH CLEANTECH THAT TRANSFORMS HEAT INTO ELECTRICITY

enertime CLEAN ENERGY HARVESTING THE FRENCH CLEANTECH THAT TRANSFORMS HEAT INTO ELECTRICITY enertime CLEAN ENERGY HARVESTING THE FRENCH CLEANTECH THAT TRANSFORMS HEAT INTO ELECTRICITY HEAT RECOVERY EXCHANGERS WASTE HEAT RECOVERY ENGINES & TURBINES INCINERATORS THERMAL LOOP 600 to 40 000 kwth

More information

Convert your waste heat into power GENERATOR WASTE HEAT F / C. kwe COOLING BENEFITS ADDITIONAL THERMAL USAGE INCENTIVES

Convert your waste heat into power GENERATOR WASTE HEAT F / C. kwe COOLING BENEFITS ADDITIONAL THERMAL USAGE INCENTIVES WASTE HEAT 170-252 F / 77-122 C WASTE HEAT 170-252 F / 77-122 C kwe COOLING BENEFITS ADDITIONAL THERMAL USAGE INCENTIVES kwe COOLING BENEFITS ADDITIONAL THERMAL USAGE INCENTIVES GENERATOR Convert your

More information

IV International Seminar on ORC Power Systems. del Duomo di Milano

IV International Seminar on ORC Power Systems. del Duomo di Milano IV International Seminar on Power Systems 20 17 Selection Maps Firma For convenzione And CO 2 Systems For Politecnico Low-Medium di Milano Temperature e Veneranda Heat Fabbrica Sources del Duomo di Milano

More information

THELION DEVELOPMENTS LTD

THELION DEVELOPMENTS LTD THELION DEVELOPMENTS LTD A novel compressed air energy storage concept with higher efficiency levels but similar capital costs to conventional nonadiabatic compressed air energy storage. CONVENTIONAL CAES

More information

Organic Rankine Cycle System for Waste Heat Recovery from Twin Cylinder Diesel Engine Exhaust

Organic Rankine Cycle System for Waste Heat Recovery from Twin Cylinder Diesel Engine Exhaust Organic Rankine Cycle System for Waste Heat Recovery from Twin Cylinder Diesel Engine Exhaust Munna S Nazeer 1, Sabi Santhosh S B 2, Mohammed Althaf E 3, Mohammed Riyas A 4, Sujith S Thekkummuri 5 1-4

More information

Anschrift Geschäftsführer Gerichtsstand Kontakt Bankverbindung Online-Service

Anschrift Geschäftsführer Gerichtsstand Kontakt Bankverbindung Online-Service Seite 2 Highly efficient use of valuable waste heat from industrial processes It has passed the test: waste heat power plants with piston engines have proven themselves in the industry ORC waste heat power

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines - Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Auxiliary Devices Other components/arrangements Intercoolers between the compressors Reheat combustion chambers

More information

December 13, 2012 Energy Efficient Cooling Information Service Webinar Series Christine Brinker and Gearoid Foley CHP with Absorption Chilling

December 13, 2012 Energy Efficient Cooling Information Service Webinar Series Christine Brinker and Gearoid Foley CHP with Absorption Chilling December 13, 2012 Energy Efficient Cooling Information Service Webinar Series Christine Brinker and Gearoid Foley CHP with Absorption Chilling Technical Assistance Education and Outreach Executive Order

More information

Low Emissions gas turbine solutions

Low Emissions gas turbine solutions Turbomachinery and Process Solutions Low Emissions gas turbine solutions M.Santini/ M.Baldini 22 March, 2018 Green strategy beyond GT Flange to Flange NOx and CO Emissions reduction CO2 footprint reduction

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

PECO CHP Symposium Mid Atlantic CHP Technical Assistance Partnership CHP Overview September 20, 2018

PECO CHP Symposium Mid Atlantic CHP Technical Assistance Partnership CHP Overview September 20, 2018 PECO CHP Symposium Mid Atlantic CHP Technical Assistance Partnership CHP Overview September 20, 2018 DOE CHP Technical Assistance Partnerships (CHP TAPs) End User Engagement Partner with strategic End

