Research on CO 2 Heat Pumps and Other CO 2 Novel Systems at The Energy Department of KTH

Size: px
Start display at page:

Download "Research on CO 2 Heat Pumps and Other CO 2 Novel Systems at The Energy Department of KTH"

Transcription

1 Research on CO 2 Heat Pumps and Other CO 2 Novel Systems at The Energy Department of KTH Yang Chen (KTH) Per Lundqvist (KTH) 1

2 Content Research on CO2 heat pump systems (Effsys 2 project) Thermal properties of Supercritical CO2 and their influences on heat exchanger performance Research on other CO2 novel systems 2

3 Current Research Project on Carbon Dioxide Heat Pump Systems (EffSYS 2) Companies involved in the project (more than 12 industrial companies involved) Ahlsell Alfalaval AB Climate Check Climate well Dorin (Italy) Danfoss (Danmark) Güntner (Germany) IVT NIBE RANOTOR SRM Thermia Värme Green and Cool EffSYS 2 is a Swedish governmental energy research program on efficient refrigeration and heat pump systems. 3

4 Research Contents of Current Effsys 2 project Testing the performance of a commercial CO2 heat pump sold in Sweden (Sanyo. Eco-cute) Building up a permanent testing center at the Energy Department of KTH for CO2 heat pump system research Heat exchanger design (temperature profile) System performance (optimization) Control strategy Component testing 4

5 A transcritical refrigeration/heat pump cycle Carbon dioxide has a low critical temperautre but high critical pressure (31.1 C, 73.8 bar), thus a carbon dioxide refrigeration/heat pump system works as a transcritical cycle). 5

6 Problems with Heat Exchanger Design in Supercritical Region C P of Supercritical Carbon Dioxide Thermophysical properties of CO 2 have rapid changes near the critical point, which create many new phenomena for heat exchanger design. CP(KJ/kg K) P=8.0 Mpa P=9.0 Mpa P=10.0 Mpa P=11.0 Mpa P=12.0 Mpa Temperature (ºC) Cp (kj/kg k) e 6 3 a IHX GC d b g CO 2 transcritical refrigeration cycle integrated heat exchanger's Cp h chart H (KJ/kg K) Supercritical carbon dioxide Low pressure side carbon dioxide in IHX Gas cooler cooling air c h Temperature (ºC) e a 0 IHX GC g d b CO 2 transcritical refrigeration cycle integrated heat exchanger's T h chart Low pressure side carbon dioxide in IHX Gas cooler's cooling air Supercritical carbon dioxide H (KJ/kg K) c h 6

7 Research on other CO2 novel system System research CO2 power system in low-grade heat source utilization CO2 double loop system Dynamic simulation Employing EES+TRNSYS to develop a dynamic system model for yearly performance simulation 7

8 The advantages of CO2 power system in utilizing low-grade heat source Supercritical CO 2 s temperature profile can match better to the heat source than other working fluids (organic working fluid, fluid mixtures, etc.) Schematic illustration of the heat transfer between the low-grade heat source and the working fluid in a counter flow heat exchanger. (1a) pure fluid; (1b) zeotropic fluid mixtures; (1c) carbon dioxide 8

9 Reverse CO2 Refrigeration Cycle for Power Production Carbon Dioxide Transcritical Power Cycle d 0.01 T [ C] bar bar 220 bar 160 bar 100 bar f e 0.019m3/kg b c a 60 bar 40 bar s [kj/kg-k] 200 Carbon Dioxide Brayton Cycle d A bottoming cycle with carbon dioxide as a working media Approx.12% efficiency with 150 C expansion inlet temp. T [ C] a b 0, bar 300 bar 250 bar 200 bar c 150 bar 0,2 0,4 0,6 0,8 100 bar s [kj/kg-k] 0,0057 f e 0,01 0,063 m3/kg 0,034 9

10 Solar Driven Carbon Dioxide Power System 30 m bar Controller controls the temperature Turbine efficiency: 0.85 CO 2 mass flow:540 kg/hr Pump efficiency: bar No IHX Cooing water mass flow:720kg/hr. Inlet temperature: 15 C 10

11 Simulation Methodology Weather data Type66c Collectors Collectors TRNSYS Ees.lnk 11

12 Daily Performance Daily performance of solar driven carbon dioxide power system under a randomly selected Swedish summer day (15th of July) in stockholm (at 120 bar gas heating pressure) Temperature ( C) Tsc_out P_turbine P_pump P_net 09:30 10:30 11:30 12:30 13:30 14:30 15:30 Time Power (kw) 12

13 Annual Simulation of Daily Net Energy Production (kwh s) Daily net energy production (kwh s) of a solar driven carbon dioxide power system in one year (at 120 bar gas heating pressure) Net power prodution (kwh's) January February March April May June July Auguest September October November December 13

14 Annual Simulation of Monthly Net Power Production (kwh s) Monthly net power production (kwh s) of a solar-driven carbon dioxide power system in one year (at 120 bar gas heating pressure) Net power production (kwh's) January February March April May June July Auguest September October November December 14

