Advanced Fuel Cell Technology for Co-Production of Electric Power and Carboxylic Acids Using Coal-Derived Alcohols

Size: px
Start display at page:

Download "Advanced Fuel Cell Technology for Co-Production of Electric Power and Carboxylic Acids Using Coal-Derived Alcohols"

Transcription

1 Advanced Fuel Cell Technology for Co-Production of Electric Power and Carboxylic Acids Using Coal-Derived Alcohols Advent of the practical coal-fired fuel cell John M. Pope, Ph.D. Chairman NDC Power Cheyenne, Wyoming 1

2 Overview Zero-carbon power from coal Technical advances in fuel cells have enabled a new class of fuel cells Syngas can be produced from coal Alcohol can be produced from syngas NDC has developed a practical direct alcohol fuel cell This fuel cell consumes alcohol and produces electricity and carboxylic acids It produces no carbon dioxide NDC is now in low rate initial production of small units NDC is now scaling the fuel cell systems to meet utility needs Fuel Cells are inherently more efficient than heat engines 2

3 Eos Technology Conventional Electric Power Generation Heat engines are subject to significant thermodynamic limitations on their efficiencies Use of carbon-based fuels requires some form of combustion to produce thermal energy for heat engines such as turbines Combustion is the root cause of carbon dioxide production Best case for heat engines may approach 60% total system efficiency Fuel cells offer prospect of much better total system efficiency Combined heat and power (CHP) system efficiencies may approach 90% for some fuel cell systems Fuel Cells are inherently more efficient than heat engines 3

4 Eos Process Technology Conventional Fuel Cells Water & CO 2 O 2 (Air) Ions Hydrogen or Syngas Examples Molten Carbonate, Phosphoric Acid, PEM, Alkaline, SOFC 4

5 Eos Technology Conventional Fuel Cells The intrinsic efficiency of fuel cells has yet to be converted to an operating or cost advantage over heat engines Conventional fuel cell capital costs are at least 10x greater than turbines Conventional fuel cell operating costs are very high Total system efficiencies are comparable to or less than stateof-the-art combined cycle plants Require extensive purification of feedstock % pure hydrogen required Less than 1 ppm sulfur Require steady state operating conditions and are difficult to use for peak shaving Conventional fuel cells are not yet cost effective 5

6 Eos Technology Conventional Fuel Cells Conventional fuel cells produce carbon dioxide directly or during production of the fuel 97% of hydrogen production from steam reforming petroleum Steam reforming produces more CO 2 per kw than directly burning the petroleum Syngas feedstock produces CO 2 directly in SOFC fuel cells Conventional fuel cells also produce significant amounts of carbon dioxide 6

7 Eos Technology Eos Advanced Alkaline Fuel Cells NDCPower has developed Eos - a new class of advanced alkaline fuel cells that operate using primary alcohol feedstock Utilizes any primary alcohol or mixed alcohol feedstock Ethanol, methanol, ethylene glycol. Robust up to 100 ppm sulfur in feedstock Can use alcohols produced from syngas using molydisulfide catalysts Produces carboxylic acids at 100% yield. Zero carbon dioxide is produced by Eos fuel cells Operates at low temperatures (~100ºC) and ambient pressures Electrical conversion efficiencies well in excess of 50% per ASTM standards Eos the only electric power generation technology that produces no CO 2 from carbon-based feedstock 7

8 Eos Process Technology Innovative Electric Power Carboxylic Acid O 2 (Air) Small carboxylic acids Acetic acid Formic acid Alcohol + Electrolyte OH - Chemical conversion O R-C-OH R-C-OH EOS Fuel Cell Technology Electric Power + Commodity Chemicals + Zero CO 8 2

9 Eos Technology Eos Advanced Alkaline Fuel Cells Eos technology is cost competitive with steam turbines New class of alkaline fuel cells that eliminates platinum catalysts and permselective membranes Low temperature and pressure operation Simplified physical plant Improved operating lifetimes Reduced maintenance costs Scalable installation Small modules allow scaling from 100kW to >100MW Modules allow hot swap maintenance Eos cost effective and scalable electric power generation 9

10 Eos Technology Eos Advanced Alkaline Fuel Cells Eos technology also offers significant new capabilities Requires zero start-up and shut-down time. Allows instant peak power support Allows scaling of power output to demand Uses a storable liquid feedstock Alcohol production can be optimized at steady state Alcohol can be stored for peak demand use Alcohol can be shipped to installations near loads/markets Eos provides instant on/off capability 10

11 Eos Technology Eos Advanced Alkaline Fuel Cells Eos technology produces carboxylic acid products instead of CO 2 Primary alcohols in feedstock converted into carboxylic acids and electric power Ethanol converted into acetic acid Methanol converted into formic acid Carboxylic acid yield is quantitative Simplified isolation and purification Most cost effective technology for producing carboxylic acids Markets for carboxylic acids are large and growing ~1MM metric tons/yr formic acid/formate globally ~5MM metric tons/yr acetic acid/acetate globally Eos produces salable commodity chemical products 11

