Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our

Size: px
Start display at page:

Download "Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our"

Transcription

1 Energy Efficiency

2 Energy Efficiency There are many different forms of energy. Most of our household Sound appliances convert electrical energy into some other useful form of energy. Mechanical Heat Chemical Gravitational Light

3 Energy Efficiency There are many different forms of energy. Most of our household appliances convert electrical energy into some other useful form of energy. Electrical

4 Energy Efficiency There are many different forms of energy. Most of our household appliances convert electrical energy into some other useful form of energy. Electrical

5 Energy Efficiency There are many different forms of energy. Most of our household appliances convert electrical energy into some other useful form of energy. Stove Light Bulb Electricity Heat Electricity Light Stereo Electricity Sound

6 Energy Efficiency There are many different forms of energy. Most of our household appliances convert electrical energy into some other useful form of energy. These energy conversions are never 100% efficient. For example, an incandescent light bulb that receives 100 Joules of electrical energy does not convert all of it into light energy. Only 10% of the electrical energy is converted into light. Light Bulb Are there more efficient bulbs? Light Heat Sound Light Heat Sound

7 Energy Efficiency There are many different forms of energy. Most of our household appliances convert electrical energy into some other useful form of energy. These energy conversions are never 100% efficient. For example, an incandescent light bulb that receives 100 Joules of electrical energy does not convert all of it into light energy. Only 10% of the electrical energy is converted into light. Yes! Light Bulb Light Heat Sound Light Heat Sound

8 Energy Efficiency There are many different forms of energy. Most of our household appliances convert electrical energy into some other useful form of energy. These energy conversions are never 100% efficient. For example, an incandescent light bulb that receives 100 Joules of electrical energy does not convert all of it into light energy. Only 10% of the electrical energy is converted into light. Light Bulb Light Heat Sound Light Heat Sound

9 ELECTRICAL POWER The rate at which electrical energy is produced or consumed in a given time. Unit of Measurement: Watt (W) 1 W = 1J/s The higher the Wattage the more energy energy uses to run.

10 60 W Incandescent Light bulb

11 15 W compact fluorescent bulb (CFL)

12 The 60 W incandescent light bulb uses more electrical energy than the CFL to produce light. However, each bulb produces the same amount of light.

13 Measuring Electrical Energy Usage We measure large amounts of electrical energy using the kilowatt-hour kilowatt-hour: the use of one kilowatt of power in one hour

14 Efficiency The measure of how much useful energy an electrical device produces compared with the amount of energy that is supplied to the device.

15 Example An old clothes dryer might use 800kW.h of energy in one year, while a newer model might use 300 kw.h in one year.

16 Example Both clothes dryers perform the same task, but the newer model is more efficient b/c it uses less electrical energy than the older model.

17 EnerGuide Labels Found on all appliances sold in Canada Ex. Stoves, dishwashers, refrigerators, washers, and dryers Provides an estimate of how much electrical energy the appliance will use in one year

18 EnerGuide Labels Tell How much electricity the appliance consumes in one year How the appliance compares with other similar appliances in terms of electricity consumption

19 Energy Star Labels Created in 1972 by the U.S. Environmental Agency Appliances that use 10% to 50% less energy compared to other appliances of the same make and model

20 Percent Energy Efficiency To determine how energy efficient an electrical device is, we have to know how much electrical energy the device uses (input) and how much energy is actually converted into a useful form (output). The following formula can be used to calculate the percent energy efficiency: Percent Energy Efficiency = Useful Energy Output Total Electrical Energy Input X 100 % Useful Energy Output is the amount of electricity that is converted into a useful form (such as heating water in a kettle or producing light from a bulb). Total Electrical Energy Input is the total electrical energy used by the electrical device.

21 Example Science Power 9 pg. 346 An electric kettle has a power rating of 1000W. It takes the kettle 4.00 min. to heat 600 ml of water from 22.0 ºC to 100ºC. If it takes 1.96 X 10 5 J of energy to heat the water, what is the efficiency of the kettle? G: P = 1000 W t = 240 s R: A: Percent efficiency =? S: To find total electrical energy input use the following equation: E = P X t E = 1000 W X 240 s = J = 2.40 x 10 5 J S: Percent efficiency = Percent efficiency = Useful energy output Total electrical energy input 1.96 X 105 J 2.40 x 10 5 J Useful energy output = 1.96 X 10 5 J X 100 % X 100 % = 81.7 % The kettle is about 81.7 % efficient when heating 600 ml of water from 22.0 ºC to 100ºC.

