Recent Advances in Cost &

Size: px
Start display at page:

Download "Recent Advances in Cost &"

Transcription

1 Recent Advances in Cost & Efficiency for PEM Electrolysis Everett Anderson Technical Forum 25 April 2012 Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen Control System and design, HOGEN, and FuelGen are trademarks or registered trademarks of Proton Energy Systems, Inc. Any other brands and/or names used herein are the property of their respective owners.

2 Outline Introduction Markets Industrial & Energy Improvements Cost & Efficiency i Development Scale-up & Higher Pressure Other Developments Electrochemical Compression Alkaline Exchange Membranes Summary 2

3 Key Takeaways for Today Hydrogen markets exist today that can leverage advancements in on-site generation technologies PEM electrolysis is already highly cost competitive in these markets PEM electrolysis is reaching alkaline output capacities and has performance advantages for many applications Electrolysis demonstrated for fueling and can help bridge the infrastructure gap Hydrogen is an attractive option for renewable energy storage There are clear pathways for considerable cost reductions and efficiency improvements 3

4 Proton s Markets, Products & Capabilities Power Plants Complete product Heat Treating development, manufacturing & testing Turnkey product installation Semiconductors World-wide sales and service Laboratories Containerization and hydrogen storage solutions Government Integration of electrolysis into RFC systems 2000: S-Series 1-2 kg/day 13 bar 2006: HPEM 0.5 kg/day 138 bar 2009: Outdoor HPEM 2 kg/day 165 bar 2011: C-Series 65 kg/day, 30 bar Steady History of Product Introduction 2003: 2006: 1999: GC H-Series StableFlow ml/min 4-12 kg/day Hydrogen 13 bar 30 bar Control System 2010: Lab Line 4

5 Industrial Hydrogen Markets Hydrogen is a fast growing industrial gas Major industrial gas consuming industries: - Power Plants/Electric Power Generator Cooling Over 18,000 hydrogen-cooled generators world-wide Addressable market estimated at over $2 billion Improved plant efficiency and output/reduced greenhouse gas emissions Payback typically less than one year - Semiconductor manufacturing - Flat panel computer and TV screens - Heat treating - Analytical chemistry (carrier gases for GC, etc.) 5

6 Typical Power Plant Implementation Environmental Benefits: Pollution reduction 1 ton of CO 2 for every MW/hr improvement Based on improvement from 95% to 99% H 2 purity 6

7 Hydrogen Energy Markets Fueling Backup Power Telecom Remote sites Renewable Energy Capture Regenerative Fuel Cell System 7

8 Hydrogen Fueling: >20 stations worldwide 8

9 H 2 Generation: Proton s HOGEN C-Series 30 Nm 3 /h (65 kg/day) H 2 packaged gas generation system Compliant with ISO water electrolyzer standard PEM cell stack delivers 30 barg, % 9995% pure H2; 1 bar O2 HOGEN industrial version, FuelGen option Factory matched cooling, water conditioning, container Platform for near-term, renewable-based fueling stations Page 9

10 PEM Technology: Fuel Cell vs. Electrolyzer Similar materials of construction: PFSA membranes, noble metal catalysts Electrolysis membrane is fully hydrated, no RH cycling concerns Have to withstand high pressure differential ( psi) and high sealing loads Electrolysis stack materials have to withstand ~2V potentials particular concern for O 2 catalyst and flow fields Longer lifetime expectations (competing with gas cylinders) 10

11 Current Stack Limitations Efficiency driven by: Membrane resistance Oxygen overpotential Cost driven by: Membrane electrode assembly Flow fields/separators 32% 15% System 53% % Overpotential 60% 50% 40% 30% 20% 10% Activation and Ohmic Overpotentials Cathode Activation Anode Activation Ionic Electronic 0% % 25% 3% 5% 13% 24% 12% 23% Stack Current Density, ma/cm2 Power supplies Balance of plant MEA flow fields and separators bl balance of cell balance of stack Page 11

12 Technology Roadmaps Detailed product development pathways laid out internally Balance of plant scale up Cell stack cost and efficiency i Product improvements and introductions Balanced portfolio of near and long term implementation Executing on funded programs to address each area % Baseline e cost 100% 80% 60% 40% 20% 0% MEA Balance of cell Balance of stack Current <1 year 1 3 years >3 years Implementation Timeline Page 12

13 Cell Stack Needs 30% reduction in membrane thickness Order-of-magnitude reduction in catalyst loading Automation of MEA fabrication for electrolysisspecific MEAs Online quality control measurements 50% reduction in bipolar assembly cost Reduction of metal content in bipolar assembly Reduction in bipolar assembly process time Increased part yield from suppliers Page 13

14 Collaboration Strategy Leverage key competencies of component suppliers, integrators, universities, and national labs 14

15 Electrolysis Membranes Typically microns thick versus microns for fuel cells Need reinforcement to withstand high pressures Durability requirements make qualification AMPS8_TRND challenging 2500 Accelerated testing: combination of pressure, voltage, and temperature cycling (asf) Current Density ( H2PRES8_TRND Pressure (PSIG G) Time Minutes (min) Page 15

16 Efficiency Needs and Progress: Membrane Reduce Membrane Thickness Increase Operating Temperature Approximate current production range Potential (V) New membrane enables 2x current 90 micron (3.6 mil) 60 micron (2.4 mil) Advanced membranes show high efficiency while maintaining durability at 80C Current Density (A/cm 2 ) Page 16

17 Electrolysis Catalysts Pt not a good O 2 evolution catalyst Oxygen reaction is ~70,000 times slower than hydrogen reaction Highest activity catalysts are not stable in acid environment 3.6 Strategy: evaluate 3.2 mixed metals to obtain 2.8 stability and activity it 2.4 characteristics / volts Cell potential / PEM Electrolysis Endurance Testing O 2 Evolution Catalyst Evaluation 200 psi H 2 /0 psi O 2, 1.8 A/cm 2, 50 C Iridium Oxide Ruthenium Oxide Run time / hrs Page 17