15 CO 2 Double Loop System Pump Expansion valve e c g a Heat Source Gas heater c b Gas Cooler f e d Internal Heat Exchanger f c f h a b Internal Heat Exchanger d M Expansion machine Compressor The system has two subsystems running in parallel: one carbon dioxide power subsystem and one carbon dioxide transcritical refrigeration/heat pump sub-system. It is also possible to take advantage of temperature glide of the both sub-systems. The system will to provide cooling (and heating) in a more efficient way. h Evaporator g 15

16 Corresponding Cycles 150 Carbon Dioxide Double Loop Cycle 150 Carbon Dioxide Double Loop Cycle T [ C] bar bar 140 bar 120 bar 80 bar 100 bar s [kj/kg-k] Supercritical power cycle double loop m3/kg T [ C] bar 140 bar 60 bar 120 bar s [kj/kg-k] 100 bar 80 bar Transcritical power cycle double loop m3/kg 16

17 Basic system analysis Turbine efficiency: 0.85 Pump efficiency: 0.8 Effectiveness: 0.9 Compressor efficiency: 0.75 Gas cooler efficiency: 0.85 Superheat: 5 C 17

18 Basic system analysis popt = ( te) tc + (0.381te 9.34) Liao et al.(2000) Gas heater pressure: 120 bar Expan. Inlet temp.: 120 C C.W. mass flow rate: 540 kg/h Gas cooler pressure: 83 bar GC outlet temp.: 35 C C.W. inlet temp.: 15 C Evaporator pressure: 40 bar Refrig. Mass flow: 290 kg/h 18

19 Simulation results Basic refrigeration system COP Double loop system COP double Water outlet temperature System cooling capacity Performance Parameters Double loop power part thermal efficiency (without IHX) Double loop power part thermal efficiency (with IHX) Power of hot water production Value 4.77% 7.48% Unit C kw kw 19

20 Carbon Dioxide Cooling and Power Combined System Carbon Dioxide Cooling and Power Combined Cycle T-S Chart f Such a system under a typical working condition can achieve COP = 3.18 for the cooling part η= 12.6% for the power part After transferring the energy gained from the cycle to the compressor, New COP = 4.45 The improvement of COP will be around 40% -1,50-1,25-1,00-0,75-0,50-0,25 T [ C] k 0, bar 300 bar 250 bar 150 bar 100 bar 40 bar a 0,2 0,4 0,6 0,8 j b c d S [kj/kg k] i Waste heat 0,0057 e 0,01 0,019 h 0,034 g 0,063 m3/kg 20

21 Thanks for your attention! 21

Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery

Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery Y. Chen, Almaz Bitew Workie, Per Lundqvist Div. of Applied Thermodynamics and Refrigeration, Department

More information

Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets

Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets Investigations of Heat Recovery in Different Refrigeration System Solutions in Supermarkets Samer Sawalha Department of Energy Technology Kungliga Tekniska Högskola Stockholm-Sweden 2008 Project background

More information

COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY

COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY S93 Introduction COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY by Wanjin BAI a* and Xiaoxiao XU b a School of Mechanical and Vehicle Engineering,

More information

Analytical model of a multichannel double tube CO2 gas-cooler for a water heater

Analytical model of a multichannel double tube CO2 gas-cooler for a water heater Analytical model of a multichannel double tube CO2 gas-cooler for a water heater 2017. 5. 18 Kyeongsoo Song, Hanseok Mun, Yongchan Kim* Graduate School of Mechanical Engineering, Korea University Contents

More information

A NOVEL DESIGN OF COMPACT BRAZED PLATE HEAT EXCHANGER FOR CO2 TRANSCRITICAL APPLICATIONS

A NOVEL DESIGN OF COMPACT BRAZED PLATE HEAT EXCHANGER FOR CO2 TRANSCRITICAL APPLICATIONS A NOVEL DESIGN OF COMPACT BRAZED PLATE HEAT EXCHANGER FOR CO2 TRANSCRITICAL APPLICATIONS Why CO 2? Non-toxic, non-flammable. Non-ozone-depleting Environmentally friendly with GWP=1 Suitable for both transcritical

More information

High efficient heat reclaim with CO2

High efficient heat reclaim with CO2 High efficient heat reclaim with CO2 Refrigeration systems with transcritical CO 2 has been taking market shares the last years. Since 2007 the market in Denmark has turned from conventional refrigeration

More information

CO 2 Transcritical Cycle for Ground Source Heat Pump

CO 2 Transcritical Cycle for Ground Source Heat Pump CO 2 Transcritical Cycle for Ground Source Heat Pump.Ma Yitai, professor, Thermal energy research institute of Tianjin University, Tianjin, China Wang Jinggang, PhD student, Thermal energy research institute

More information

Novel Cycles Using Carbon Dioxide as Working Fluid

Novel Cycles Using Carbon Dioxide as Working Fluid Novel Cycles Using Carbon Dioxide as Working Fluid New Ways to Utilize Energy from Low Grade Heat Sources Licentiate Thesis by Yang Chen Stockholm, May 2006 School of Industrial Engineering and Management

More information

Eng Thermodynamics I: Sample Final Exam Questions 1

Eng Thermodynamics I: Sample Final Exam Questions 1 Eng3901 - Thermodynamics I: Sample Final Exam Questions 1 The final exam in Eng3901 - Thermodynamics I consists of four questions: (1) 1st Law analysis of a steam power cycle, or a vapour compression refrigeration