22 Example #2 A light bulb uses 100J of electrical energy and produces 35 J of light energy. Calculate the percent efficiency of the light bulb. G: E out = 35J E in = 100J R: % efficiency =? A: E output % efficiency = E input X 100 % S: = 35J 100J X 100 % = 35% S: The efficiency of the light bulb is 35%

23 On your own A taster oven uses 1200J of energy to produce 850J of thermal energy. Calculate the % efficiency of the toaster oven. G: E out = 850J E in = 1200J R: % efficiency =? A: E output % efficiency = E input X 100 % S: = 850J 1200J X 100 % = % S: The efficiency of the light bulb is %

24 Calculating Cost Cost to operate = Power used x Time X cost of electricity

25 Calculating Cost A laptop computer uses 75W adapter when it is plugged in. electricity costs 5.6 c/kw.h. Calculate ho much it would cost to operate the laptop for 1 year for 24 hours per day. G: P = 75 W = 0.075kW t = 24hrs = 8760 hours R: A: Cost to operate=? Cost to operate = Power used x Time X cost of electricity S: = 0.075kW X 8760 hr X 5.6 c/kw.hr = 3679 c or $36.79 S: IT would cost $36.79 to operate a laptop computer for 24 hrs per day for 365 days

Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our

Energy Efficiency. Sound. Mechanical. Heat. Light. Chemical. Gravitational. There are many different forms of energy. Most of our Energy Efficiency Energy Efficiency There are many different forms of energy. Most of our household Sound appliances convert electrical energy into some other useful form of energy. Mechanical Heat Chemical

More information

Unit 2: Understanding Common Energy Conversion Systems. Lesson Objectives: Introduction. Lesson

Unit 2: Understanding Common Energy Conversion Systems. Lesson Objectives: Introduction. Lesson Unit 2: Understanding Common Energy Conversion Systems Lesson 4 - Electric Energy & Power Approximate Lesson Length: 3 hours Subject Line for Email: SCI24U2L4 Lesson Objectives: Upon completion of this

More information

Energy. Energy is the ability to do work or effect change.

Energy. Energy is the ability to do work or effect change. Energy Energy Energy is the ability to do work or effect change. Energy Energy is the ability to do work or effect change. Energy exists in many different forms. Energy carried by electrons in motion.

More information

Electrical Principles and Technologies Unit D

Electrical Principles and Technologies Unit D Electrical Principles and Technologies Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Electric Charges Producing Charges Making Sense of Electrical Charges Conductors, Insulators, and

More information

sources, conserving energy & efficiency.notebook. December 15, Sources of Electrical Energy: How does a generator work?

sources, conserving energy & efficiency.notebook. December 15, Sources of Electrical Energy: How does a generator work? Sources of Electrical Energy Efficiency Cost of Electricity SNC 1P/D Sources of Electrical Energy: Energy comes in many different forms, including kinetic energy (energy of motion), chemical energy (energy

More information

The diagram shows how electricity is distributed from a power station and transmitted along the National Grid.

The diagram shows how electricity is distributed from a power station and transmitted along the National Grid. 1 The diagram shows how electricity is distributed from a power station and transmitted along the National Grid. (a) (b) Complete labels A and B on the diagram. Use the correct word from the box to complete

More information

Watt's Up? Measuring Energy

Watt's Up? Measuring Energy Watt's Up? Measuring Energy Topic: Learn how to measure energy use in the classroom. Suggested grades 5-8 Materials/Resources needed: Hair dryer with multiple settings Light bulb with store packaging and

More information

Reading Your Electric Meter

Reading Your Electric Meter AK Reading Your Electric Meter Target grades: 3-5 AK GLEs: Science Math [3/4/5] SA1.1 [3] E&C-4 [3/4/5] SA1.2 [4/5] E&C-3 [3/4] SA2.1 [3/4/5] S&P-2 Reading [3/4/5] 1.6.1 [3] 1.6.2 Set up time: 15 minutes

More information

WATT DOES IT COST TO USE IT?

WATT DOES IT COST TO USE IT? WATT DOES IT COST TO USE IT? By Mark Ziesmer, Sultana High School Hesperia Unified School District, California Overview: Familiarize students with how electrical usage is counted, electrical pricing, and

More information

Reading Your Electric Meter

Reading Your Electric Meter AK Reading Your Electric Meter Target grades: 3-5 AK ELAM Standards: Mathematics 3.MD.4. 4.NBT.4. AK Science GLEs [3/4/5] SA1.1 [3/4/5] SA1.1 [3/4/5] SA1.2 [3/4] SA2.1 NGSS See page 6. Set up time: 15

More information

Real-time Feedback Your Key to Electricity Savings Canadians spend hundreds of dollars a year on

Real-time Feedback Your Key to Electricity Savings Canadians spend hundreds of dollars a year on Real-time Feedback Your Key to Electricity Savings Canadians spend hundreds of dollars a year on electricity to light their homes, to power appliances and electronics and, in some cases, to provide air

More information

Southern California Edison s Energy Efficiency & Conservation

Southern California Edison s Energy Efficiency & Conservation Southern California Edison s Energy Efficiency & Conservation FOR OVER 100 YEARS LIFE. POWERED BY EDISON. Southern California Edison One of the nation s largest investor owned electric utilities. Subsidiary

More information

Residential Technical Reference Manual

Residential Technical Reference Manual Residential Technical Reference Manual Version 2013.1 Effective Date: January 1, 2013 Efficiency Maine Trust 151 Capitol Street Augusta, ME 04333 866-376-2463 efficiencymaine.com INTRODUCTION... 3 RESIDENTIAL

More information

Generators supply electrical energy.