More information

3 core areas of expertise

3 core areas of expertise 3 core areas of expertise clarity through simplicity Skills and Qualifications Membership of Safe Contractor Scheme Qualified CDM Duty Holders Qualified CDM Coordinators Prince 2 Project Management Practitioners

More information

Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids

Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids Jayaram Bhat 1, G.L. Arunkumar 2 Deapartment of mechanical engineering, NMIT Bangalore Abstract ORC (Organic Rankine Cycle)

More information

The Steam Machine Energy Recovery from The Most Powerful Machine in the World (1) Prepared by: Langson Energy, Inc. March 2013

The Steam Machine Energy Recovery from The Most Powerful Machine in the World (1) Prepared by: Langson Energy, Inc. March 2013 TM The Steam Machine Energy Recovery from The Most Powerful Machine in the World (1) Prepared by: Langson Energy, Inc. March 2013 Langson Energy s Steam Machine is an economically viable solution to improving

More information

26 th World Gas Conference

26 th World Gas Conference 26 th World Gas Conference 1 5 June 2015, Paris, France UTILIZING WASTE HEAT IN A GAS RESERVOIR ENVIRONMENT Zavada Roman NAFTA a.s. INTRODUCTION OF NAFTA a.s. Modern and innovative company Key underground

More information

Ms.P.Aileen Sonia Dhas

Ms.P.Aileen Sonia Dhas SUBJECT CODE SUBJECT NAME STAFF NAME : ME8792 : Power Plant Engineering : Prof.V.Tamil Selvi Ms.P.Aileen Sonia Dhas UNIT- I COAL BASED THERMAL POWER PLANTS Rankine cycle - improvisations, Layout of modern

More information

Power Generation and Transportation Applications

Power Generation and Transportation Applications Clean Energy from Landfill Gas: Power Generation and Transportation Applications Serpil Guran, Ph.D., Director The Rutgers EcoComplex Clean Energy Innovation Center Outline Quick overview of the EcoComplex

More information

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on - performance IV International Seminar on ORC Power Systems September 13-15, 2017 Suk Young Yoon,

More information

CHP and WHP Growth Trends and Opportunity Identification

CHP and WHP Growth Trends and Opportunity Identification CHP and WHP Growth Trends and Opportunity Identification Joel Bluestein ICF International October 8, 2013 CHP and WHP CHP is an integrated energy system that generates electrical and/or mechanical power

More information

Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials

Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials 7. COGENERATION Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials 7.1 Need for cogeneration Thermal power plants are a major source of electricity supply

More information

We will incorporate life cycle strategic partnering to achieve operational efficiency and economically effective programs. Low-Carbon, Low-Cost Energy

We will incorporate life cycle strategic partnering to achieve operational efficiency and economically effective programs. Low-Carbon, Low-Cost Energy Our mission To become a world leader of innovative solutions for financing by partnering, designing, installing & operating low carbon technologies in the power sector. We will incorporate life cycle strategic

More information

WHP Technologies: Transferring Success from Geothermal to Waste Heat to Power Projects

WHP Technologies: Transferring Success from Geothermal to Waste Heat to Power Projects WHP Technologies: Transferring Success from Geothermal to Waste Heat to Power Projects Michael Newell, Ener-G-Rotors Loy Sneary, Gulf Coast Green Energy Jessica Lubetsky, Pew Clean Energy Program SMU May

More information

Heat recovery from diesel engines and gas turbines

Heat recovery from diesel engines and gas turbines Environmentally friendly AQYLON s organic working fluids have a very low Global Warming Potential (320). Refrigerant fluids can be used but their GWP range between 800 to 1000. Rugged AQYLON s ORC modules

More information

Energy Ideas for Galvanizing

Energy Ideas for Galvanizing Energy Ideas for Galvanizing Lachi Lazarov VP Business Development (423) 779-7684 lazarov@energ3.us Hubert van der Harst Chief Technology Officer (423) 315-1912 hvanderharst@energ3.us http://energ3.us/

More information

Examining Applications Of Offshore Technology To Onshore Gas Compressor Stations For The Profitable Generation Of CO2-Free Power