12 Eos Manufacturing Eos Advanced Alkaline Fuel Cells Small scale units are now in low rate initial production Pilot-scale Manufacturing Facility: Highly Automated Exponential ramp in production output Modular/scalable Statistical Quality Control Manufacturing is sited in Cheyenne, Wyoming 12

13 For both military and commercial customers Eos Manufacturing Eos Advanced Alkaline Fuel Cells Manufacturing is sited in Cheyenne, Wyoming 13

14 Eos Technology Eos Advanced Alkaline Fuel Cells Eos technology can be integrated into coal-fired electric power plants Production of commodity chemicals introduces significant new economic paradigm Eos eliminates CO 2 production from coal-fired power plants Eos process modeled for 1000 tpd 80% bituminous coal plant 82% more electric power Significant revenue stream from commodity chemicals 14

15 EOS Technology Clean Coal Example Process Schematic 1,000 tpd Bituminous Coal Feedstock 1,457 tpd Carboxylic Acid Products 60% CO 2 Capture as Carboxylic Acid Products 160 MW Power Sizing MoS 2 Alcohol Process 273 tpd water consumption 16 MW Parasitic Load Zero net CO 2 emission 80% Carbon Bituminous Coal 15

16 EOS Technology Economic Comparison Coal-fired Steam Plant 2.2 MWh Electric Power - Value ~$90 Over 2 tons of CO 2 Produced - Stoichiometric 80% carbon is 2.9 tons CO 2 Coal-fired Fuel Cell Plant 3.3 MWh Electric Power - Value ~$130 About 1 ton CO 2 Produced - Remaining carbon captured as carboxylic acid products - Pure CO 2 stream - CO 2 used in processing ~1.4 ton of carboxylic acids produced - Value $880 to $1,900 Per Ton of 80% Carbon Bituminous Coal 16

17 Overview Zero-carbon power from coal Coal-fired fuel cells have substantial benefits over combustion 50% more power per ton of coal 1500% more return on capital No net CO 2 output Fuel Cells are inherently more efficient than heat engines 17

18 Overview Zero-carbon power from coal Technical advances in fuel cells have enabled a new class of fuel cells Syngas can be produced from coal Alcohol can be produced from syngas NDC has developed a practical direct alcohol fuel cell This fuel cell consumes alcohol and produces electricity and carboxylic acids It produces no carbon dioxide NDC is now in low rate initial production of small units NDC is now scaling the fuel cell systems to meet utility needs Fuel Cells are inherently more efficient than heat engines 18

19 Contact Information

Eos Process Technology

Eos Process Technology Eos Process Technology Large Scale Direct Alkaline Fuel Cells Don Montgomery, Ph.D. NDCPower Eos Process Technology Fuel Cell Universe Eos Fuel Cells Alkaline Fuel Cells Eos Direct Alcohol Fuel Cells Eos

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production

Sustainable Energy Science and Engineering Center. Fuel Cell Systems and Hydrogen Production Fuel Cell Systems and Hydrogen Production Fuel Cell Type < 5kW 5-250kW < 100W 250kW 250kW - MW 2kW - MW Electrochemical Reactions 11 Efficiency Efficiency Source: Hazem Tawfik, Sept 2003 Pressure Effects

More information

Module 9: Energy Storage Lecture 34: Fuel Cell

Module 9: Energy Storage Lecture 34: Fuel Cell Module 9: Energy Storage Lecture 34: Fuel Cell In this lecture the energy storage (fuel cell) is presented. The following topics are covered in this lecture: Fuel cell Issues in fuel cell Hydrogen fuel

More information

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York

Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Capture the Energy 2012 Conference and Annual Meeting March 7 & 8, 2012 Troy, New York Solid Oxide Fuel Cells Perspective & Update on the State-of-the-Art Arkady Malakhov 771 Elmgrove Road, Rochester,

More information

Geothermic Fuel Cell Applications in Coal Coal Gasification---Coal to Liquids (Summary Highlights)

Geothermic Fuel Cell Applications in Coal Coal Gasification---Coal to Liquids (Summary Highlights) Geothermic Fuel Cell Applications in Coal Coal Gasification---Coal to Liquids (Summary Highlights) Introduction Historically, capital costs of Fischer-Tropsch (FT) coal-to-liquids projects have been high.