Generators supply electrical energy. Page of 5 KY CONCPT Generators supply electrical energy. BFOR, you learned Magnetism is a force exerted by magnets A moving magnetic field can generate an electric current in a conductor Generators use

More information

W = ItV P = IV. P = W t FXA Candidates should be able to :

W = ItV P = IV. P = W t FXA Candidates should be able to : 1 Candidates should be able to : Describe power as the rate of energy transfer. ELECTRICAL POWER (P) of an appliance or device is the rate at which it transfers electrical energy into other energy forms.

More information

Energy Audit. 4. Presentation (optional) Present the information found through steps 2 and 3.

Energy Audit. 4. Presentation (optional) Present the information found through steps 2 and 3. Energy Audit Why do an Energy Audit? Have you ever wondered how energy efficient your school is? An energy audit can help you find out where your energy is going and how you can improve your school s efficiency

More information

The table gives information about some ways of reducing the energy consumption in a house. Installation cost in. Fit a new hot water boiler

The table gives information about some ways of reducing the energy consumption in a house. Installation cost in. Fit a new hot water boiler ## (a) The table gives information about some ways of reducing the energy consumption in a house. Method of reducing energy consumption Installation cost in Annual saving on energy bills in Fit a new hot

More information

AP Environmental Science. Understanding Energy Units- Skeleton Notes

AP Environmental Science. Understanding Energy Units- Skeleton Notes Name: Period: Date: AP Environmental Science Understanding Energy Units- Skeleton Notes The Joule Energy is defined as the ability to do work. The Joule (J) is a unit of energy or work. 10 Joules of energy

More information

Lesson 7: Watt s in a Name(plate)?

Lesson 7: Watt s in a Name(plate)? Lesson 7: Watt s in a Name(plate)? Overview In this lesson, students determine how much electricity a particular device uses by reading electric nameplates and using Kill A Watt meters that monitor electrical

More information

Hot Bulbs. Key Words: Incandescent, Fluorescent, Watt

Hot Bulbs. Key Words: Incandescent, Fluorescent, Watt Hot Bulbs Key Words: Incandescent, Fluorescent, Watt Getting Started: 1. Read the Introduction and Challenge to Activity 67, Hot Bulbs, in your Student Book. 2. Think of all the different types of light

More information

Measuring Electricity Class Activity

Measuring Electricity Class Activity Measuring Electricity Class Activity Materials Needed: 1. 6 Kill A Watt devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost is $19.99; available

More information

My Daily Energy Use. Objectives: Target grades: AK GLEs:

My Daily Energy Use. Objectives: Target grades: AK GLEs: AK Target grades: 9-12 AK GLEs: Science [9/10/11] SA1.1 [9] SA2.1 [11] SA3.1 [9] SE2.1 Reading [9/10] 4.2.2 Math [9] N-3 [9] E&C-3 [9/10] S&P-1 [9/10] PS-5 Set up time: 45 minutes Class time: Two or three

More information

Name CHAPTER 12 NONRENEWABLE ENERGY RESOURCES. (watts)(hours used per day)(365 days) = total kwh used 1000

Name CHAPTER 12 NONRENEWABLE ENERGY RESOURCES. (watts)(hours used per day)(365 days) = total kwh used 1000 Name CHAPTER 12 NONRENEWABLE ENERGY RESOURCES PREPARE TO DO THE MATH Knowing Units of Energy Units of energy/power can often be difficult for students to understand. It is important to go over several

More information

Development of a Tool for Analyzing the Sustainability of Residential Buildings in Ohio

Development of a Tool for Analyzing the Sustainability of Residential Buildings in Ohio SOFTWARE REVIEWS Development of a Tool for Analyzing the Sustainability of Residential Buildings in Ohio Abhilash Vijayan and Ashok Kumar Dept. of Civil Engineering, The University of Toledo, 2801 W. Bancroft

More information

Carbon Footprint of Single-Family Residential New Construction

Carbon Footprint of Single-Family Residential New Construction 5757 Pacific Avenue, Suite 220, Stockton, CA 95207 209-473-5000 www.consol.ws Carbon Footprint of Single-Family Residential New Construction May 27, 2008 Prepared for California Building Industry Association

More information

Remember you can always click on this video link for help with the sheet you are on. A Guide to Flipped Energy Audit Calculator

Remember you can always click on this video link for help with the sheet you are on. A Guide to Flipped Energy Audit Calculator A Guide to Flipped Energy Audit Calculator Welcome, to the Flipped Energy Audit Calculator, a tool that was designed to help you and your students calculate energy costs and estimate energy savings. You

More information

APES Energy Problems. Practice Problems: 1. How much energy, in kj, does a 75 Watt light bulb use then it is turned on for 25 minutes?