18 Efficiency Needs and Progress: Catalyst Oxygen reaction is ~70,000 times slower than hydrogen reaction Progress shown is approximately factor of 20 improvement ial (V) Cell Potent Baseline M 1 xm 2 1-x M 1 xm 2 1-x M 1 xm 2 1-x } } Annealed Adv Process Annealed Adv Process Non-Annealed New catalyst blend New synthesis conditions; anode catalyst ink Run Time (hours) Combinatorial approach initiated with U. Wyoming Partnership with 3M to manufacture NSTF electrodes 18

19 Cost Needs and Progress - Catalyst Demonstrated new 2.20 alternative application 2.00 techniques Step 1: 55% reduction on 1.40 anode Step 2: >90% reduction on cathode Cell Poten ntial (V) Catalyst Loading Test: 1800 ma/cm2, 80oC Baseline 20% loading reduction 55% loading reduction Run Time (hours) 80ºC operation 3M nanostructured thin film electrode Potential (Volts) M Cathode #1, 8 mil total 3M Cathode #2, 8 mil total Proton Baseline, 7 mil Current tdensity (Amps/cm2) 19

20 Progress to Date: Catalyst Loading Loading % Catalyst 100% 90% 80% 70% 60% 50% 40% 30% 0% Implemented: 25% reduction Qualified: Next gen cathode process Feasibility Demonstrated: t Next gen anode, NSTF cathode 20% Goal: NSTF anode and cathode 10% Baseline Internally funded Internally funded DOE Step 1 DOE Step 2 End Goal Implementation Timeline 20

21 Cost Needs and Progress: Flow Fields New cathode flow field: 12% cost savings/stack Next Phase: New bipolar assembly concept, 50% metal reduction Nitride coatings: eliminates process steps and mitigates hydrogen embrittlement 21

22 Progress to Date: Flow Field Cost % Bi ipolar Asse embly Cost 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Implemented: Improved Frame Feasibility Demonstrated Baseline DOE Step 1 DOE Step 2 End Goal Implementation Timeline Page 22

23 Efficiency Improvements Potentia al (Volts) 2.4 Technology Progression 2.3 Baseline, 50C Advanced Oxygen Catalyst, 50C 2.2 Advanced membrane, 80C Advanced cell design, 80C Current Stack (~70% Eff (HHV) Advanced Stack (>86% Eff (HHV) CurrentDensity (A/cm2) 23

24 Electrolysis System Development From Single to Multi-Stack Systems Up to three stacks per system HOGEN GC HOGEN S Series HOGEN H Series HOGEN C Series 24

25 Increased System Output Led By Larger Stack Development 28 cm Nm 3 /hr 0.01 kg/day Commercial 86 cm cm cm cm 2 2 Nm 3 /hr 10 Nm 3 /hr 30 Nm 3 /hr 90 Nm 3 /hr Commercial Commercial Pre Production Concept 25

26 550 cm 2 Stack Development Improvement in bipolar plate design Current 86 cm 2 design tested to over million cell hours CFD modeling shows more uniform flow 2.1 Demonstrated operation up to 30 bar >15,000 hours validated d on 3-cell > 1,000 hours on 10-cell stack Full-scale +50 kg/day stack scale-up in process l Potential (V) Cell SQFT- 3 Cells (1032 amps, 425 psi, 50 C) Cell ll1 Cell ll2 Cell ll Run Time (hours) 26

27 Resulting Hydrogen Cost Progression $10 $8 Based on $0.05/kWh electricity odel $/kg H2 2, H2A m $6 $4 $2 DOE 2012 Target DOE 2017 Target $ 65 kg/day 200 kg/day system, pre production 200 kg/day system, full production* *Assumes volumes of 500 units/year 27

28 Small-Scale High Pressure Generation Proton s Proven Platform Pressurized H 2, Ambient O 2 Indoor & Outdoor Versions 193 bar H 2 Stack Also Developed HOGEN S-Series 13 bar H 2, 260 to 1050 NL/hr 240 Single Phase Power +10 Year History, 100 s Shipped 3.0 Proton Energy Systems In-House Cell Stack Endurance Testing HOGEN HPEM 165 bar H 2, 260 to 1050 NL/hr Early Production, Multiple Shipments Aver rage Cell Potential (Volts, 50 o C) cell stack 200 psig (13 barg) 1200 ASF (1.3 A/cm 2 ) 4 µv/cell hr Decay Rate >60, bar ,000 20,000 30,000 40,000 50,000 60,000 Operating Time (Hours) 20, bar 28

29 HOGEN NF Small-Scale 700 bar psi Fueler Electrochemical compression to 165 bar, 2.2 kg/day production 700 bar psi slow-fill fueling capability Qualified for GM vehicle fueling Electrolyzer and Electronics Compression CONCEPT 3 hp single-stage 700 bar boost compressor Storage FABRICATION High pressure electrolyzer Outdoor-rated 2.2 kg/day Medium Pressure Storage 165 bar psi 9 kg Simple dispensing interface Packaged system boundary Vehicle Fill 4 kg at up to 700 bar Slow fill INSTALLATION 29

30 Higher Pressure Development: 350 bar Proton s Current Development Highe est Sealing Pressur re 350 bar Cell Stack Up to 1050 NL/hr Prototype Design Completed 350 bar Test System Design Completed Fabrication Underway Operational Test by Year-End Successful Sealing to >525 bar * * * * Design Concept 1 *unacceptable MEA damage * * * * Design Concept Normalized Load 350 Bar Home Fueler Concept 30

31 Electrochemical H 2 Compression Past experience in EHC design/testing Based on PEM electrolysis Recently tested new cell architecture Internal humidification Thin membrane seal capability PSI, 118 F, 1000 h 1100 PSI, 115 F, 1000 h 200 PSI, 113 F, 1000 h RND I-V 1000 hr Versus Pressure 1.2 Electrochemical Compressor Cell Configuration Comparison, 70 C Baseline Config Alt Membrane 1 Alt Membrane 2 ntial (Volts) 2.0 (V) 0.8 Adv Config No Humidification Average Cell Pote Potential ( Current Density (A/cm 2 ) Current Density (A/cm2) 31