More information

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS

AC : DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS AC 2007-2870: DESIGN OF AN EXPERIMENTAL POWER SOURCE USING HYDROGEN FUEL CELLS Esther Ososanya, University of the District of Columbia Samuel Lakeou, University of the District of Columbia Abiyu Negede,

More information

CH2356 Energy Engineering Fuel Cell. Dr. M. Subramanian

CH2356 Energy Engineering   Fuel Cell.   Dr. M. Subramanian CH2356 Energy Engineering Fuel Cell Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam 603 110, Kanchipuram(Dist) Tamil

More information

By janaka. Copyrights HIMT

By janaka. Copyrights HIMT By janaka Copyrights HIMT 2016 1 In container trade alone the equivalent of 125 million twenty-foot containers being shipped worldwide. It is these quantities that make shipping such a significant contributor

More information

FT-GTL UNLOCKS VALUE FROM NATURAL GAS

FT-GTL UNLOCKS VALUE FROM NATURAL GAS FT-GTL UNLOCKS VALUE FROM NATURAL GAS Doug Miller Michael Goff Black & Veatch Corporation Ken Agee Emerging Fuels Technology April 2017 Introduction An estimated 147 billion cubic meters of gas was flared

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

Trends in the Use of Fuel

Trends in the Use of Fuel Hydrogen Fuel Cell Trends in the Use of Fuel Wood Coal Oil Natural Gas Hydrogen Percentage of hydrogen content in fuel 19 th century: steam engine 20 th century: internal combustion engine 21 st century:

More information

Preliminary evaluation of fuel cells

Preliminary evaluation of fuel cells TR Preliminary evaluation of fuel cells Nils Arild Ringheim December 2000 TECHNICAL REPORT Energy Research SINTEF Energy Research Address: NO-7465 Trondheim, NORWAY Reception: Sem Sælands vei 11 Telephone:

More information

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies

Hydrogen production via catalytic water splitting. Prospects of reducing greenhouse emission by hydrogen powered energy technologies Hydrogen production via catalytic water splitting Prospects of reducing greenhouse emission by hydrogen powered energy technologies Increasing molecular weight Mass energy densities for various fuels Fuel

More information

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017

Thermal Hydrogen : An Emissions Free Hydrocarbon Economy. by: Jared Moore, Ph.D. October 17 th, 2017 Thermal Hydrogen : An Emissions Free Hydrocarbon Economy by: Jared Moore, Ph.D. jared@meridianenergypolicy.com October 17 th, 2017 Peer reviewed and published, please cite as: Moore, J, Thermal Hydrogen:

More information

FMI ENERGY CONFERENCE. Orlando September 2008

FMI ENERGY CONFERENCE. Orlando September 2008 FMI ENERGY CONFERENCE Orlando September 2008 FUEL CELL ORIGINS Sir William Grove invented the fuel cell in 1839 Demonstrated that reaction was reversible Fuel cell term introduced by Ludwig Mond and Charles

More information

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely

Energy from Renewables: Envisioning a Brighter Future. Fuel Cells Charles Vesely Energy from Renewables: Envisioning a Brighter Future Fuel Cells Charles Vesely Who are we? Cummins Power Generation (AKA Onan) World Headquarters, Central Engineering, and Manufacturing for the Americas

More information

Fossil, Biomass, and Synthetic Fuels

Fossil, Biomass, and Synthetic Fuels Fossil, Biomass, and Synthetic Fuels Why do we care about heat engines? Waste heat U. S. electricity generation = 1.3 x 10 19 J/y Assuming 40% efficiency = 8 x 10 18 J/y waste heat Volume Lake Superior

More information

Research and Development Initiatives of WRI

Research and Development Initiatives of WRI Research and Development Initiatives of WRI Presented at COAL GASIFICATION: WHAT DOES IT MEAN FOR WYOMING? February 28, 2007 www.westernresearch.org Who is WRI? WRI is a 501 (c) 3 research, technology

More information

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY

HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY HYDROGEN FUEL CELL POWERTRAIN LEVELIZED COST OF ELECTRICITY Mario Valentino Romeri Independent Consultant, Italy, Valentino.Romeri@Alice.it Overnight Costs and Levelized Costs of Generating Electricity

More information

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018

SOEC: Key enabling Technology for sustainable Fuels and Feedstocks. John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 SOEC: Key enabling Technology for sustainable Fuels and Feedstocks John Bøgild Hansen, Haldor Topsøe Presentation to NSF February 2, 2018 Fuel Cell and Electrolyser SOFC SOEC H 2 H 2 O H 2 O H 2 H 2 +

More information

Fuel Cells Introduction Fuel Cell Basics

Fuel Cells Introduction Fuel Cell Basics Fuel Cells Introduction Did you know that the appliances, lights, and heating and cooling systems of our homes requiring electricity to operate consume approximately three times the energy at the power

More information

New Energy Conservation Technologies

New Energy Conservation Technologies Queensland University of Technology & University of Queensland Jan 2004 New Energy Conservation Technologies By Julian Dinsdale Executive Chairman, Ceramic Fuel Cells Limited ABSTRACT During the next one

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas

Fuel cells, myths and facts. PhD candidate Ole-Erich Haas Fuel cells, myths and facts PhD candidate Ole-Erich aas 1 Outline Fuel cell, history and general principle Fuel cell types and chemical systems PEM fuel cells for transport sector Polymer membranes Electrodes