APES Energy Problems. Practice Problems: 1. How much energy, in kj, does a 75 Watt light bulb use then it is turned on for 25 minutes? APES Energy Problems Energy: The basic unit of energy is a Joule (J). Other units are calorie, kilojoule, British Thermal Unit (BTU), and therm. 1000J = 1 kj 1000cal = 1kcal 1 cal = 4.184 J 1 BTU = 1.05

More information

Introduction to Energy in Buildings Energy Management

Introduction to Energy in Buildings Energy Management Introduction to Energy in Buildings Energy Management Carlos A. Santos Silva Energy Management 1. Energy Systems Concepts Tools (Sankey Diagrams, Energy Balance, block Diagrams) Prices and Markets 2. Energy

More information

4.1 Where does your electricity come from? (Word Processor, internet)

4.1 Where does your electricity come from? (Word Processor, internet) 4.1 Where does your electricity come from? (Word Processor, internet) 10 points Name Due Date 1. Where do you live? (City, Zip code) 2. Who is your electricity supplier? o o o o o Go to http://www.cted.wa.gov/

More information

ENERGY INVESTIGATION. Energy Investigation Organization

ENERGY INVESTIGATION. Energy Investigation Organization Energy Investigation Organization A. Building Information, Energy Costs, and Energy Sources This section includes general questions about the school building, as well as questions about energy costs and

More information

Page 2. Q1.An electrician is replacing an old electric shower with a new one. The inside of the old shower is shown in Figure 1.

Page 2. Q1.An electrician is replacing an old electric shower with a new one. The inside of the old shower is shown in Figure 1. Q1.An electrician is replacing an old electric shower with a new one. The inside of the old shower is shown in Figure 1. Figure 1 Michael Priest (a) If the electrician touches the live wire he will receive

More information

Q1. A student investigated the efficiency of a motor using the equipment in Figure 1.

Q1. A student investigated the efficiency of a motor using the equipment in Figure 1. EFFICIENCY Q1. A student investigated the efficiency of a motor using the equipment in Figure 1. Figure 1 He used the motor to lift a weight of 2.5 N a height of 2.0 m. He measured the speed at which the

More information

ESSC Hold. Complete MyPlanner through graduation Workshops on MyPlanner. 08/27

ESSC Hold. Complete MyPlanner through graduation Workshops on MyPlanner. 08/27 ESSC Hold To remove hold: Complete MyPlanner through graduation Workshops on MyPlanner Sign up for Monday (Engr 391) 08/27 https://goo.gl/forms/rnur44uekfgbpit92 Sign up for Tuesday (Engr 407) 08/28 https://goo.gl/forms/hhhumn4q3hthei2j2

More information

Exampro GCSE Physics. P1 Foundation - Electrical Energy and Efficiency Self Study Questions. Name: Class: Author: Date: Time: 76. Marks: 76.

Exampro GCSE Physics. P1 Foundation - Electrical Energy and Efficiency Self Study Questions. Name: Class: Author: Date: Time: 76. Marks: 76. Exampro GCSE Physics P Foundation - Electrical Energy and Efficiency Self Study Questions Name: Class: Author: Date: Time: 76 Marks: 76 Comments: Page of 3 Q. The figure below shows a car with an electric

More information

FEASIBILITY OF LOW-RISE NET-ZERO ENERGY HOUSES FOR TORONTO

FEASIBILITY OF LOW-RISE NET-ZERO ENERGY HOUSES FOR TORONTO FEASIBILITY OF LOW-RISE NET-ZERO ENERGY HOUSES FOR TORONTO Humphrey Tse 1 and Alan S. Fung 2 1,2 Department of Mechanical and Industrial Engineering, Ryerson University Canada 350 Victoria St., Toronto,

More information

Graham School. Name: New Document 1. Class: Date: 90 minutes. Time: 89 marks. Marks: Comments: Page 1

Graham School. Name: New Document 1. Class: Date: 90 minutes. Time: 89 marks. Marks: Comments: Page 1 Graham School New Document Name: Class: Date: Time: 90 minutes Marks: 89 marks Comments: Page Graham School Q.All European Union countries are expected to generate 20% of their electricity using renewable

More information

Costs and benefits to consumers and utilities of residential energy savings actions

Costs and benefits to consumers and utilities of residential energy savings actions Costs and benefits to consumers and utilities of residential energy savings actions Final report Prepared for Energy Solutions Centre Inc. by Malcolm Taggart Luigi Zanasi Janne Hicklin August 2003 This

More information

Farm Energy IQ. Farm Energy Efficiency Principles 2/16/2015. Farm Energy Efficiency. Basic Energy Principles

Farm Energy IQ. Farm Energy Efficiency Principles 2/16/2015. Farm Energy Efficiency. Basic Energy Principles Farm Energy IQ Farm Energy IQ Farms Today Securing Our Energy Future Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy Efficiency Principles Tom Manning,

More information

Q1. The diagrams show what happens to each 100 joules of energy from burning coal on an open fire and in a stove.