32 AEM Electrolysis Cell Membrane are RFCs highly efficient Alkaline environment enables elimination of most expensive components New materials increasing durability O 2 + 4H + Anode 2H 2 O 4e H + Acid 2H 2 Cathode 4H + O 2 + 2H 2 O Anode 4OH 4e 2H 2 + 4OH OH 2e Cathode 2H 2 O Alkaline $100,000 Acid Liquid vs. Membrane voltage losses Raw Ma aterial $/lb $10,000 $1,000 $100 $10 $1 Alkaline Acid Alkaline Platinum Iridium Nickel Titanium Stainless Catalyst Material Flow fields 32

33 AEM Electrolysis Accomplishments Newly developed membranes/ionomers showing stability improvement vs. commercial alkaline exchange materials Low cost flow field Progression of MEA Performance Over Year 1 Process Improvement 3 materials validated System concept design and BOM completed 2 Continuing work on performance and stability 0 Op perating Potential (V) Dec 10 Jan 11 Aug 11 Aug 11 Sep 11 Target Potential ma/cm Current Density (ma/cm 2 ) 33

34 Summary Proton s capabilities continue to grow at a rapid pace Increased hydrogen capacity Increased operating pressure Increased efficiency Efficiency targets enabled by further cost reduction for operation at lower current density Continuing advancements rely on scale up and processing, not new science invention Leveraging today s commercial markets in preparation for tomorrow s energy applications 34

35 Thank you! Everett Anderson

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets

Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets Recent Advances in PEM Electrolysis and their Implications for Hydrogen Energy Markets By Everett Anderson Symposium on Water Electrolysis and Hydrogen as Part of the Future Renewable Energy System 10-11

More information

Cost Reduction Strategies for PEM Electrolysis

Cost Reduction Strategies for PEM Electrolysis Cost Reduction Strategies for PEM Electrolysis E Anderson IEA-AFC ANNEX 30 MEGAPEM Workshop 21 April 2015 Proton, Proton OnSite, Proton Energy Systems, the Proton design, StableFlow, StableFlow Hydrogen

More information

High Efficiency Large PEM Electrolyzers

High Efficiency Large PEM Electrolyzers High Efficiency Large PEM Electrolyzers Monjid Hamdan Director of Engineering Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466 Outline Giner, Inc. Overview Advancements in Efficiency New Membranes Coming

More information

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ;

IV.H Electrolysis. DOE Technology Development Manager: Matt Kauffman Phone: (202) ; Fax: (202) ; IV.H Electrolysis IV.H.1 Low-Cost, High-Pressure Hydrogen Generator Cecelia Cropley (Primary Contact), Tim Norman Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0506;

More information

An Anion Exchange Regenerative Fuel Cell System for Energy Storage

An Anion Exchange Regenerative Fuel Cell System for Energy Storage An Anion Exchange Regenerative Fuel Cell System for Energy Storage S. Szymanski, K. Ayers: Proton OnSite, Wallingford, CT G. Coates, P. Mutolo: Cornell University, Ithaca, NY NY-BEST Energy Storage Technology

More information

Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production. Alternative Energy NOW 2/10/10

Large Scale PEM Electrolysis to Enable Renewable Hydrogen Fuel Production. Alternative Energy NOW 2/10/10 Large Scale PEM Electrolysis to Enable Renewable Hydrogen uel Production Alternative Energy NOW 2/10/10 Steve Szymanski Business Development Manager 203-678-2338 sszymanski@protonenergy.com Report Documentation

More information

Recent Advances in PEM Water Electrolsyis First International Workshop on Endurance and Degradation Issues in PEM Electrolysis

Recent Advances in PEM Water Electrolsyis First International Workshop on Endurance and Degradation Issues in PEM Electrolysis Recent Advances in PEM Water Electrolsyis First International Workshop on Endurance and Degradation Issues in PEM Electrolysis Joseph Cargnelli, Bernd Evers jcargnelli@hydrogenics.com bevers@hydrogenics.com

More information

Commercial Optimization of a 100kg/day PEM based Hydrogen Generator For Energy and Industrial Applications.

Commercial Optimization of a 100kg/day PEM based Hydrogen Generator For Energy and Industrial Applications. Commercial Optimization of a 100kg/day PEM based Hydrogen Generator For Energy and Industrial Applications L. Moulthrop a, E. Anderson b, O. Chow c, R. Friedland d, T. Maloney e, M. Schiller f Hydrogen

More information

DuPont Next Generation Membrane and Membrane Electrode Assembly Development

DuPont Next Generation Membrane and Membrane Electrode Assembly Development DuPont Next Generation Membrane and Membrane Electrode Assembly Development Providing Clean Energy Solutions in PEM Fuel Cell Applications Deepak Perti Global Technology Manager FC EXPO 2009 February 25-27

More information

PEM Water Electrolysis - Present Status of Research and Development

PEM Water Electrolysis - Present Status of Research and Development PEM Water Electrolysis - Present Status of Research and Development Review Lecture Session HP.3d Tom Smolinka Fraunhofer-Institut für Solare Energiesysteme ISE 18 th World Hydrogen Energy Conference 2010

More information

Commercializing Larger PEM-based Hydrogen Generators for Energy and Industrial Applications

Commercializing Larger PEM-based Hydrogen Generators for Energy and Industrial Applications Commercializing Larger PEM-based Hydrogen Generators for Energy and Industrial Applications L. Moulthrop a, E. Anderson a, O. Chow a, R. Friedland a, S. Porter a, M. Schiller a, S. Szymanski a 1. Abstract

More information

PHAEDRUS: High Pressure Hydrogen All Electrochemical Decentralized Refueling Station

PHAEDRUS: High Pressure Hydrogen All Electrochemical Decentralized Refueling Station presented: Peter Bouwman 12 th October 2015 Project grant No: 303418 Theme: [SP1-JTI-FCH.2011.1.8] Website: www.phaedrus-project.eu HyET B.V. (coordinator) ITM Power H2 Logic A/S Raufoss Fuel Systems AS

More information

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet.