More information

Modelling and Experimental Investigations of ORC Systems

Modelling and Experimental Investigations of ORC Systems Modelling and Experimental Investigations of ORC Systems Y.T. Ge, L. Li, X. Luo, S.A. Tassou, Brunel University London, Uxbridge, Middlesex, UB83PH, UK Outline of Presentation Test rigs of CO 2 transcritical

More information

A Method for On-Going Commissioning of VRV Package Systems Using a. Simulation Model

A Method for On-Going Commissioning of VRV Package Systems Using a. Simulation Model A Method for On-Going Commissioning of VRV Package Systems Using a Simulation Model Motoi Yamaha Ken Sekiyama Shinya Misaki Associate Professor Graduate Student Chubu University Chubu University Sunloft

More information

329 - The AC-Sun, a new concept for air conditioning

329 - The AC-Sun, a new concept for air conditioning 329 - The AC-Sun, a new concept for air conditioning Søren Minds 1* and Klaus Ellehauge 2 1 AC-Sun, Rudolfgaardsvej 19, DK-8260 Viby J, Denmark 2 Ellehauge & Kildemoes, Vestergade 48 H, 2s.tv., DK-8000

More information

Problems in chapter 9 CB Thermodynamics

Problems in chapter 9 CB Thermodynamics Problems in chapter 9 CB Thermodynamics 9-82 Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet

More information

Advanced heat driven cooling cycles for low-temperature waste heat recovery

Advanced heat driven cooling cycles for low-temperature waste heat recovery CDTI-NEDO Joint Workshop on Energy Saving Engineering - Effective Use of Thermal Energy Advanced heat driven cooling cycles for low-temperature waste heat recovery 02/13/2018 Tatsuo Fujii Research & Development

More information

PERFORMANCE ANALYSIS OF A TRANSCRITICAL, CO2 HEAT PUMP WATER HEATER INCORPORATING A BRAZED-PLATE GAS-COOLER

PERFORMANCE ANALYSIS OF A TRANSCRITICAL, CO2 HEAT PUMP WATER HEATER INCORPORATING A BRAZED-PLATE GAS-COOLER PERFORMANCE ANALYSIS OF A TRANSCRITICAL, CO2 HEAT PUMP WATER HEATER INCORPORATING A BRAZED-PLATE GAS-COOLER By Portia Murray A thesis submitted to the Department of Mechanical and Material s engineering

More information

INSTITUTO DE INGENIERÍA ENERGÉTICA. (Institute for Energy Engineering) Research Publications

INSTITUTO DE INGENIERÍA ENERGÉTICA. (Institute for Energy Engineering) Research Publications INSTITUTO DE INGENIERÍA ENERGÉTICA UNIVERSIDAD POLITÉCNICA DE VALENCIA CPI, Edificio 8E, Cubo F, 5ª planta, Camino de Vera s/n, 46022 Valencia, Spain Tel. (34) 963877270, Fax (34) 963877272, Email: energeti@upvnet.upv.es

More information

SIMULATION OF A THERMODYNAMIC CYCLE WITH ORGANIC ABSORBENTS AND CO 2 AS WORKING FLUID

SIMULATION OF A THERMODYNAMIC CYCLE WITH ORGANIC ABSORBENTS AND CO 2 AS WORKING FLUID SIMULATION OF A THERMODYNAMIC CYCLE WITH ORGANIC ABSORBENTS AND CO 2 AS WORKING FLUID Huijuan Chen Department of Chemical Engineering, University of South Florida, Tampa, FL 33620, USA D. Yogi Goswami

More information

Performance study on solar assisted heat pump water heater using CO 2 in a transcritical cycle

Performance study on solar assisted heat pump water heater using CO 2 in a transcritical cycle European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 12) Santiago de Compostela

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION Exam Type: X Examiner: J.S. Wallace You may use your copy of the

More information

BINARY BLEND OF CARBON DIOXIDE AND FLUORO ETHANE AS WORKING FLUID IN TRANSCRITICAL HEAT PUMP SYSTEMS

BINARY BLEND OF CARBON DIOXIDE AND FLUORO ETHANE AS WORKING FLUID IN TRANSCRITICAL HEAT PUMP SYSTEMS THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1317-1321 1317 Introduction BINARY BLEND OF CARBON DIOXIDE AND FLUORO ETHANE AS WORKING FLUID IN TRANSCRITICAL HEAT PUMP SYSTEMS by Xian-Ping ZHANG a*, Fang

More information

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers)

Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) ME 3610 Practice Final Exam (A) Six problems. (Open-book, HW solutions, and notes) (Plus /minus 10 % error acceptable for all numerical answers) (18 points) 1. A gasoline engine operating on the ideal

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

GAS COOLING HEAT TRANSFER AND PRESSURE DROP CHARATERICTICS OF CO 2 /OIL MIXTURE IN A MICROCHANNEL ABSTRACT

GAS COOLING HEAT TRANSFER AND PRESSURE DROP CHARATERICTICS OF CO 2 /OIL MIXTURE IN A MICROCHANNEL ABSTRACT GAS COOLING HEAT TRANSFER AND PRESSURE DROP CHARATERICTICS OF CO /OIL MIXTURE IN A MICROCHANNEL R. YUN, Y. HWANG*, AND R. RADERMACHER Center for Environmental Energy Engineering, Department of Mechanical