Q1. The diagrams show what happens to each 100 joules of energy from burning coal on an open fire and in a stove. Q1. The diagrams show what happens to each 100 joules of energy from burning coal on an open fire and in a stove. (a) (b) Add the missing figures to the diagrams. Which is more efficient, the open fire

More information

Chapter 11 Project: Electric Bills and Super Bulbs. Name Name

Chapter 11 Project: Electric Bills and Super Bulbs. Name Name Chapter 11 Project: Electric Bills and Super Bulbs Name Name Before starting this project: For this project, each student will need a copy of an electricity bill for a recent billing period (the more recent

More information

Understanding and Measuring School Electronics

Understanding and Measuring School Electronics Understanding and Measuring School Electronics MATERIALS NEEDED: 1. 6 energy monitoring devices. Note: These can be obtained from a variety of sources, i.e. local hardware stores, internet -- average cost

More information

Knowledge. 1. Which of the following is a unit of electrical power? (11.5) K/U

Knowledge. 1. Which of the following is a unit of electrical power? (11.5) K/U CHAPTE1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which of the following

More information

Energy and Solar. 2 nd Annual K-12 Teachers Clean Energy Workshop July 30, 2015

Energy and Solar. 2 nd Annual K-12 Teachers Clean Energy Workshop July 30, 2015 Energy and Solar 2 nd Annual K-12 Teachers Clean Energy Workshop July 30, 2015 Agenda Power vs. Energy Solar Resources Irradiance Insolation Peak Sun Hours Examples Technologies What is Power? Power is

More information

Reading Utility Bills

Reading Utility Bills Reading Utility Bills Summary: Students recognize and interpret electricity and natural gas use patterns for one year by reading a set of utility bills. Objectives Students will be able to read and interpret

More information

Focus on Energy Calendar Year 2014 Evaluation Report Volume I May 27, 2015

Focus on Energy Calendar Year 2014 Evaluation Report Volume I May 27, 2015 Focus on Energy Calendar Year 2014 Evaluation Report Volume I May 27, 2015 Public Service Commission of Wisconsin 610 North Whitney Way P.O. Box 7854 Madison, WI 53707-7854 This page left blank. Prepared

More information

Which power station is the most efficient overall, the normal power station or the combined heat and power station? Give reasons for your answer. ...

Which power station is the most efficient overall, the normal power station or the combined heat and power station? Give reasons for your answer. ... Q1. Power stations are usually not very efficient. A lot of energy is wasted as thermal energy. The diagrams show the percentage of energy transferred by two coal-burning power stations. (a) (b) Write

More information

Lights Light Up Your Life Data Sheet

Lights Light Up Your Life Data Sheet Lights Light Up Your Life Data Sheet NAME: Purpose: Compare CFL to incandescent lightbulbs Research: Read and record facts from outside experts about the differences between the two types of bulbs. Compare

More information

Measuring School Electronics Energy at Work 1

Measuring School Electronics Energy at Work 1 1 GRADE LEVEL 6-12 TIME NEEDED FOR COMPLETION 2 class periods or 1.5-2 hours STANDARDS LA GLEs and NGSS alignments are found in the Appendix starting on page A-1 MATERIALS 6 energy monitoring devices.

More information

LAB 8 Energy and Power

LAB 8 Energy and Power LAB 8 Energy and Power OBJECTIVES 1. Learn the difference between energy and power. 2. Observe energy as they convert from one form to another. 3. Observe and calculate efficiency. PROCEDURE Part 1: Energy

More information

LAB 10 Energy and Power Units

LAB 10 Energy and Power Units LAB 10 Energy and Power Units OBJECTIVES 1. Learn the difference between energy and power. 2. Observe energy as they convert from one form to another. 3. Observe and calculate efficiency. PROCEDURE Part

More information

Low Income Baseload Programs: Design & Implementation Lighting

Low Income Baseload Programs: Design & Implementation Lighting ELEC 6 STERNER Low Income Baseload Programs: Design & Implementation Lighting ELEC 6 Thursday, May 25, 2006 3:30 pm 5:10 pm A. Tamasin Sterner Pure Energy Energy Use Breakdown What does my energy bill

More information

learning objectives subjects Environmental Education Science Social Studies materials Power to the People Background

learning objectives subjects Environmental Education Science Social Studies materials Power to the People Background climate of causes change Power to the People learning objectives subjects Environmental Education Science Social Studies Students will: Identify sources of energy used in Wisconsin. Research different

More information

Chapter 11 Project: Electric Bills and Super Bulbs. Name Name

Chapter 11 Project: Electric Bills and Super Bulbs. Name Name Chapter 11 Project: Electric Bills and Super Bulbs Name Name Before starting this project: For this project, each student will need a copy of an electricity bill for a recent billing period (the more recent

More information

Lighting Options for Your Home

Lighting Options for Your Home Lighting Options for Your Home Innovation is driving lighting technologies toward greater energy efficiency. As the market transitions, here are options to consider as you look to increase energy savings

More information

Understanding LED. Light Emitting Diode A solid state semiconductor device that converts electrical energy directly into light.