More information

Design and Integration of Portable SOFC Generators. Introduction

Design and Integration of Portable SOFC Generators. Introduction Design and Integration of Portable SOFC Generators Joseph C. Poshusta, Ames Kulprathipanja, Jerry L. Martin, Christine M. Martin, Mesoscopic Devices, LLC, Broomfield, CO Introduction Although the majority

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process

Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process Techno-Economic Analysis for Ethylene and Oxygenates Products from the Oxidative Coupling of Methane Process Daniel Salerno, Harvey Arellano-Garcia, Günter Wozny Berlin Institute of Technology Chair of

More information

PERP/PERP ABSTRACTS Carbon Monoxide PERP 09/10S11

PERP/PERP ABSTRACTS Carbon Monoxide PERP 09/10S11 PERP/PERP ABSTRACTS 2010 Carbon Monoxide PERP 09/10S11 Report Abstract December 2010 Report Abstract Carbon Monoxide PERP 09/10S11 December 2010 The ChemSystems Process Evaluation/Research Planning (PERP)

More information

FUEL CELLS: Types. Electrolysis setup

FUEL CELLS: Types. Electrolysis setup FUEL CELLS: Types History of the technology The fuel cell concept was first demonstrated by William R. Grove, a British physicist, in 1839. The cell he demonstrated was very simple, probably resembling

More information

The ARK Reformer. Animal Litter. Synthetic Crude Oil Synthesis Gas (SynGas) Fertilizer Biomass. Solid Waste. Waste to Fuel

The ARK Reformer. Animal Litter. Synthetic Crude Oil Synthesis Gas (SynGas) Fertilizer Biomass. Solid Waste. Waste to Fuel ARK Power Dynamics The ARK Reformer Waste is a Resource in the Wrong Place. Input: Output: Animal Litter Solid Waste Synthetic Crude Oil Synthesis Gas (SynGas) Fertilizer Biomass Waste to Fuel ARK Produces

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact:

BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, April Crina S. ILEA Contact: BioGas and Fuel Cells BioGas 2020 Skandinavias Biogaskonferanse 2018, Fredrikstad, 25-26 April 2018 Crina S. ILEA Contact: crina@prototech.no Christian Michelsen Institute (CMI) Founded in 1988 Two departments:

More information

Justin Beck Ryan Johnson Tomoki Naya

Justin Beck Ryan Johnson Tomoki Naya Justin Beck Ryan Johnson Tomoki Naya Propose electrochemical system for converting CO2 to portable fuels Perform economic analysis for process Compare results and potential to some storage alternatives

More information

A Comparison of Two Engines. Benefits of an Electric Motor

A Comparison of Two Engines. Benefits of an Electric Motor Fuel Cells (http://www.stanford.edu/group/fuelcell/images/fuel%0cell%0components.jpg) Lecture prepared with the able assistance of Ritchie King, TA 1 A Comparison of Two Engines Internal-combustion engine

More information

Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification Ravi Ravikumar & Paul Shepard

Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification Ravi Ravikumar & Paul Shepard Co-Production of Fuel Alcohols & Electricity via Refinery Coke Gasification Ravi Ravikumar & Paul Shepard October 15, 2003 Gasification Technologies 2003 Conference San Francisco, CA Study Objectives Evaluate

More information

Synthesis of DME via Catalytic Conversion of Biomass

Synthesis of DME via Catalytic Conversion of Biomass International Conference on Bioenergy Utilization and Environment Protection 6 th LAMNET Workshop Dalian, China 2003 Synthesis of DME via Catalytic Conversion of Biomass Dr. Chang Jie / Mr. Wang Tiejun

More information

Biomass Energy Alternatives

Biomass Energy Alternatives Biomass Energy Alternatives The production and application of pyrolysis oils in the forest products industry Presented by: Colin McKerracher DynaMotive Energy Systems 2006 Forum on Energy: Immediate Solutions,

More information

Technology Overview. Renewable Natural Gasification - RNG: How It Works:

Technology Overview. Renewable Natural Gasification - RNG: How It Works: Technology Overview Renewable Natural Gasification - RNG: RNG is an advanced thermal conversion technology that uses an innovative and proprietary process to convert organic matter into a high-quality,

More information

Production and use of low grade hydrogen for fuel cell telecom applications

Production and use of low grade hydrogen for fuel cell telecom applications Production and use of low grade hydrogen for fuel cell telecom applications Fuel cells and hydrogen in transportation applications 9.10.2017, Espoo, Finland Pauli Koski, VTT Outline 1. On-site hydrogen

More information

Transforming technology into business solutions

Transforming technology into business solutions Transforming technology into business solutions Agenda 1. thyssenkrupp @ a glance 2. Megatrends influence the market for chemicals 3. From the idea to a commercial plant 4. Summary Transforming technology