More information

Solar Absorption Aqua-Ammonia Absorption system simulation base on Climate of Malaysia

Solar Absorption Aqua-Ammonia Absorption system simulation base on Climate of Malaysia Solar Absorption Aqua-Ammonia Absorption system simulation base on Climate of Malaysia POORYA OOSHAKSARAEI 1, SOHIF MAT 1, M. YAHYA 1, AHMAD MAHIR RAZALI 1, AZAMI ZAHARIM 2, K. SOPIAN 3 1 Solar Energy

More information

Chapter 9: Vapor Power Systems

Chapter 9: Vapor Power Systems Chapter 9: Vapor Power Systems Table of Contents Introduction... 2 Analyzing the Rankine Cycle... 4 Rankine Cycle Performance Parameters... 5 Ideal Rankine Cycle... 6 Example... 7 Rankine Cycle Including

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT

PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1673-1677 1673 PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT by Xian-Ping ZHANG a,b, Xin-Li WEI b, Xiao-Wei FAN c*, Fu-Jun

More information

THEORETICAL STUDY OF HEAT PUMP SYSTEM USING CO 2 /DIMETHYLETHER AS REFRIGERANT

THEORETICAL STUDY OF HEAT PUMP SYSTEM USING CO 2 /DIMETHYLETHER AS REFRIGERANT THERMAL SCIENCE, Year 2013, Vol. 17, No. 5, pp. 1261-1268 1261 THEORETICAL STUDY OF HEAT PUMP SYSTEM USING CO 2 /DIMETHYLETHER AS REFRIGERANT by Xiao-Wei FAN a*, Xian-Ping ZHANG b,c, Fu-Jun JU a, and Fang

More information

Design, modelling, performance optimization and experimentation of a reversible HP/ORC prototype.

Design, modelling, performance optimization and experimentation of a reversible HP/ORC prototype. EA-45-1 - Design, modelling, performance optimization and experimentation of a reversible HP/ORC prototype. Olivier, Dumont, PhD student, Thermodynamics and Energetics Laboratory Chemin des chevreuils,

More information

CO2 solutions February 2018

CO2 solutions February 2018 CO2 solutions 27-28 February 2018 Summary Overview of regulations Overview of Rivacold solution CO2 carbon dioxide CO2 Rivacold solution Case History 2 1. Overview of regulations Overview of regulations

More information

Carbon Dioxide as an Eco-Friendly Refrigerant for Electric Vehicles

Carbon Dioxide as an Eco-Friendly Refrigerant for Electric Vehicles PreScouter Carbon Dioxide as an Eco-Friendly Refrigerant for Electric Vehicles Research Support Service February 1 st, 2018 Prepared by: PreScouter Adam Kimmel Global Scholar Paula Hock Project Architect

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

Postprint. This is the accepted version of a paper presented at 13th IIR Gustav Lorentzen Conference.

Postprint.   This is the accepted version of a paper presented at 13th IIR Gustav Lorentzen Conference. http://www.diva-portal.org Postprint This is the accepted version of a paper presented at 13th IIR Gustav Lorentzen Conference. Citation for the original published paper: Raka Adrianto, L., Grandjean,

More information

Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222)

Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222) Benha University Thermodynamics II Faculty of Engineering 2 nd year 2016 Mechanical Engineering Dep. Final-exam (code: M 1222) Time: Three Hours (attempt all questions) (assume any missing data) Question1

More information

CH 7: GAS-TURBINE ENGINES Prepared by Dr. Assim Al-Daraje BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES

CH 7: GAS-TURBINE ENGINES Prepared by Dr. Assim Al-Daraje BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES CH 7: GAS-TURBINE ENGINES Prepared by Dr. Assim Al-Daraje BRAYTON CYCLE: THE IDEAL CYCLE FOR GAS-TURBINE ENGINES The combustion process is replaced by a constant-pressure heat-addition process from an

More information

Simulation Studies on Performance of Solar Cooling System in UAE Conditions

Simulation Studies on Performance of Solar Cooling System in UAE Conditions Available online at www.sciencedirect.com Energy Procedia 00 (2014) 000 000 www.elsevier.com/locate/procedia SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September

More information

2. The data at inlet and exit of the turbine, running under steady flow, is given below.

2. The data at inlet and exit of the turbine, running under steady flow, is given below. 3 rd week quiz 1. Identify the correct path of fluid flow in a steam power plant. a) Steam turbine-pump-boiler-condenser. b) Economizer- evaporator- superheater. c) Pump-turbine-condenser-evaporator. d)

More information

Application of Exergy Analysis. Value and Limitations

Application of Exergy Analysis. Value and Limitations Application of Exergy Analysis Value and Limitations Power Plant Exergy Flows and Destruction Stack 2 Other Losses 1 Fuel 92 27 65 20 Steam 43 7 Shaft Power 32 Combustion Heat Transfer Turbine Steam 3