Understanding LED. Light Emitting Diode A solid state semiconductor device that converts electrical energy directly into light. Understanding Light Emitting Diode A solid state semiconductor device that converts electrical energy directly into light. Introduction technology is advancing quickly. Sometimes, there is confusion regarding

More information

Ecology North Energy Saving Quiz

Ecology North Energy Saving Quiz The Northern Edge Study Guide Ecology North Ecology North Introduction This story is from Issue #5 of The Northern Edge. The Energy Quiz story has seven questions that show how changing the kind of light

More information

Investigation Backpack 01

Investigation Backpack 01 Investigation Backpack 01 Enlightenment 2020: Earth, Moon, and Mars by Bob Albrecht & George Firedrake (InvestigationBP@aol.com) We introduced this investigation in "Investigation Backpack" in The Oregon

More information

General Energy Use & Conservation Measures

General Energy Use & Conservation Measures General Energy Use & Conservation Measures What is Energy? The ability to do work (create motion or change matter) Ways to Measure Energy Joule (J) BTU British Thermal Unit amount of energy needed to heat

More information

Angevine Middle School Lighting and Personal Appliance Audit Findings and Recommendations

Angevine Middle School Lighting and Personal Appliance Audit Findings and Recommendations Angevine Middle School Lighting and Personal Appliance Audit Findings and Recommendations Performed by Katie Alexander Sustainability Intern Boulder Valley School District January 2011 Contents Summary

More information

Hands-On Energy Efficiency Teacher s Guide

Hands-On Energy Efficiency Teacher s Guide Hands-On Energy Efficiency Teacher s Guide Introduction The Hands-On Energy Efficiency activity booklet can be used to teach students the principles of wise energy use at home and at school. The content

More information

16.3 Electric generators and transformers

16.3 Electric generators and transformers ElEctromagnEts and InductIon Chapter 16 16.3 Electric generators and transformers Motors transform electrical energy into mechanical energy. Electric generators do the opposite. They transform mechanical

More information

JOIN US IN THE FIGHT AGAINST CLIMATE CHANGE

JOIN US IN THE FIGHT AGAINST CLIMATE CHANGE JOIN US IN THE FIGHT AGAINST CLIMATE CHANGE Did you know that the average house is responsible for twice the greenhouse gas emissions as the average car? When power plants burn fossil fuels to make electricity,

More information

Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories

Indicative simplified baseline and monitoring methodologies for selected small-scale CDM project activity categories TYPE II - ENERGY EFFICIENCY IMPROVEMENT PROJECTS Project participants shall take into account the general guidance to the methodologies, information on additionality, abbreviations and general guidance

More information

Y7 Energy Summary Booklet

Y7 Energy Summary Booklet Y7 Energy Summary Booklet Energy Units Energy changes are measured in joules (J) or kilojoules (kj). Energy Stores and Transfers Energy stores Key word Description Examples Magnetic The energy stored in

More information

The Cost of Using Energy

The Cost of Using Energy The Cost of Using Energy Summary: Students calculate the cost of energy used by various products found in the home and at school. Objectives Students will be able to calculate the cost of energy used by

More information

Energy Inventory Student Pages

Energy Inventory Student Pages Building Profile Section 1. What percentage of the school is air-conditioned? % Describe how you determined your answer. 2. Does this school have a kitchen that does daily food preparation? Yes No Please

More information

Contents. 3(a) Useful Energy and Efficiency. 3(b) Electricity and Circuits. Dynamics. 3(c) 2 P h y s i c s

Contents. 3(a) Useful Energy and Efficiency. 3(b) Electricity and Circuits. Dynamics. 3(c) 2 P h y s i c s 1 P h y s i c s Contents 3(a) 3(b) 3(c) Useful Energy and Efficiency Electricity and Circuits Dynamics 3 9 19 2 P h y s i c s 3(a) Useful Energy and Efficiency It is useful for energy consultants to be

More information

Period 26 Solutions: Using Energy Wisely

Period 26 Solutions: Using Energy Wisely Period 26 Solutions: Using Energy Wisely Activity 26.1: Comparison of Energy Sources for Generating Electricity 1) Comparison of energy sources a) Fill in the table below to describe the advantages and

More information

Renewable Energy Sources Class Slides Energy and Power Group 1

Renewable Energy Sources Class Slides Energy and Power Group 1 School of Electrical Engineering and Computer Science Renewable Energy Sources Class Slides Energy and Power Group 1 Prepared by Luis G. Pérez Important Preliminary Note The material presented here is

More information

Making a Difference One Watt at a Time

Making a Difference One Watt at a Time Making a Difference One Watt at a Time Introduction Is the world getting warmer? If so, are the actions of mankind to blame for earth s temperature increases? What can/should be done about these issues?