More information

Pre-Combustion Technology for Coal-fired Power Plants

Pre-Combustion Technology for Coal-fired Power Plants Pre-Combustion Technology for Coal-fired Power Plants Thomas F. Edgar University of Texas-Austin IEAGHG International CCS Summer School July, 2014 1 Introduction 2 CO 2 Absorption/Stripping of Power Plant

More information

Direct Energy Conversion: Fuel Cells

Direct Energy Conversion: Fuel Cells Direct Energy Conversion: Fuel Cells References: Direct Energy Conversion by Stanley W. Angrist, Allyn and Beacon, 982. Fuel Cell Systems, Explained by James Larminie and Andrew Dicks, Wiley, 2003. Fuel

More information

Power Generation and Utility Fuels Group. Reynolds Frimpong Andy Placido Director: Kunlei Liu

Power Generation and Utility Fuels Group. Reynolds Frimpong Andy Placido Director: Kunlei Liu Power Generation and Utility Fuels Group Reynolds Frimpong Andy Placido Director: Kunlei Liu Gasification Background and Process Description Combustion vs. Gasification Combustion with oxygen Partial combustion

More information

Performance Improvements for Oxy-Coal Combustion Technology

Performance Improvements for Oxy-Coal Combustion Technology Performance Improvements for Oxy-Coal Combustion Technology John Wheeldon Technical Executive, Electric Power Research Institute Second Oxy-Combustion Conference Yeppoon, Queensland 12 th to 15 th September

More information

The Hydrogen Energy California (HECA) Project

The Hydrogen Energy California (HECA) Project The Hydrogen Energy California (HECA) Project N Maha Mahasenan Principal Advisor International Advanced Coal Conference Laramie, WY June 23, 2010 1 Presentation Outline (1) Introduction to the Project

More information

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel Dr. William A. Summers Program Manger, Energy Security Directorate June 11, 2009 Fifth International Hydrail Conference

More information

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS GASIFICATION THE WASTE-TO-ENERGY SOLUTION WASTE SYNGAS STEAM CONSUMER PRODUCTS HYDROGEN FOR OIL REFINING TRANSPORTATION FUELS CHEMICALS FERTILIZERS POWER SUBSTITUTE NATURAL GAS W W W. G A S I F I C A T

More information

PLASMA ARC THE LEADING LIGHT?

PLASMA ARC THE LEADING LIGHT? http://www.waste-management-world.com/articles/print/volume-11/issue-6/features/plasma-arc-the-leading-light.html PLASMA ARC THE LEADING LIGHT? 11/01/2010 Various thermal processes are now available for

More information

Integrated Membrane Reactor for Pre-Combustion CO 2 Capture

Integrated Membrane Reactor for Pre-Combustion CO 2 Capture Integrated Membrane Reactor for Pre-Combustion CO 2 Capture Ashok Damle Techverse, Inc. 2015 NETL CO2 Capture Technology Meeting June 24, 2015 June 24, 2015 Techverse, Inc. 2 Project Overview DOE SBIR

More information

Energy Sources. As demand increased, reliable sources were required Oil, coal, and natural gas represent

Energy Sources. As demand increased, reliable sources were required Oil, coal, and natural gas represent Chapter 22 Energy Sources Energy Sources As demand increased, reliable sources were required Oil, coal, and natural gas represent 90% of the world s commercially traded energy These are non-renewable energy

More information

Deploying the PEM TM Waste Conversion System. Jeff Surma President and CEO

Deploying the PEM TM Waste Conversion System. Jeff Surma President and CEO Deploying the PEM TM Waste Conversion System Jeff Surma President and CEO Presentation Overview What s New? S4 Energy Solutions, LLC S4/InEnTec Novel Gasifier S4 Energy s Gasification Solution S4 Energy

More information

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines?

Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? Electrochemistry is fundamentally different from combustion. What if we treated fuel cells differently from a heat engines? What if carbon-capture was an integral part of a power cycle? Oxy-FC is a novel

More information

Mobile Propulsion and Fixed Power Production with Near-Zero Atmospheric Emissions

Mobile Propulsion and Fixed Power Production with Near-Zero Atmospheric Emissions Tri-Service Power Expo 2003 Norfolk Waterside Marriott 15-17 July 2003 Mobile Propulsion and Fixed Power Production with Near-Zero Atmospheric Emissions Roger Anderson, Ronald Bischoff Clean Energy Systems,

More information

Lessons Learned from the World s Largest Digester Gas Fuel Cell. Waste Heat to Power February, 2006 Greg Bush - King Co.