1 Chapter 1 K. NAGA MAHESH Introduction. Energy is the most essential and vital entity to survive on this Planet. 1 1.1 Hydrogen energy CHAPTER 1 INTRODUCTION Energy is the most essential and vital entity to survive on this Planet. From past few decades majority of the mankind depend on fossil fuels for transportation,

More information

"Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no

Next Generation PEM Electrolyser for Sustainable Hydrogen Production Contract no "Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no. 245262 Dr. Magnus S Thomassen SINTEF Materials and Chemistry Trondheim, Norway FCH Programme Review Day 2012 Brussels,

More information

PEMFC Lifetime and Durability an overview. Thessaloniki, September Frank de Bruijn

PEMFC Lifetime and Durability an overview. Thessaloniki, September Frank de Bruijn PEMFC Lifetime and Durability an overview Thessaloniki, September 21 2011 Frank de Bruijn PEMFC in real life 2007 Passenger vehicle: 2,375 hrs operated on 1 stack Daimler in DoE programme 2011 City Bus

More information

NEXPEL. Next Generation PEM Electrolyser for Sustainable Hydrogen Production. 1st YEAR PUBLISHABLE SUMMARY

NEXPEL. Next Generation PEM Electrolyser for Sustainable Hydrogen Production. 1st YEAR PUBLISHABLE SUMMARY NEXPEL Next Generation PEM Electrolyser for Sustainable Hydrogen Production 1st YEAR PUBLISHABLE SUMMARY CEA LITEN - Fraunhofer ISE - FuMA-Tech GmbH - Helion - Hydrogen Power - SINTEF - Statoil ASA - University

More information

V.0 Fuel Cells Program Overview

V.0 Fuel Cells Program Overview V.0 Fuel Cells Program Overview Introduction The Fuel Cells program supports research, development, and demonstration of fuel cell technologies for a variety of transportation, stationary, and portable

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

Metal Plates: Challenges and Perspectives for PEM Fuel Cells and Electrolyzers

Metal Plates: Challenges and Perspectives for PEM Fuel Cells and Electrolyzers Pivotal Technologies for the New Energy Economy Today! Metal Plates: Challenges and Perspectives for PEM Fuel Cells and Electrolyzers Gerald DeCuollo TreadStone Technologies, Inc. April 16, 2012 TreadStone

More information

Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure

Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure Advanced bipolar plates without flow channels, for PEM electrolysers operating at high pressure Hydrogen Session Bipolar plates for PEM fuel cells and electrolyzers Emile Tabu Ojong 1, Eric Mayousse 2,

More information

"Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no

Next Generation PEM Electrolyser for Sustainable Hydrogen Production Contract no "Next Generation PEM Electrolyser for Sustainable Hydrogen Production" Contract no. 245262 Dr. Magnus S Thomassen SINTEF Materials and Chemistry Trondheim, Norway FCH Review day 2011 Brussels, 22 November

More information

EU P2G platform Copenhagen Electrolyzer technology of the BioCat project

EU P2G platform Copenhagen Electrolyzer technology of the BioCat project EU P2G platform Copenhagen 22.06.2016 Electrolyzer technology of the BioCat project By Denis Thomas, Hydrogenics EU Regulatory Affairs & Business Development Manager Renewable Hydrogen Hydrogenics in Brief

More information

Thermoset Applications in Fuel Cells

Thermoset Applications in Fuel Cells Thermoset Applications in Fuel Cells TRFA 2008 Annual Meeting Sept. 15 th 2008 Paul Kozak & Daniel Ramrus B A L L A R D P O W E R S Y S T E M S A C C E L E R A T I N G F U E L C E L L M A R K E T A D O

More information

SPIRAL-WOUND PEM FUEL CELLS FOR PORTABLE APPLICATIONS. T.J. Blakley, K.D. Jayne, and M.C. Kimble

SPIRAL-WOUND PEM FUEL CELLS FOR PORTABLE APPLICATIONS. T.J. Blakley, K.D. Jayne, and M.C. Kimble SPIRAL-WOUND PEM FUEL CELLS FOR PORTABLE APPLICATIONS T.J. Blakley, K.D. Jayne, and M.C. Kimble MicroCell Technologies, LLC, 410 Great Rd, C-2, Littleton, MA 01460 Lighter weight and compact fuel cells

More information

HYDROGEN FUEL CELL TECHNOLOGY

HYDROGEN FUEL CELL TECHNOLOGY HYDROGEN FUEL CELL TECHNOLOGY Vikash, Vipin Yadav, Vipin Badgaiyan Dronacharya College of Engineering, Gurgaon Abstract: - Whereas the 19th century was the century of the steam engine and the 20th century

More information

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved.

P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM. Copyright 2006 P21 GmbH. All rights reserved. P21 WHITE PAPER FUNCTIONAL DESCRIPTION PREMION T FUEL CELL SYSTEM Copyright 2006 P21 GmbH. All rights reserved. No part of this publication may be reproduced or transmitted in any form or for any purpose

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

for Renewable Power Presented by: Stephen Szymanski Business Development Manager, Proton OnSite August 14, 2012

for Renewable Power Presented by: Stephen Szymanski Business Development Manager, Proton OnSite August 14, 2012 ydrogen Energy Storage for Renewable Power Presented by: Stephen Szymanski Business Development Manager, Proton nsite sszymanski@protononsite.com 203.678.2338 2338 August 14, 2012 Proton Energy Systems

More information

Introduction Fuel Cells

Introduction Fuel Cells Introduction Fuel Cells Fuel cell applications PEMFC PowerCell AB, S2 PEMFC, 5-25 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the H2 gas 2. Intermediate

More information

U.S Department of Energy Fuel Cell Technologies Office Overview

U.S Department of Energy Fuel Cell Technologies Office Overview U.S Department of Energy Fuel Cell Technologies Office Overview Fuel Cell Technologies Office 1 IEA Electrolysis Meeting Herten, Germany April 21-22, 2015 Bryan Pivovar National Renewable Energy Lab Hydrogen