More information

REVIEW. DRAFT Chapter 11 Review Questions - DRAFT. Knowledge

REVIEW. DRAFT Chapter 11 Review Questions - DRAFT. Knowledge K/U Knowledge/Understanding Chapter 11 REVIEW Knowledge For each question, select the best answer from the four alternatives. 1. Which of the following is a unit of electrical power? (11.1) [K/U] (a) joule

More information

Q1. (a) A student used the apparatus drawn below to investigate the heating effect of an electric heater.

Q1. (a) A student used the apparatus drawn below to investigate the heating effect of an electric heater. Q1. (a) A student used the apparatus drawn below to investigate the heating effect of an electric heater. (i) Before starting the experiment, the student drew Graph A. Graph A shows how the student expected

More information

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station

Farm Energy IQ. Farms Today Securing Our Energy Future. Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farms Today Securing Our Energy Future Farm Energy Efficiency Principles Tom Manning, New Jersey Agricultural Experiment Station Farm Energy IQ Farm Energy Efficiency Principles Tom Manning,

More information

Jamie Shipley Senior Advisor Ontario Region Research and Information Transfer

Jamie Shipley Senior Advisor Ontario Region Research and Information Transfer Jamie Shipley Senior Advisor Ontario Region Research and Information Transfer www.cmhc.ca CMHC s EQuilibrium Initiative EQuilibrium is a national residential designbuild- demonstration initiative to challenge

More information

Customer guide. Residential Dual Energy

Customer guide. Residential Dual Energy Customer guide Residential Dual Energy Table of Contents Residential dual energy 1 What a dual energy heating system is 2 How to set the mode selection switch 3 To make the most of rate DT 4 Dual-register

More information

Centennial Middle School Lighting and Personal Appliance Audit Findings and Recommendations

Centennial Middle School Lighting and Personal Appliance Audit Findings and Recommendations Centennial Middle School Lighting and Personal Appliance Audit Findings and Recommendations Performed by Katie Alexander Sustainability Intern Boulder Valley School District January 2011 Contents Summary

More information

Industry commitment to phasing out inefficient lighting products in the home

Industry commitment to phasing out inefficient lighting products in the home Industry commitment to phasing out inefficient lighting products in the home Harry Verhaar 26 th February 2007 Aura Light BLV GE Lighting NARVA OSRAM GmbH Philips Lighting SLI Who is the ELC? We represent

More information

My Electric Footprint

My Electric Footprint AK Target grades: 3-5 AK ELAM Standards: Mathematics 5.NBT.4 AK Science GLEs: [3] SE1.1 [3] SE2.1 [3] SE3.1 NGSS See page 5. Set up time: 15 minutes Class time: One to two class periods Overview: Students

More information

Power Mate Lite Instructions

Power Mate Lite Instructions Power Mate Lite Instructions What is it? The Power Mate Lite is a simple device for measuring how much electricity appliances use, the amount of greenhouse gas emissions they produce from the electricity

More information

Stoichiometry Practice Related to Climate Change LESSON 6

Stoichiometry Practice Related to Climate Change LESSON 6 Stoichiometry Practice Related to Climate Change LESSON 6 Homework Assignment 1 Calculate the number of pounds of CO2 added to the atmosphere with the combustion of 1 gallon of gasoline. Conversions needed:

More information

2010 Culver Media, LLC 1

2010 Culver Media, LLC 1 Alternating current Also known as AC power, alternating current is electricity that reverses direction within a circuit. The electricity we use in our homes does this 120 times per second. Appliances Devices

More information

Energy. Energy an intangible phenomenon which can change the position, physical composition or temperature of matter.

Energy. Energy an intangible phenomenon which can change the position, physical composition or temperature of matter. Intro to Energy Energy Energy Energy Energy an intangible phenomenon which can change the position, physical composition or temperature of matter. Energy Energy an intangible phenomenon which can change

More information

Carbon Saving achieved by Recycling

Carbon Saving achieved by Recycling Carbon Saving achieved by Recycling Paper, Plastic, Metal & Glass Project Report: March 2013 Prepared by: cbalance Solutions Hub Table of Contents 1. INTRODUCTION 4 2. PAPER 5 2.1 AVOIDED EMISSIONS FROM

More information

SCIENCE AND TECHNOLOGY 5: CONSERVATION OF ENERGY AND RESOURCES

SCIENCE AND TECHNOLOGY 5: CONSERVATION OF ENERGY AND RESOURCES SCIENCE AND TECHNOLOGY 5: CONSERVATION OF ENERGY AND RESOURCES NAME: This booklet is an in-class assignment; you must complete all pages during the class work periods provided. You must use full sentences

More information

Use words from the box to answer the questions below. chemical electrical gravitational potential. kinetic light sound thermal

Use words from the box to answer the questions below. chemical electrical gravitational potential. kinetic light sound thermal Energy Transfer Exam Practice Q1. In a power station, coal can be used to generate electricity. Drayton Manor High School (a) Use words from the box to answer the questions below. chemical electrical gravitational