Lessons Learned from the World s Largest Digester Gas Fuel Cell. Waste Heat to Power February, 2006 Greg Bush - King Co. Lessons Learned from the World s Largest Digester Gas Fuel Cell Waste Heat to Power February, 2006 Greg Bush - King Co. Co-Author Acknowledgements Eleanor Allen, CH2M HILL Carol Nelson, King County, WA

More information

Coupling of power, fuels, chemicals: perspective for hydrogen and e-fuels production

Coupling of power, fuels, chemicals: perspective for hydrogen and e-fuels production Coupling of power, fuels, chemicals: perspective for hydrogen and e-fuels production 1st Polish Conference on Hydrogen Technology October 25 th, 2018 Dr. Ireneusz Pyc, Dr. Gerhard Zimmermann Siemens Power

More information

Connecting Energy Sectors with Hydrogen

Connecting Energy Sectors with Hydrogen Connecting Energy Sectors with Hydrogen Solid Oxide Electrolysis 2016-07-12 Dr.-Ing. Oliver Borm / (De-)zentrale Energiewende Connecting Energy Sectors with H2 2016-07-12 2 AGENDA + Technology + Sector

More information

Green Ammonia. September 2015

Green Ammonia. September 2015 September 2015 Green Ammonia Tim Hughes 1, Ian Wilkinson 1, Edman Tsang 2, Ian McPherson 2, Tim Sudmeier 2, Josh Fellowes 2 Fenglin Liao 2, Simson Wu 2,,Augustin Valera-Medina 3, Sebastian Metz 4 1 Siemens

More information

Jason C. Ganley. Howard University Department of Chemical Engineering Washington, DC

Jason C. Ganley. Howard University Department of Chemical Engineering Washington, DC Intermediate Temperature Direct Ammonia Fuel Cells Jason C. Ganley Howard University Department of Chemical Engineering Washington, DC 1 Ammonia for Fuel Cells CH4 103 (1.5 H2)! Very mild enthalpy of reforming!

More information

SABIC CO 2 INITIATIVES

SABIC CO 2 INITIATIVES SABIC INITIATIVES DR. ATIEH ABU RAQABAH, GENERAL MANAGER, SABIC CORPORATE SUSTAINABILITY CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF) November 1-5, 2015, Riyadh, Kingdom of Saudi Arabia SABIC IS ROOTED

More information

The power to create renewable carbon-neutral ethanol

The power to create renewable carbon-neutral ethanol The power to create renewable carbon-neutral ethanol Eco Global Fuels (EGF) provides solutions to two key energy problems: waste CO 2 greenhouse gas emissions the need for renewable carbon-neutral transport

More information

The Future of IGCC Technology CCPC-EPRI IGCC Roadmap Results

The Future of IGCC Technology CCPC-EPRI IGCC Roadmap Results The Future of IGCC Technology CCPC-EPRI IGCC Roadmap Results Ronald L. Schoff (rschoff@epri.com) Electric Power Research Institute Sr. Project Manager IEA CCT2011 Conference Zaragoza, Spain May 10, 2011

More information

Final Report from the Task Force for Identifying Gaps in CO 2 Capture and Transport

Final Report from the Task Force for Identifying Gaps in CO 2 Capture and Transport CSLF-T-2006-12 November 2006 Final Report from the Task Force for Identifying Gaps in CO 2 Capture and Transport Background At the meeting of the Technical Group in Melbourne, Australia on September 15,

More information

Microlith Fuel Reformer and Fuel Processor Systems

Microlith Fuel Reformer and Fuel Processor Systems Microlith Fuel Reformer and Fuel Processor Systems Anthony Anderson Director, Marketing & Business Development Precision Combustion, Inc. Technologies : Microlith Catalytic Reactors, RCL Combustors Reforming:

More information

Available online at ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12

Available online at   ScienceDirect. Energy Procedia 63 (2014 ) GHGT-12 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 63 (2014 ) 7598 7607 GHGT-12 Costs of CO 2 capture technologies in coal fired power and hydrogen plants John Davison a *, Luca Mancuso

More information

6 Thermally coupled reactors for methanol synthesis - An exergetic approach

6 Thermally coupled reactors for methanol synthesis - An exergetic approach 6 Thermally coupled reactors for methanol synthesis - An exergetic approach 6.1 Introduction An alternative to the petroleum fuels is today's need due to their impact on global economy and depletion of

More information

Driving Revenue Decreasing Profits. simplifying Energy Generation

Driving Revenue Decreasing Profits. simplifying Energy Generation Driving Revenue Decreasing Profits simplifying Energy Generation 1 D4 Energy Group Waste to Energy Solutions Hazardous Material D4 Energy MSW Biomass Animal Manure Tires D4 Energy Group designs, manufactures,

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

Learning objectives and outcomes

Learning objectives and outcomes Ene-59.4301 Energy Systems for Communities Micro-Cogeneration Kari Alanne Senior University Lecturer, D.Sc (Tech.) Learning objectives and outcomes After this lecture the student will know the definitions

More information

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY

A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY A FUEL CELL AS A PETROL SUBSTITUTE; A FEASABILITY STUDY SALAH I. AL-MOUSLY, member, IEEE, and ZIAD K. ALHAMDANI, member, ASA Faculty of Electronic Engineering, P.O. Box 38645, Libya ABSTRACT In the end