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson IV: fuel cells (PEFC or PEM)

More information

Danish Power Systems. Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep Hans Aage Hjuler and Thomas Steenberg

Danish Power Systems. Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep Hans Aage Hjuler and Thomas Steenberg Danish Power Systems Progress in HT-PEM fuel cells F-Cell, Stuttgart 30 th Sep. 2013 Hans Aage Hjuler and Thomas Steenberg Outline Introduction MEA performance Durability Summary The two Danish test windmills

More information

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology

STAYERS FCH-JU Stationary PEM fuel cells with lifetimes beyond five years. Jorg Coolegem Nedstack fuel cell technology STAYERS Stationary PEM fuel cells with lifetimes beyond five years FCH-JU 256721 Programme Review Day 2011 Brussels, 28 November Jorg Coolegem Nedstack fuel cell technology 0. Project description Stationary

More information

V.C.1 High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications

V.C.1 High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications V.C.1 High Performance, Durable, Low Cost Membrane Electrode Assemblies for Transportation Applications Andrew Steinbach (Primary Contact), Dennis van der Vliet, Andrei Komlev, Darren Miller, Sean Luopa,

More information

Supporting information

Supporting information Supporting information Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers P. Lettenmeier 1, R. Wang 2, R. Abouatallah 2, B. Saruhan 3, O. Freitag 3, P. Gazdzicki 1, T. Morawietz

More information

HYDROGEN FOR RENEWABLE ENERGY STORAGE: DEVELOPMENT OF PEM WATER ELECTROLYSERS

HYDROGEN FOR RENEWABLE ENERGY STORAGE: DEVELOPMENT OF PEM WATER ELECTROLYSERS RERC 2014 16.06.2014 - Oslo HYDROGEN FOR RENEWABLE ENERGY STORAGE: DEVELOPMENT OF PEM WATER ELECTROLYSERS Magnus Thomassen, Tommy Mokkelbost SINTEF Materials and Chemistry Technology for a better society

More information

Novel Fuel Cell MEA Based on Pt-C Deposited by Magnetron Sputtering

Novel Fuel Cell MEA Based on Pt-C Deposited by Magnetron Sputtering 10.1149/08008.0225ecst The Electrochemical Society Novel Fuel Cell MEA Based on Pt-C Deposited by Magnetron Sputtering A. Ostroverkh a, V. Johanek a, M. Dubau a, P. Kus a, K. Veltruska a, M. Vaclavu a,

More information

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen

Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Second Generation PEM Fuel Cells and the Indirect Reduction of Oxygen Trevor Davies, University of Chester FCH2 2015, 21 st May 2015 PEM Fuel Cell Market Predictions Outline Conventional PEM fuel cells

More information

US DOE Fuel Cell Technologies Office and ARPA-E Investments in Hydrogen Technology Advancements September 19, 2017

US DOE Fuel Cell Technologies Office and ARPA-E Investments in Hydrogen Technology Advancements September 19, 2017 US DOE Fuel Cell Technologies Office and ARPA-E Investments in Hydrogen Technology Advancements September 19, 2017 NEESC is funded through a contract with the U.S. Small Business Administration House Keeping

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

1.2 Description of the work performed and main results of the MEGASTACK projects

1.2 Description of the work performed and main results of the MEGASTACK projects 1 PUBLISHABLE SUMMARY 1.1 Project overview The main objective of MEGASTACK is to develop a cost efficient stack design for MW sized PEM electrolysers and to construct and demonstrate a prototype of this

More information

HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER

HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER HIGH POWER DENSITY FUEL CELLS 11 TH APRIL 2013, HANNOVER Contents Introduction The Challenge ITM s Suite of Materials Results Snapshot Durability

More information

PEFC Technology Development

PEFC Technology Development PEFC Technology Development Göran Lindbergh, Björn Eriksson, Annika Carlson, Rakel Wreland Lindström, Carina Lagergren, KTH Fuel Cell 2015 Arlanda, December 3, 2015 Layout of presentation Introduction

More information

Project information 0. Project & Partnership description

Project information 0. Project & Partnership description Enhanced performance and cost-effective materials for long-term operation of PEM water electrolysers coupled to renewable power sources- ELECTRYPEM (Contract number 300081) Antonino S. Aricò CNSIGLI NAZINALE

More information

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen

Fuel Cell - What is it and what are the benefits? Crina S. ILEA, Energy Lab, Bergen Fuel Cell - What is it and what are the benefits? Crina S. ILEA, 10.01.2017 Energy Lab, Bergen CMI Founded in 1988 Two departments: Parts & Services Research & Development Prototype development from idea

More information

INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS

INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS 10.1149/1.2214500, copyright The Electrochemical Society INVESTIGATION OF RUTHENIUM DISSOLUTION IN ADVANCED MEMBRANE ELECTRODE ASSEMBLIES FOR DIRECT METHANOL BASED FUEL CELL STACKS T. I. Valdez 1, S. Firdosy

More information

Hydrogenics Selected References. Grid Balancing, Power to Gas (PtG)

Hydrogenics Selected References. Grid Balancing, Power to Gas (PtG) Hydrogenics Selected References Grid Balancing, Power to Gas (PtG) 2016 In a nutshell Global provider of On-site hydrogen water electrolysers Energy Storage systems H 2 fueling stations Fuel cells systems

More information

WELTEMP Water electrolysis at elevated temperatures

WELTEMP Water electrolysis at elevated temperatures Weltemp b WELTEMP Water electrolysis at elevated temperatures (Contract number 212903) Presented by Erik Christensen Department of Chemistry,Technical University of Denmark Coordinator: Niels J. Bjerrum

More information

IF THE FUTURE COULD CHOOSE

IF THE FUTURE COULD CHOOSE IF THE FUTURE COULD CHOOSE WORLD CLASS ELECTROLYSERS NEL A electrolysers, hydrogen plants based on water electrolysis technology with atmospheric pressure, are considered world class. With more than 85