More information

EFFICIENT LIGHTING DESIGN

EFFICIENT LIGHTING DESIGN EFFICIENT LIGHTING DESIGN PAUL LEVEILLE Buisiness Energy Innovation Conference GOALS Establish a fundamental understanding of LED lighting design and controls Terminology The math behind the savings LED

More information

Duke Energy Corporation

Duke Energy Corporation Commercial Audit for Account: 12345-56789 Thank you for completing the Duke Energy Corporation Business Energy Check. We hope the information and recommendations provided will assist you in managing your

More information

Process and Impact Evaluation of the Low Income Appliance Replacement Program FINAL

Process and Impact Evaluation of the Low Income Appliance Replacement Program FINAL Process and Impact Evaluation of the Low Income Appliance Replacement Program FINAL Submitted to: Efficiency Maine Submitted by:, Inc. RLW Analytics, Inc. December 21, 2007 22 Haskell Street, Cambridge,

More information

Grays Harbor PUD Energy Services. Commercial, Industrial, Agricultural Incentive Program Catalog IT S YOUR PUD!

Grays Harbor PUD Energy Services. Commercial, Industrial, Agricultural Incentive Program Catalog IT S YOUR PUD! Grays Harbor PUD Energy Services Commercial, Industrial, Agricultural Incentive Program Catalog IT S YOUR PUD! This catalog outlines the available incentives for making energy efficient improvements at

More information

THE DAWN OF A NEW AGE

THE DAWN OF A NEW AGE EVOLUTION THE DAWN OF A NEW AGE PROGRESS Light-emitting diode (LED) CFL Fluorescent Incadescent bulb Kerosene/gas Wax candle Oil lamp Torch Lighting bolt 400 Ma ago 70 000 BC 2000 BC 200 BC 1800 s 1900

More information

Nuclear Exposure. Introduction France

Nuclear Exposure. Introduction France Introduction France Nuclear Exposure The United States has a problem with energy independence. The problem has nothing to do with a lack of energy production or availability. We are the largest producer

More information

Four of the appliances, including the fan heater, are designed to transform electrical energy into heat.

Four of the appliances, including the fan heater, are designed to transform electrical energy into heat. The pictures show six different household appliances. (a) Four of the appliances, including the fan heater, are designed to transform electrical energy into heat. Name the other three appliances designed

More information

ENERGY STAR Best Value Finder: A New Tool for Cost-Conscious Consumers

ENERGY STAR Best Value Finder: A New Tool for Cost-Conscious Consumers ENERGY STAR Best Value Finder: A New Tool for Cost-Conscious Consumers What is ENERGY STAR? The U.S. Environmental Protection Agency s ENERGY STAR is: A voluntary partnership among government, business

More information

Nuclear Exposure. Introduction France

Nuclear Exposure. Introduction France Introduction France Nuclear Exposure The United States has a problem with energy independence. The problem has nothing to do with a lack of energy production or availability. We are the largest producer

More information

Energy Audit and Efficiency Project By:Artika Karan

Energy Audit and Efficiency Project By:Artika Karan Energy Audit and Efficiency Project By:Artika Karan Subject: Math/Physical Science Grade Levels: 8 Date: 11/05/2013 Lesson Overview The purpose of this lesson is to develop student understanding of the

More information

LED Lighting and Retrofit Design

LED Lighting and Retrofit Design LED Lighting and Retrofit Design 0 Marcus Gioe Senior Project Manager Lighting Division an Energy Efficiency Provider Lighting Solar Thermal Systems Capital Roadmap 1 Lighting Retrofit Process: Audit,

More information

Testing different approaches to energy reduction in five 1½-storey post-war houses. n Roof constructed of 2 x 6 roof rafters and 1 x 8 roof

Testing different approaches to energy reduction in five 1½-storey post-war houses. n Roof constructed of 2 x 6 roof rafters and 1 x 8 roof research highlight December 2011 Technical Series 11-102 Testing different approaches to energy reduction in five 1½-storey post-war houses introduction The Now House Project 1 set out to test the feasibility

More information

Hands-On Energy Efficiency Teacher s Guide

Hands-On Energy Efficiency Teacher s Guide Hands-On Energy Efficiency Teacher s Guide Introduction The Hands-On Energy Efficiency activity booklet can be used to teach students the principles of wise energy use at home and at school. This presentation

More information

Guided Reading Chapter 10: Electric Charges and Magnetic Fields

Guided Reading Chapter 10: Electric Charges and Magnetic Fields Name Number Date Guided Reading Chapter 10: Electric Charges and Magnetic Fields Section 10-1: Electricity, Magnetism, and Motion 1. The ability to move an object some distance is called 2. Complete the

More information

Diagram 1 shows the energy transferred per second from a badly insulated house on a cold day in winter. Diagram 1

Diagram 1 shows the energy transferred per second from a badly insulated house on a cold day in winter. Diagram 1 1 Diagram 1 shows the energy transferred per second from a badly insulated house on a cold day in winter. Diagram 1 (a) (i) When the inside of the house is at a constant temperature, the energy transferred

More information