More information

Fuel cells From the material to the finished product

Fuel cells From the material to the finished product FRAUNHOFER INSTITUTe FoR Chemical Technology ICT Fuel cells From the material to the finished product Partner for research, service provider for industry. Are you interested in fuel cells and looking

More information

Biosyngas from forest product industry by-products and residues

Biosyngas from forest product industry by-products and residues Biosyngas from forest product industry by-products and residues 1 Presentation at the VETAANI Conference 9 April 2014 Prof Rikard Gebart Luleå University of Technology Feedstock use in the forest product

More information

Program Review Days 2013 Introduction to portfolio of System development, Components, Materials and Operation Diagnostics projects Energy R&D

Program Review Days 2013 Introduction to portfolio of System development, Components, Materials and Operation Diagnostics projects Energy R&D Program Review Days 2013 Introduction to portfolio of System development, Components, Materials and Operation Diagnostics projects Energy R&D http://www.fch-ju.eu/ Nikolaos Lymperopoulos, Project Manager

More information

Waste Conversion Technologies November 12, 2008 SWANA

Waste Conversion Technologies November 12, 2008 SWANA Waste Conversion Technologies November 12, 2008 SWANA Bury it Burn it Complete Conversion of Waste to Value PlascoEnergy Simplified Flow Diagram Plasco Conversion vs. Torch in a Pot Maximum Value 99.8%

More information

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development Techlines provide updates of specific interest to the fossil fuel community. Some Techlines may be issued by the Department of Energy Office of Public Affairs as agency news announcements. Issued on: September

More information

Andreas Tsangaris Chief Scientist

Andreas Tsangaris Chief Scientist WTERT Bi-Annual Meeting Columbia University October 2008 Andreas Tsangaris Chief Scientist 1000 Innovation Dr., Suite 400, Ottawa, ON K2K 3E7 Tel: 613-591-9438 ext.1228 Cell: 613-799-0620 Email: atsangaris@plascoenergygroup.com

More information

Demonstration of Technology Options for Storage of Renewable Energy

Demonstration of Technology Options for Storage of Renewable Energy Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.v. (IASS)

More information

Repowering Conventional Coal Plants with Texaco Gasification: The Environmental and Economic Solution

Repowering Conventional Coal Plants with Texaco Gasification: The Environmental and Economic Solution Repowering Conventional Coal Plants with Texaco Gasification: The Environmental and Economic Solution INTRODUCTION Coal fired power plants have been producing a significant amount of power in the United

More information

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT Up until now, most of the

More information

A New Age for Coal with CCSU

A New Age for Coal with CCSU A New Age for Coal with CCSU Opportunities for Flameless Pressurized Oxy-Combustion (FPO) ADDRESSING EMISSIONS CHALLENGES & CARBON CAPTURE FOR COAL Wyoming Infrastructure Authority Energy & Technology

More information

DME as a carrier of Renewable Energy

DME as a carrier of Renewable Energy Annual Conference of Japan Institute of Energy, 6 August 2013 DME as a carrier of Renewable Energy Yotaro Ohno Corporation 1 Contents Introduction Comparison of Physical properties of Energy carriers Conversion

More information

Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems

Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems Energy Production From Hydrogen Co-Generated In Chlor-Alkali Plants By The Means Of Pem Fuel Cells Systems Rosanna Santorelli, Adrian Schervan UHDENORA SpA Via Bistolfi 35, 2123 Milano - Italy Alessandro

More information

EMISSION CONTROL IN COMBUSTON PROCESSES. A great success story..

EMISSION CONTROL IN COMBUSTON PROCESSES. A great success story.. EMISSION CONTROL IN COMBUSTON PROCESSES A great success story.. 57 What about NOx emissions: Are we done yet? EMISSION LIMITS FOR GROUND BASED GAS TURBINES Country NO x (at 15% O 2 ) CO (at 15% O 2 ) Rate

More information

Biofuels Technology Options for Waste to Energy

Biofuels Technology Options for Waste to Energy Biofuels Technology Options for Waste to Energy David C. Dayton, Ph.D. Fellow, Chemistry and Biofuels Director Energy Technology Division Sustainable Food Supply Chain Workshop March 16-17, 2015 Princeton

More information

FUEL CELLS ALEJANDRO AVENDAO

FUEL CELLS ALEJANDRO AVENDAO FUEL CELLS ALEJANDRO AVENDAO 1 1) INTRODUCTION 3 2) BACKGROUND 3 Fuel Cell Basics 3 Fuel Cell types 4 A. Proton Exchange Membrane Fuel Cells (PEMFC) 4 B. Direct Methanol Fuel Cells (DMFC) 5 C. Phosphoric

More information

Technologies for CO 2 Capture From Electric Power Plants

Technologies for CO 2 Capture From Electric Power Plants Technologies for CO 2 Capture From Electric Power Plants The Energy Center at Discovery Park Purdue University CCTR, Potter Center Suite 270 500 Central Avenue West Lafayette, IN 47907 http://discoverypark.purdue.edu/wps/portal/energy/cctr