More information

Optimizing the Supercritical CO2 Brayton Cycle for Concentrating Solar Power Application

Optimizing the Supercritical CO2 Brayton Cycle for Concentrating Solar Power Application Optimizing the Supercritical CO2 Brayton Cycle for Concentrating Solar Power Application The 6th International Supercritical CO2 Power Cycles Symposium March 27-29, 2018, Pittsburgh, Pennsylvania Rajgopal

More information

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency:

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: - 2 - Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: i) regenerator ii) intercooling between compressors (6 marks) (b) Air enters a

More information

Chapter 5: Thermodynamic Processes and Cycles

Chapter 5: Thermodynamic Processes and Cycles Chapter 5: Thermodynamic Processes and Cycles 5-6) This problem examines the Rankine heat engine introduced in Figure 5-5. Saturated steam at T = 250 C enters the turbine and the condenser operates at

More information

SOLAR COOLING WITH SMALL SIZE CHILLER: STATE OF THE ART

SOLAR COOLING WITH SMALL SIZE CHILLER: STATE OF THE ART SOLAR COOLING WITH SMALL SIZE CHILLER: STATE OF THE ART F. Asdrubali, G. Baldinelli, A. Presciutti University of Perugia (Italy) - Industrial Engineering Department 14 th European Conference - Renewable

More information

ASSESSMENT OF SEASONAL PERFORMANCES OF AIR SOURCE CO 2 HEAT PUMP BY DYNAMIC MODELLING

ASSESSMENT OF SEASONAL PERFORMANCES OF AIR SOURCE CO 2 HEAT PUMP BY DYNAMIC MODELLING Department of Mechanical Engineering ASSESSMENT OF SEASONAL PERFORMANCES OF AIR SOURCE CO 2 HEAT PUMP BY DYNAMIC MODELLING Author: ROMAIN PETINOT Supervisor: Paul Tuohy A thesis submitted in partial fulfilment

More information

Refrigeration System with Booster Hot Gas Bypass in Tropical Climate

Refrigeration System with Booster Hot Gas Bypass in Tropical Climate Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of Transcritical CO 2 Refrigeration System with Booster Hot Gas Bypass in Tropical Climate To cite this article: I D M C Santosa et al

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

Code No: RR Set No. 1

Code No: RR Set No. 1 Code No: RR310303 Set No. 1 III B.Tech I Semester Regular Examinations, November 2006 THERMAL ENGINEERING-II (Mechanical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

Eng Thermodynamics I - Examples 1

Eng Thermodynamics I - Examples 1 Eng3901 - Thermodynamics I - Examples 1 1 pdv Work 1. Air is contained in a vertical frictionless piston-cylinder. The mass of the piston is 500 kg. The area of the piston is 0.005 m 2. The air initially

More information

Center for Environmental Energy Engineering Department of Mechanical Engineering University of Maryland College Park, MD

Center for Environmental Energy Engineering Department of Mechanical Engineering University of Maryland College Park, MD System Drop-In and Soft Optimization Tests of R-40A Alternative Refrigerants in Split System Heat Pump Jan. 204 Abdullah Alabdulkarem, Radia Eldeeb, Yunho Hwang, Vikrant Aute, Reinhard Radermacher Center

More information

Integration of trigeneration and CO2 refrigeration systems for energy conservation in the food industry AFM 251

Integration of trigeneration and CO2 refrigeration systems for energy conservation in the food industry AFM 251 Integration of trigeneration and CO2 refrigeration systems for energy conservation in the food industry AFM 251 Savvas Tassou and INyoman Suamir On behalf of AFM251 consortium BRUNEL UNIVERSITY Content

More information

CO 2 Heat Pump System for Combined Heating and Cooling of Non-Residential Buildings

CO 2 Heat Pump System for Combined Heating and Cooling of Non-Residential Buildings The 22 nd IIR International Congress or Refrigeration Beijing, China CO 2 Heat Pump System for Combined Heating and Cooling of Non-Residential Buildings Jørn Stene (a,b), Arne Jakobsen (a), Trond Andresen

More information

Performance Evaluation of Solar Assisted Heat Pump Water Heating System

Performance Evaluation of Solar Assisted Heat Pump Water Heating System IOSR Journal of Engineering (IOSRJEN) e-issn: 50-301, p-issn: 78-8719 Vol. 3, Issue 4 (April. 013), V PP 1-17 Performance Evaluation of Solar Assisted Heat Pump Water Heating System Kokila. R.N 1, Rajakumar.S

More information

Application of Viper Energy Recovery Expansion Device in Transcritical Carbon Dioxide Refrigeration Cycle

Application of Viper Energy Recovery Expansion Device in Transcritical Carbon Dioxide Refrigeration Cycle Abstract Application of Viper Energy Recovery Expansion Device in Transcritical Carbon Dioxide Refrigeration Cycle Riley B. Barta a *, Eckhard A. Groll b a Purdue University, School of Mechanical Engineering,

More information

Comparative Efficiency of Geothermal Vapor-Turbine Cycles

Comparative Efficiency of Geothermal Vapor-Turbine Cycles Proceedings World Geothermal Congress 2005 ntalya, Turkey, 24-29 pril 2005 Comparative Efficiency of Geothermal Vapor-Turbine Cycles M. Boyarskiy, O. Povarov,. Nikolskiy,. Shipkov NUK Stock Company, 9.Krasnokazarmennaya