More information

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells

MICRO FUEL CELLS for MOBILE POWER Thermal Management in Fuel Cells Thermal Management in Fuel Cells Jennifer Brantley Mechanical Engineer UltraCell Corporation 2/29/08 2/29/08 MEPTEC Thermal Symposium Session 4: Green 1 Agenda What is a Fuel Cell? Why Fuel Cells? Types

More information

Spectracarb Graphitized Carbon Paper as Current Collectors for PEM Electrolyser Applications

Spectracarb Graphitized Carbon Paper as Current Collectors for PEM Electrolyser Applications Spectracarb Graphitized Carbon Paper as Current Collectors for PEM Electrolyser Applications CHRISTOPHER PERABO - HANNOVER MESSE TECHNICAL FORUM 28 APRIL 2016 PRESENTATION OUTLINE 1. EFT and CAPLINQ Intro

More information

HySTAT ON SITE HYDROGEN Infomoment Waterstof 28/06/2017. Roel De Maeyer, Director Sales & Marketing

HySTAT ON SITE HYDROGEN Infomoment Waterstof 28/06/2017. Roel De Maeyer, Director Sales & Marketing HySTAT ON SITE HYDROGEN Infomoment Waterstof 28/06/2017 Roel De Maeyer, Director Sales & Marketing Hydrogenics Europe NV Location : Oevel, Belgium 75 employees +4.500 m² workshop ISO 9001 certified since

More information

Modeling and analysis of electrochemical hydrogen compression

Modeling and analysis of electrochemical hydrogen compression Modeling and analysis of electrochemical hydrogen compression N.V. Dale 1,*, M. D. Mann 1, H. Salehfar 2, A. M. Dhirde 2, T. Han 2 Abstract One of the challenges to realizing the hydrogen economy is hydrogen

More information

Design and cost considerations for practical solar-hydrogen generators

Design and cost considerations for practical solar-hydrogen generators Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 01 Design and cost considerations for practical solar-hydrogen generators (Electronic

More information

High Performance PEM Electrolyzer for Cost-effective Grid Balancing Applications

High Performance PEM Electrolyzer for Cost-effective Grid Balancing Applications High Performance PEM Electrolyzer for Cost-effective Grid Balancing Applications 7 th IEA ANNEX 30 Electrolysis Workshop at 3M, St. Paul USA 10-Oct-2017 Laila Grahl-Madsen (EWII Fuel Cells A/S) www.hpem2gas.eu

More information

Advanced Analytical Chemistry Lecture 10. Chem 4631

Advanced Analytical Chemistry Lecture 10. Chem 4631 Advanced Analytical Chemistry Lecture 10 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part 2

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part 2 Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part 2 Jekanthan Thangavelautham Postdoctoral Associate Field and Space Robotics Laboratory Outline Review PEM Fuel Cell

More information

Electrode Product Application. Japan Carlit Co.,Ltd 8 June 2015

Electrode Product Application. Japan Carlit Co.,Ltd 8 June 2015 Electrode Product Application Japan Carlit Co.,Ltd 8 June 2015 1 1 Electrode Application A Plate The electrode consists of a titanium substrate which is coated with platinum group metals oxides We can

More information

Hydrogen & Renewable Energy

Hydrogen & Renewable Energy HELION HELION HYDROGEN POWER Hydrogen & Renewable Energy DERBI 2009 Conference, Perpignan, June 11th 2009 Jean-Christophe HOGUET HELION HELION Subsidiary of AREVA R, renewable energy Business Unit Wind

More information

The World s Most Efficient and Reliable Electrolysers

The World s Most Efficient and Reliable Electrolysers Nel Hydrogen Electrolysers The World s Most Efficient and Reliable Electrolysers number one by nature Empowering generations with clean energy forever is the vision of Nel Hydrogen. Our technology allows

More information

Supporting Information

Supporting Information Supporting Information Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells Sang-Eun Jang, Hansung Kim* Department of Chemical and Biomolecular Engineering,

More information

A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL

A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL A THEORETICAL SIMULATION OF A PEM FUEL CELL WITH 4-SERPENTINE FLOW CHANNEL B.Sreenivasulu a,*, S.V.Naidu b, V.Dharma Rao c, G.Vasu d a Department of Chemical Engineering,G.V.P College of Engineering, Visakhapatnam

More information

Metallic Bipolar Plate Technology for Automotive Fuel Cell Stack

Metallic Bipolar Plate Technology for Automotive Fuel Cell Stack Metallic Bipolar Plate Technology for Automotive Fuel Cell Stack Shinichi Hirano Fuel Cell Research Electrification Research and Advanced Engineering Ford Motor Company Technoport 2012 Sharing Possibilities

More information

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES

ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES ENVIRONMENT-FRIENDLY HYDROGEN GAS AS FUEL IN FUEL CELL AND ITS CHALLENGES Hydrogen is the simplest and lightest element. Storage is one of the greatest problems for hydrogen. It leaks very easily from

More information

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g

HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g HOW IT WORKS w w w. f u e l c e l l p a r t n e r s h i p. o r g FUEL CELL ENERGY POWERS THE CAR! Electrical Current ELECTRONS The movement of electrons generates electricity to power the motor. OXYGEN

More information

Nitrogen N341M. Laboratory Nitrogen Gas Generator. Technical Features

Nitrogen N341M. Laboratory Nitrogen Gas Generator. Technical Features Nitrogen N341M Laboratory Nitrogen Gas Generator Technical Features www.protononsite.com T 203.949.8697 F 203.949.8016 Proton OnSite 10 Technology Drive Wallingford, CT 06492 customerservice@protononsite.com

More information

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc.

Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. Development and demonstration of alkaline fuel cell technology: An overview of EU-funded projects led by AFC Energy plc. 1 AFC Energy Plc: An Introduction Vision To develop and produce a reliable alkaline

More information

This procedure shall apply to all microcircuit elements and semiconductors as follows:

This procedure shall apply to all microcircuit elements and semiconductors as follows: 1019-1618 V 2 OF 7 NTS A 1.0 PURPOSE: The purpose of this document is to define the supplier requirements of all procured microcircuit elements (Integrated Circuits) and semiconductor elements (diodes,

More information

Field Experience with Hydrogenics' Prototype Stack and System for MW PEM electrolysis

Field Experience with Hydrogenics' Prototype Stack and System for MW PEM electrolysis Field Experience with Hydrogenics' Prototype Stack and System for MW PEM electrolysis Jan Vaes, February 17th, 2nd int. workshop on Durability and Degradation Issues in PEM Electrolysis Cells and their

More information

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis

PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis PEM & Alkaline Electrolyzers Bottom-up Manufacturing Cost Analysis Yong Yang Austin Power David Hart E4tech November 10, 2014 Austin Power Engineering LLC 1 Cameron ST Wellesley, MA 02482 USA www.austinpowereng.com

More information

Development of Low Cost PEMFC Metal Bipolar Plate

Development of Low Cost PEMFC Metal Bipolar Plate Development of Low Cost PEMFC Metal Bipolar Plate Fuel Cell Seminar October 31 November 3, 2011 Walt Disney World Swan and Dolphin Resort Orlando, FL Conghua CH Wanh Tel: 609-734-3071 Email: cwang@treadstone-technologies.com

More information

COMPARATIVE PERFORMANCE OF ELECTROLYSIS CELL STACKS AT THE HUMBOLDT STATE UNIVERSITY HYDROGEN FUELING STATION

COMPARATIVE PERFORMANCE OF ELECTROLYSIS CELL STACKS AT THE HUMBOLDT STATE UNIVERSITY HYDROGEN FUELING STATION COMPARATIVE PERFORMANCE OF ELECTROLYSIS CELL STACKS AT THE HUMBOLDT STATE UNIVERSITY HYDROGEN FUELING STATION M. Harper a, P. Lehman a, G. Chapman a, C. Capuano b 1. Introduction At the 2009 National Hydrogen

More information

Raney-nickel alloy electrodes for alkaline water electrolysis. Asif Ansar. German Aerospace Center

Raney-nickel alloy electrodes for alkaline water electrolysis. Asif Ansar. German Aerospace Center Raney-nickel alloy electrodes for alkaline water electrolysis Asif Ansar German Aerospace Center Regine Reissner, Daniela Aguiar, Taikai Liu, Günter Schiller - Light House Project Power-to-Gas ZSW (DE)

More information

Rune Bredesen Vice President Research

Rune Bredesen Vice President Research Hydrogen related R&D at SINTEF Materials and Chemistry Rune Bredesen Vice President Research SINTEF Materials and Chemistry SINTEF Materials and Chemistry Who we are SINTEF is a non profit polytechnic

More information

Tubular Proton Ceramic Steam Electrolysers

Tubular Proton Ceramic Steam Electrolysers Tubular Proton Ceramic Steam Electrolysers Einar Vøllestad 1, R. Strandbakke 1, Dustin Beeaff 2 and T. Norby 1 1 University of Oslo, Department of Chemistry, 2 CoorsTek Membrane Sciences AS Tubular Proton

More information

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers 1 > Titanium coatings - ise13147 > A. S. Gago et al. ISE 213 > September 9, 213 Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers A. S. Gago, A. S. Ansar, N. Wagner,

More information

ON-SITE GAS SOLUTIONS FROM PROTON ONSITE

ON-SITE GAS SOLUTIONS FROM PROTON ONSITE ON-SITE GAS SOLUTIONS FROM PROTON ONSITE Proton OnSite manufactures hydrogen, nitrogen, and zero air gas generators that you can rely on. Our on-site gas generators provide a safe, reliable, and cost-effective

More information

DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY

DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY 15 th Annual U.S. Hydrogen Conference, Los Angeles, CA, April 26-30, 2004 DEVELOPMENT OF A HIGH PRESSURE PEM ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY R.A. Engel 1, G.S. Chapman 1, C.E.

More information

Demonstration of Technology Options for Storage of Renewable Energy

Demonstration of Technology Options for Storage of Renewable Energy Demonstration of Technology Options for Storage of Renewable Energy S. Elangovan, J. Hartvigsen, and L. Frost Ceramatec, Inc. Brainstorming Workshop Institute for Advanced Sustainability Studies e.v. (IASS)

More information

Current Status of Fuel Cell Technology

Current Status of Fuel Cell Technology Hydrogen, Carbon-Free-Fuel Democratizing the Energy Current Status of Fuel Cell Technology By Dr.-Ing. Syed Mushahid Hussain Hashmi Professor / Chairman Dept. of Automotive & Marine Engineering, NED University

More information

DEGRADATION AND RELIABILITY MODELLING OF POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS. Michael Fowler

DEGRADATION AND RELIABILITY MODELLING OF POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS. Michael Fowler DEGRADATION AND RELIABILITY MODELLING OF POLYMER ELECTROLYTE MEMBRANE (PEM) FUEL CELLS Michael Fowler mfowler@uwaterloo.ca OUTLINE Introduction to Fuel Cell Technology Endurance Run of a Single Cell Reliability

More information

Fuel Cell Stack Design

Fuel Cell Stack Design Mech 549 Fuel Cell Technology Oct. 30, 2007 Fuel Cell Stack Design Fuel Cells are stacked to place bipolar cells in series and increase voltage and power Major stack issues: Volume and weight Cooling methods

More information

Correlation between Ex-situ and In-situ Contact Resistance of Bipolar Plates in PEMFCs

Correlation between Ex-situ and In-situ Contact Resistance of Bipolar Plates in PEMFCs Correlation between Ex-situ and In-situ Contact Resistance of Bipolar Plates in PEMFCs Alejandro Oyarce, Nicklas Holmström, Andreas Bodén, Carina Lagergren and Göran Lindbergh Technoport 2012 Hydrogen