Examining Applications Of Offshore Technology To Onshore Gas Compressor Stations For The Profitable Generation Of CO2-Free Power Examining Applications Of Offshore Technology To Onshore Gas Compressor Stations For The Profitable Generation Of CO2-Free Power HEAT RECOVERY SOLUTIONS Innova&ve Clean Energy Equipment PROFITABLE, CO2

More information

The Future of Heat Recovery: Combined Heat & Power

The Future of Heat Recovery: Combined Heat & Power The Future of Heat Recovery: Combined Heat & Power Carolyn Roos Energy Engineer Northwest CHP Technical Assistance Partnership Alaska Rural Energy Conference Fairbanks, Alaska April 11, 2018 Outline of

More information

Energy Efficiency and Security: Still Important in a World With Low-cost Fuel. E360 Forum Chicago, IL October 5, 2017

Energy Efficiency and Security: Still Important in a World With Low-cost Fuel. E360 Forum Chicago, IL October 5, 2017 Energy Efficiency and Security: Still Important in a World With Low-cost Fuel E360 Forum Chicago, IL October 5, 2017 Tom Hoopes Director, Marketing and Business Development Vilter Manufacturing Alan Simchick

More information

ENVIRONMENT-FRIENDLY ENERGY SOLUTIONS

ENVIRONMENT-FRIENDLY ENERGY SOLUTIONS ENVIRONMENT-FRIENDLY ENERGY SOLUTIONS Tailored high-efficiency complete solutions to utilize environment-friendly energy, in both new and renovation projects. Sarlin provides environment-friendly energy

More information

Waste Heat Recovery with Organic Rankine Cycle Technology

Waste Heat Recovery with Organic Rankine Cycle Technology Power Generation Waste Heat Recovery with Organic Rankine Cycle Technology Power Generation with the Siemens ORC-Module Scan the QR code with the QR code reader in your mobile! www.siemens.com / energy

More information

Cryogenic Carbon Capture

Cryogenic Carbon Capture Cryogenic Carbon Capture Sustainable Energy Solutions Sustainable Energy Solutions Sustainable Energy Solutions (SES) was founded in 2008 in response to a growing need for solutions to sustainability problems

More information

Gas turbine power plant. Contacts: Mail: Web:

Gas turbine power plant. Contacts: Mail: Web: Gas turbine power plant Contacts: Mail: poddar05@gmail.com Web: http://www.ajourneywithtime.weebly.com/ Contents Gas turbine power plant Elements of gas turbine power plants Gas turbine fuels Cogeneration

More information

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN

SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN (EXECUTIVE SESSION) November, 2007 JAPAN EXTERNAL TRADE ORGANIZATION JAPAN CONSULTING INSTITUTE SOME ENERGY-EFFICIENT TECHNOLOGIES IN JAPAN 1. Power Generation

More information

Engr. Adnan Qamar Lecturer Energy Resources

Engr. Adnan Qamar Lecturer Energy Resources Engr. Adnan Qamar Lecturer engr.adnan.pk@gmail.com Energy Resources Geothermal Energy Definition: geothermal energy is the thermal energy stored in the earth s crust. 'Geothermal energy' is often used

More information

Princeton University Facilities Engineering

Princeton University Facilities Engineering Princeton University Facilities Engineering Environmental & Energy Study Institute International District Energy Association District Energy & Combined Heat & Power at Princeton University Rayburn House

More information

MicroTurbine CHP Applications for Oil and Gas Industry

MicroTurbine CHP Applications for Oil and Gas Industry MicroTurbine CHP Applications for Oil and Gas Industry January 2008 Lee Richards Director, O&G Sales What is a MicroTurbine? Power generator driven by a small scale gas turbine Electrical efficiency of

More information

# 11. WASTE HEAT Heat to electricity techniques. Technologies for industrial processes. January 2019

# 11. WASTE HEAT Heat to electricity techniques. Technologies for industrial processes. January 2019 WASTE HEAT Heat to electricity techniques January 2019 EPOS TECHNOLOGY FOCUS Technologies for industrial processes # 11 About the EPOS Technology Focus Within the scope of the EPOS project, extensive literature

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information