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Chapter 1 STEAM CYCLES

Chapter 1 STEAM CYCLES Chapter 1 STEAM CYCLES Assoc. Prof. Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan 1 Chapter 1 STEAM CYCLES 1 Chapter Objectives To carry

More information

PAPER-I (Conventional)

PAPER-I (Conventional) 1. a. PAPER-I (Conventional) 10 kg of pure ice at 10 ºC is separated from 6 kg of pure water at +10 O C in an adiabatic chamber using a thin adiabatic membrane. Upon rupture of the membrane, ice and water

More information

Experimental Study of a CO2 Thermal Battery for Simultaneous Cooling and Heating Applications

Experimental Study of a CO2 Thermal Battery for Simultaneous Cooling and Heating Applications Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2014 Experimental Study of a CO2 Thermal Battery for Simultaneous Cooling and

More information

HEAT PUMPS FOR THE EXPLOITATION OF GEOTHERMAL SOURCES IN MILANO. University of Brescia. Studio Associato di Ingegneria - Milano

HEAT PUMPS FOR THE EXPLOITATION OF GEOTHERMAL SOURCES IN MILANO. University of Brescia. Studio Associato di Ingegneria - Milano XIV INTERNATIONAL CONFERENCE ON SCIENCE, ARTS AND CULTURE WORKSHOP on GEOTHERMAL ENERGY Status and future in the Peri-Adriatic Area HEAT PUMPS FOR THE EXPLOITATION OF GEOTHERMAL SOURCES IN MILANO Ing.

More information

Dynamic Modeling and Control of Supercritical CO 2 Power Cycle using Waste Heat from Industrial Process

Dynamic Modeling and Control of Supercritical CO 2 Power Cycle using Waste Heat from Industrial Process 12 th ECCRIA (European Conference on Fuel and Energy Research and its Applications) Dynamic Modeling and Control of Supercritical CO 2 Power Cycle using Waste Heat from Industrial Process Olumide Olumayegun,

More information

Eurammon Symposium Ammonia Absorption Refrigeration. Colibri b.v.

Eurammon Symposium Ammonia Absorption Refrigeration. Colibri b.v. Eurammon Symposium 2016 Ammonia Absorption Refrigeration Michael Rabenstein Jürgen Langreck Colibri b.v. Introduction Colibri b.v. colibri b.v. experts in ammonia absorption refrigeration Products and

More information

Experimental Performance Evaluation of a Small Scale ORC Power Unit Working with Low Temperature Energy Sources for Power Cogeneration

Experimental Performance Evaluation of a Small Scale ORC Power Unit Working with Low Temperature Energy Sources for Power Cogeneration Experimental Performance Evaluation of a Small Scale ORC Power Unit Working with Low Temperature Energy Sources for Power Cogeneration Maria K. Koukou, Speaker Email: mkoukou@teiste.gr, m_koukou@otenet.gr

More information

Smart Control strategies for heat pump systems. Hatef Madani May 2016

Smart Control strategies for heat pump systems. Hatef Madani May 2016 Smart Control strategies for heat pump systems Hatef Madani May 2016 Meeting Agenda 1 2 3 4 Background and motivation Project s goal Implementation List of relevant papers Capacity control in Heat Pump

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option.

1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option. 1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option. a) Fins are generally attached on gas side. b) Fins are generally

More information

Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO 2 Refrigeration Cycle

Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO 2 Refrigeration Cycle Entropy 2014, 16, 4309-4321; doi:10.3390/e16084309 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion

More information

LECTURE-14. Air Refrigeration Cycles. Coefficient of Performance of a Refrigerator:

LECTURE-14. Air Refrigeration Cycles. Coefficient of Performance of a Refrigerator: Lecturer: -Dr. Esam Mejbil Abid Subject: Air Conditioning and Refrigeration Year: Fourth B.Sc. Babylon University College of Engineering Department of Mechanical Engineering LECTURE-14 Air Refrigeration

More information

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2006 Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Elias

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

SUPERCRITICAL CO2 RANKINE CYCLE TEST LOOP (ROMA) - OPERATION AND INITIAL RESULTS

SUPERCRITICAL CO2 RANKINE CYCLE TEST LOOP (ROMA) - OPERATION AND INITIAL RESULTS SUPERCRITICAL CO2 RANKINE CYCLE TEST LOOP (ROMA) - OPERATION AND INITIAL RESULTS Maria Justo Alonso, Yves Ladam and Trond Andresen SINTEF Energy Research Technology for a better society 1 Aluminium production

More information

Energy. Transcritical or supercritical CO 2 cycles using both low- and high-temperature. heat sources. Y.M. Kim a, *, C.G. Kim a,d.favrat b.