More information

Hydrogen Generation From Electrolysis

Hydrogen Generation From Electrolysis Final Report for DOE Award DE-FC36-04GO13030 March 1, 2004 to April 30 2008 By Steven Cohen, Stephen Porter Oscar Chow, David Henderson Principal Investigator: Stephen Porter (203) 678-2305 sporter@protonenergy.com

More information

Estimation of Capital and Levelized Cost for Redox Flow Batteries

Estimation of Capital and Levelized Cost for Redox Flow Batteries Estimation of Capital and Levelized Cost for Redox Flow Batteries V. Viswanathan, A. Crawford, L. Thaller 1, D. Stephenson, S. Kim, W. Wang, G. Coffey, P. Balducci, Z. Gary Yang 2, Liyu Li 2, M. Kintner-Meyer,

More information

VOLUMETRIQ Volume manufacturing of PEMFC stacks for transportation and in-line quality assurance. Deborah Jones CNRS Montpellier

VOLUMETRIQ Volume manufacturing of PEMFC stacks for transportation and in-line quality assurance. Deborah Jones CNRS Montpellier VOLUMETRIQ Volume manufacturing of PEMFC stacks for transportation and in-line quality assurance Deborah Jones CNRS Montpellier www.volumetriq.eu Deborah.Jones@umontpellier.fr Programme Review Days 2016

More information

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study

Effect of Mass Flow Rate and Temperature on the Performance of PEM Fuel Cell: An Experimental Study Research Article International Journal of Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Effect of Mass Flow Rate and Temperature

More information

SCC Hazmat Subcommittee Linde H2 Fueling. Sunnyvale, CA July 10, Nitin Natesan Linde North America, Hydrogen Fueling

SCC Hazmat Subcommittee Linde H2 Fueling. Sunnyvale, CA July 10, Nitin Natesan Linde North America, Hydrogen Fueling SCC Hazmat Subcommittee Linde H2 Fueling Sunnyvale, CA July 10, 2012 Nitin Natesan Linde North America, Hydrogen Fueling Linde Covers The Entire Hydrogen Value Chain Large-Scale Production On-site Supply

More information

ElectroChem, Inc. Vision

ElectroChem, Inc. Vision ElectroChem, Inc. Vision ElectroChem, Inc. envisions a future where a sustainable global economy resides in harmony with a clean, healthful environment A Brief History 1986 ElectroChem is founded 1992

More information

Center for Physical Sciences and Technology Vilnius, Lithuania Project Ideas

Center for Physical Sciences and Technology Vilnius, Lithuania Project Ideas Project Ideas No.1 Feasibility and Limits of Aqueous Electrochemical Energy Storage Technologies relating to Sustainability, Safety and Scalable Manufacturing No.2 Hydrogen Generation via Overall Electrolytic

More information

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel

High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel High Temperature Thermochemical Water Splitting for Mass Production of Hydrogen Fuel Dr. William A. Summers Program Manger, Energy Security Directorate June 11, 2009 Fifth International Hydrail Conference

More information

Efficient Use of Energy Converting Applications. Nadine Jacobs

Efficient Use of Energy Converting Applications. Nadine Jacobs Efficient Use of Energy Converting Applications Agenda Introduction NEXT ENERGY EURECA Principal objectives Research areas Test protocols Stacktest Stadardisation DEMMEA Degradation Mechanisms in HT-PEM

More information

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media

Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media RIL-128 Electrochemical Conversion of Carbon Dioxide to Oxygen in Ionic Liquid Media Michael C. Kimble, Thomas J. Blakley, Daniel R. Carr, and Karen D. Jayne 2 Park Drive, Suite 4 Westford, MA 01886 Presented

More information

PEM Fuel Cell Investigation at Chiang Mai University, Thailand

PEM Fuel Cell Investigation at Chiang Mai University, Thailand International Energy Journal: Vol. 4, No. 2, December 23 119 PEM Fuel Cell Investigation at Chiang Mai University, Thailand Konlayutt Chailorm *, Songwut Nirunsin **, and Thirapat Vilaithong ** * Department

More information

Nuclear Hydrogen Production in Saudi Arabia: Future and Opportunities

Nuclear Hydrogen Production in Saudi Arabia: Future and Opportunities Nuclear Hydrogen Production in Saudi Arabia: Future and Opportunities Abdullah A. AlZahrani University of Ontario Institute of Technology, Oshawa, Canada. Umm Al-Qura University, Makkah, Saudi Arabia.

More information

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013

Fuel Cells 101. Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 Fuel Cells 101 Hydrogen Fuel Cell Educational Outreach Workshop Presented by David Cooke October 21 st, 2013 1 Why are hydrogen and fuel cells important? Hydrogen and fuel cells are technology solutions

More information

Micro Fuel Cells Potential

Micro Fuel Cells Potential Mech 549 Nov. 6, 2007 Micro Fuel Cells Potential Longer Duration for equivalent weight & volume Energy Density Instant Charge Flat Discharge Low Self-Discharge Little Short-circuit protection required

More information

Unmanned Underwater Vehicles. Joint Service Power Expo 2015 Phil Robinson

Unmanned Underwater Vehicles. Joint Service Power Expo 2015 Phil Robinson Long Duration, Safe Power for Unmanned Underwater Vehicles Joint Service Power Expo 2015 Phil Robinson What We ll Explore UUV Power History Fuel Cells vs Batteries & Engines Hydrogen and Oxygen Generation

More information

Green hydrogen from renewable energy sources - New Businesses Opportunities

Green hydrogen from renewable energy sources - New Businesses Opportunities Green hydrogen from renewable energy sources - New Businesses Opportunities Baltic Sea Region Hydrogen Network Conference GreenHydrogen provides innovative, modular and scalable electrolysers for energy

More information

Electrolysis without Membranes

Electrolysis without Membranes Electrolysis without Membranes Glen O Neil, Oyin Talabi, David Brown, Cory Christian, Ji Qi, Jack Davis, Anna Dorfi Dan Esposito Department of Chemical Engineering Lenfest Center for Sustainable Energy

More information