More information

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS

EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS EXERGY ANALYSIS OF A SOFC BASED COGENERATION SYSTEM FOR BUILDINGS Can Ozgur Colpan cocolpan@connect.carleton.ca Ibrahim Dincer, PhD Ibrahim.Dincer@uoit.ca Feridun Hamdullahpur, PhD Feridun_Hamdullahpur@carleton.ca

More information

NLP optimization of a methanol plant by using H 2 co-product in fuel cells

NLP optimization of a methanol plant by using H 2 co-product in fuel cells 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 NLP optimization of a methanol plant by using H 2 co-product

More information

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document. 3 rn -I 0 ZLS TL-s DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. INDIRECT-FIRED GAS TURBINE DUAL FUEL CELL

More information

Synergistic Energy Conversion Processes Using Nuclear Energy and Fossil Fuels

Synergistic Energy Conversion Processes Using Nuclear Energy and Fossil Fuels Synergistic Energy Conversion Processes Using Energy and Fossil Fuels Masao Hori Systems Association, Japan Email: mhori@mxb.mesh.ne.jp ABSTRACT This paper reviews the methods of producing energy carriers,

More information

Gasification of Municipal Solid Waste

Gasification of Municipal Solid Waste Gasification of Municipal Solid Waste Salman Zafar Renewable Energy Advisor INTRODUCTION The enormous increase in the quantum and diversity of waste materials and their potentially harmful effects on the

More information

Enabling a Brighter Tomorrow: E-Gas TM Gasification

Enabling a Brighter Tomorrow: E-Gas TM Gasification Enabling a Brighter Tomorrow: E-Gas TM Gasification U.S. China Oil & Gas Industry Forum September 11, 2007 San Francisco, CA Doug Sauer Manager, Asia Business Development, E-Gas Gasification Doug.b.sauer@conocophillips.com

More information

Biomass Conversion to Drop-in Fuels

Biomass Conversion to Drop-in Fuels Biomass Conversion to Drop-in Fuels 2 The world s largest technical ceramics company Over 3 Million Sq Ft Manufacturing Space Over 3500 Employees Over 7 million pounds/month ceramic material production

More information

INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES

INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES THE CATALYST GROUP RESOURCES INTEGRATION OF RENEWABLE ENERGY IN CO 2 CAPTURE AND CONVERSION PROCESSES A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion

More information

4 th U.S.-China CO2 Emissions Control Science & Technology Symposium

4 th U.S.-China CO2 Emissions Control Science & Technology Symposium www.inl.gov Enhanced Carbon Capture and Utilization in Power Plants through Hybridization with Grid Dynamics 4 th U.S.-China CO2 Emissions Control Science & Technology Symposium Richard D. Boardman, Ph.D.

More information

OPPORTUNITIES FOR HYDROGEN: AN ANALYSIS OF THE APPLICATION OF BIOMASS GASIFICATION TO FARMING OPERATIONS USING MICROTURBINES AND FUEL CELLS

OPPORTUNITIES FOR HYDROGEN: AN ANALYSIS OF THE APPLICATION OF BIOMASS GASIFICATION TO FARMING OPERATIONS USING MICROTURBINES AND FUEL CELLS OPPORTUNITIES FOR HYDROGEN: AN ANALYSIS OF THE APPLICATION OF BIOMASS GASIFICATION TO FARMING OPERATIONS USING MICROTURBINES AND FUEL CELLS Darren D. Schmidt and Jay R. Gunderson Energy & Environmental

More information

PROCESS ECONOMICS PROGRAM. Report No by NICK KORENS ROBERT W. VAN SCOY. January private report by the PARK, CALIFORNIA

PROCESS ECONOMICS PROGRAM. Report No by NICK KORENS ROBERT W. VAN SCOY. January private report by the PARK, CALIFORNIA Report No. 110 SYNTHESIS GAS PRODUCTION by NICK KORENS and ROBERT W. VAN SCOY January 1977 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE I MENLO PARK, CALIFORNIA For detailed

More information

Markets for Coal. Use. NARUC Winter Policy Summit Feb. 12, 2018

Markets for Coal. Use. NARUC Winter Policy Summit Feb. 12, 2018 February 12, 2018 Modular Gasification New Markets for Coal Use NARUC Winter Policy Summit Feb. 12, 2018 David Lyons Technology Manager, Gasification Systems and Coal & Coal-Biomass to Liquids Why the

More information

Demonstration of Fuel Cells to Recover Energy from Landfill Gas Phase III. Demonstration Tests, and Phase IV. Guidelines and Recommendations

Demonstration of Fuel Cells to Recover Energy from Landfill Gas Phase III. Demonstration Tests, and Phase IV. Guidelines and Recommendations United States National Risk Management Environmental Protection Research Laboratory Agency Cincinnati, OH 45268 Research and Development EPA/600/SR-98/002 March 1998 Project Summary Demonstration of Fuel

More information