Energy. Transcritical or supercritical CO 2 cycles using both low- and high-temperature. heat sources. Y.M. Kim a, *, C.G. Kim a,d.favrat b. Energy 43 (2012) 402e415 Contents lists available at SciVerse ScienceDirect Energy journal homepage: www.elsevier.com/locate/energy Transcritical or supercritical CO 2 cycles using both low- and high-temperature

More information

Thermodynamics: Homework A Set 6 Jennifer West (2004)

Thermodynamics: Homework A Set 6 Jennifer West (2004) Thermodynamics: Homework A Set 6 Jennifer West (2004) Problem 1 Consider the process shown. The steam line conditions at piont 1 are 2 MPa, 400 C. The pressure at point 2 is 1.5 MPa. The turbine exhaust

More information

Heat Load Calculation for the Design of Environmental Control System of a Light Transport Aircraft

Heat Load Calculation for the Design of Environmental Control System of a Light Transport Aircraft International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 249 Heat Load Calculation for the Design of Environmental Control System of a Light Transport Aircraft Rahul Mohan.P1,

More information

Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander

Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Energy 30 (2005) 1162 1175 www.elsevier.com/locate/energy Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Jun Lan Yang, Yi Tai Ma*, Min Xia Li, Hai Qing Guan Thermal

More information

R13. (12M) efficiency.

R13. (12M) efficiency. SET - 1 II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2016 THERMAL AND HYDRO PRIME MOVERS (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper

More information

COP-OPTIMISED PRESSURE CONTROL FOR A CENTRALISED CO 2 COOLING SYSTEM IN AIRCRAFT APPLICATIONS

COP-OPTIMISED PRESSURE CONTROL FOR A CENTRALISED CO 2 COOLING SYSTEM IN AIRCRAFT APPLICATIONS COP-OPTIMISED PRESSURE CONTROL FOR A CENTRALISED CO 2 COOLING SYSTEM IN AIRCRAFT APPLICATIONS S. ADEYEFA, O. SCHADE, U. CARL Hamburg University of Technology, Department of Aircraft Systems Engineering

More information

Danfoss and Controls for CO2

Danfoss and Controls for CO2 Danfoss and Controls for CO2 CO 2 www.danfoss.com/foodretail Department (slide master) Optional text Date 1 Controllers for various CO2 applications Some examples of Danfoss controllers suited for CO2:

More information

THERMAL ENERGY ANALYSIS OF SOLAR POWERED VAPOUR ABSORPTION COOLING SYSTEM

THERMAL ENERGY ANALYSIS OF SOLAR POWERED VAPOUR ABSORPTION COOLING SYSTEM International Journal of Mechanical Engineering (IJME) ISSN(P): 2319-2240 ; ISSN(E): 2319-2259 Vol. 5, Issue 1, Dec-Jan 2016, 131-142 IASET THERMAL ENERGY ANALYSIS OF SOLAR POWERED VAPOUR ABSORPTION COOLING

More information

ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE

ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1649-1654 1649 ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE by Fang WANG, Xiao-Wei FAN, Jie CHEN, and Zhi-Wei LIAN School of

More information

DISTRICT HEATING AND COOLING WITH LARGE CENTRIFUGAL CHILLER-HEAT PUMPS

DISTRICT HEATING AND COOLING WITH LARGE CENTRIFUGAL CHILLER-HEAT PUMPS - 1 - DISTRICT HEATING AND COOLING WITH LARGE CENTRIFUGAL CHILLER-HEAT PUMPS U. Pietrucha, International Sales, Friotherm AG, Winterthur, Switzerland Abstract: With prices for primary energy resources

More information

CHARACTERISTICS OF PRESSURE RECOVERY IN TWO-PHASE EJECTOR APPLIED TO CARBON DIOXIDE HEAT PUMP CYCLE

CHARACTERISTICS OF PRESSURE RECOVERY IN TWO-PHASE EJECTOR APPLIED TO CARBON DIOXIDE HEAT PUMP CYCLE - 1 - CHARACTERISTICS OF PRESSURE RECOVERY IN TWO-PHASE EJECTOR APPLIED TO CARBON DIOXIDE HEAT PUMP CYCLE Satoshi Akagi, Chaobin Dang and Eiji Hihara* Division of Environmental Studies, Graduate School

More information

Thermodynamic Performance Assessment of R32 and R1234yf Mixtures as Alternatives of R410A

Thermodynamic Performance Assessment of R32 and R1234yf Mixtures as Alternatives of R410A Thermodynamic Performance Assessment of R32 and R1234yf Mixtures as Alternatives of R410A May 2017 Nan Zheng a, Yunho Hwang b * a Department of Process Equipment & Control Engineering Xi an Jiaotong University

More information

Modeling and simulation of a reclaimed water source heat pump system based on TRANSYS 1

Modeling and simulation of a reclaimed water source heat pump system based on TRANSYS 1 Acta Technica 62, No. 3B/2017, 237 248 c 2017 Institute of Thermomechanics CAS, v.v.i. Modeling and simulation of a reclaimed water source heat pump system based on TRANSYS 1 Zhao Yuqing 2, Liu Qingqing

More information

Combination of solar collectors and ground-source heat pump for small buildings

Combination of solar collectors and ground-source heat pump for small buildings Combination of solar collectors and ground-source heat pump for small buildings Kjellsson, Elisabeth; Hellström, Göran; Perers, Bengt Published in: Proceedings of the 2005 Solar world Congress Published:

More information

Modeling and analyzing solar cooling systems in Polysun

Modeling and analyzing solar cooling systems in Polysun Modeling and analyzing solar cooling systems in Polysun Seyed H. Rezaei (seyed.rezaei@velasolaris.com) 1 Andreas Witzig (andreas.witzig@velasolaris.com) 1 Michael Pfeiffer (michael.pfeiffer@velasolaris.com)

More information

Advanced Thermal Energy Storing with the most efficient use of the ressources. Peter Badstue Jensen Vice President - Partner

Advanced Thermal Energy Storing with the most efficient use of the ressources. Peter Badstue Jensen Vice President - Partner Advanced Thermal Energy Storing with the most efficient use of the ressources Peter Badstue Jensen Vice President - Partner November 30, 2017 BUSINESS AREAS CSP power plant technologies Integrated Energy

More information

Borehole storage coupled with heat pump for domestic heating system and space free cooling

Borehole storage coupled with heat pump for domestic heating system and space free cooling Borehole storage coupled with heat pump for domestic heating system and space free cooling ----- The analysis of temperature traces of the boreholes and system SPF Bo He, PhD; David Kroon, Msc. Nibe AB,

More information

CO 2. transcritical refrigeration cycles: potential for exploiting waste heat recovery with variable operating conditions

CO 2. transcritical refrigeration cycles: potential for exploiting waste heat recovery with variable operating conditions Journal of Physics: Conference Series PAPER OPEN ACCESS CO 2 transcritical refrigeration cycles: potential for exploiting waste heat recovery with variable operating conditions To cite this article: M

More information

YEARLY SIMULATION OF CO 2 REFRIGERATION SYSTEMS FOR SUPERMARKET APPLICATIONS

YEARLY SIMULATION OF CO 2 REFRIGERATION SYSTEMS FOR SUPERMARKET APPLICATIONS YEARLY SIMULATION OF CO 2 REFRIGERATION SYSTEMS FOR SUPERMARKET APPLICATIONS FRASCOLD SPA FRASCOLD SpA! Italy (1936)! Frascold USA! (2014)! Frascold Shanghai! (2014)! Frascold India! (2012)! Sales office!

More information

ScienceDirect. Compact hot water storage systems combining copper tube with high conductivity graphite and phase change materials

ScienceDirect. Compact hot water storage systems combining copper tube with high conductivity graphite and phase change materials Available online at www.sciencedirect.com ScienceDirect Energy Procedia 48 (2014 ) 423 430 SHC 2013, International Conference on Solar Heating and Cooling for Buildings and Industry September 23-25, 2013,

More information

Lecture No.1. Vapour Power Cycles

Lecture No.1. Vapour Power Cycles Lecture No.1 1.1 INTRODUCTION Thermodynamic cycles can be primarily classified based on their utility such as for power generation, refrigeration etc. Based on this thermodynamic cycles can be categorized

More information

Chillventa Specialist Forums 2016 Chillventa Fachforen 2016

Chillventa Specialist Forums 2016 Chillventa Fachforen 2016 Hall 4A Chillventa Specialist Forums 2016 Chillventa Fachforen 2016 1/15 1 A high temperature heat pump with HFO-1336mzz(Z) as the working fluid: Performance Simulations and Measurements Michael Lauermann

More information

State of the Art of Air-source Heat Pump for Cold Regions

State of the Art of Air-source Heat Pump for Cold Regions State of the Art of Air-source Heat Pump for Cold Regions Changqing Tian Nan Liang Ph D, Associate Prof. Ph D candidate Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing,

More information

2 nd Law of Thermodynamics

2 nd Law of Thermodynamics 2 nd aw of Thermodynamics 2 nd aw of Thermodynamics 1 st law 2 nd law A process must satisfy both the first and the second laws of thermodynamics to proceed 1 st law : is concerned with the conversion

More information

Direct expansion ground source heat pump using carbon dioxide as refrigerant: Test facility and theoretical model presentation

Direct expansion ground source heat pump using carbon dioxide as refrigerant: Test facility and theoretical model presentation IGSHPA Technical/Research Conference and Expo Denver March 14-16, 217 Direct expansion ground source heat pump using carbon dioxide as refrigerant: Test facility and theoretical model presentation Parham

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

COP Improvement Of A CO2 Refrigeration System With An Expander-Compressor-Unit (ECU) In Subcritical And Transcritical Operation

COP Improvement Of A CO2 Refrigeration System With An Expander-Compressor-Unit (ECU) In Subcritical And Transcritical Operation Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 COP Improvement Of A CO2 Refrigeration System With An Expander-Compressor-Unit

More information

A Scroll Expander with Heating Structure and Their Systems

A Scroll Expander with Heating Structure and Their Systems Purdue University Purdue e-pubs International Engineering Conference School of Mechanical Engineering 4 A Expander with Heating Structure and Their Systems Young Min Kim Korea Institute of Machinery &

More information

wb Thermodynamics 2 Lecture 10 Energy Conversion Systems

wb Thermodynamics 2 Lecture 10 Energy Conversion Systems wb1224 - Thermodynamics 2 Lecture 10 Energy Conversion Systems Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 13-12-2010 Delft University of Technology Challenge the future Content

More information