Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

Size: px
Start display at page:

Download "Biomass. The latter is not a new concept, homes and industries were, at one time, heated and powered by wood."

Transcription

1 Biomass Energy

2 Content Biomass Conversion of Biomass in Energy Thermochemical Processes Extraction Processes Biological Processes Waste to Energy Mechanical Biological Treatment (MBT) Biofuels

3 Biomass Biomass is a form of solar energy result of the growth of plants or microorganisms, which includes all organic matter except fossil fuels. Examples of biomass available as a fuel are: waste and agricultural crops animal and human organic waste wood aquatic plants, algae and microorganisms.

4 Biomass The most important use of biomass is as food for humans. Any alternative use of biomass should not adversely affect the food supply. Other important uses are: livestock feed nutrition organic matter and soil conservation animal bedding structural materials and fuel The latter is not a new concept, homes and industries were, at one time, heated and powered by wood.

5 Biomass Biomass includes only living or recently dead biological species that can be used as a fuel or chemical production. Excludes organic matter in which they have spent millions of years to be transformed by geological processes into substances such as coal or oil. Biomass derived from botanical sources (plants) or biological (animal waste), or a combination of these.

6 Biomass There are many processes and technologies to convert biomass to useful energy or a form of fuel. Some options for converting biomass to heat or solid, liquid or gaseous processes is through Thermochemical, Mechanical/physical (or extraction) and Biological.

7 Conversion of Biomass in Energy

8 Thermochemical Processes All solid complex organic matter is decomposed by heat in the form of gaseous, liquid and solid fractions. The relative amount of each fraction can be varied by controlling various parameters during the process of thermal decomposition. Thermal control techniques generally used in the conversion process are: (1) direct combustion, (2) gasification and (3) pyrolysis. Direct combustion is a process of complete oxidation, where the heat release is the primary objective. Gasification is a partial oxidation process which combustible gases are primarily results. Pyrolysis is a thermal process where there are not oxidation and whose results are gases, liquids and coal.

9 Thermochemical Processes

10 Thermochemical Processes Direct combustion is a process of complete oxidation, where the heat release is the primary objective. Combustion represents perhaps the oldest use of biomass, since civilization began with the discovery of fire. Burning wood forest teach human how to cook and how to keep heat. Chemically combustion is an exothermic reaction between oxygen and the hydrocarbon in the biomass. Here, biomass is converted into two main components: CO2 and H2O.

11 Thermochemical Processes Heat and electricity are the two main forms derived from biomass. Biomass is used in a boiler, either as a single or as a supplement fuel to a fossil fuel. The last option is starting to increase as faster and less expensive to reduce emissions of carbon dioxide in the existing fossil fuel plants. This option is called co firing.

12 Thermochemical Processes Pyrolysis is a thermal process where there are not oxidation and whose results are gases, liquids and coal. Unlike combustion, pyrolysis takes place in complete absence of oxygen except in cases where partial combustion is permitted to supply thermal energy necessary for this process. Pyrolysis is a thermal decomposition of biomass in gas, liquid and solid. This has three variations: dark roast (roasted), or mild pyrolysis slow pyrolysis fast pyrolysis

13 Thermochemical Processes

14 Thermochemical Processes Thermal depolymerization is a process using aqueous pyrolysis for reducing complex organic materials (waste, biomass and plastic) in a light crude oil with high pressure and heat.

15 Thermochemical Processes Gasification is a partial oxidation process which combustible gases are primarily results. Gasification converts fossil and non fossil fuels (solid, liquid or gaseous) in gases and useful chemicals. Requires a means to react, which can be a gas or supercritical water (not to be confused with ordinary water subcritical condition). Among the gaseous media are air, oxygen, steam subcritical or a mixture thereof.

16

17 Thermochemical Processes The synthesis gas or syngas is a gaseous fuel obtained from substances rich in carbon (coal, coal, coke, naphtha, biomass) subjected to a chemical process at high temperature. Contains varying amounts of carbon monoxide (CO) and hydrogen (H 2 ). Synthesis gas is composed primarily of hydrogen, carbon monoxide, and very often, some carbon dioxide. It has less than half the energy density of natural gas. Has been used and is still used as fuel or as an intermediate for the production of other chemicals.

18 Thermochemical Processes In plasma gasification, the high temperature plasma helps to gasify the hydrocarbons of the biomass. It is essentially useful for municipal solid waste and other waste products. This process can also be called "plasma pyrolysis" as this essentially involves disintegration of carbonaceous material into fragments of compounds, in a low oxygen environment.

19 Thermochemical Processes Plasma Torch

20 Thermochemical Processes Plasma Gasification of Municipal Waste

21 Thermochemical Processes Some data of Plasma Gasification: 99% of waste goes as glass, metal or combustible gas For every ton of waste is obtained: about 1 MWh of electricity (only 7% is used for the process) approximately 227 liters of ethanol 300 liters of distilled water 5 10 kg of commercial salt 150 kg of added for construction 5 kg of agricultural fertilizer sulfur Approximate cost $ /ton

22 Extraction Processes Currently the industry grind the seed oil (extraction) is by use of screw presses (expelling) or solvent extraction separating oil from oil producing seeds. The objectives of both processes are getting a high quality oil impurities as free as possible to obtain high performance oil, food waste and produce high quality suitable for animal feed or for further processing to isolate and concentrate the proteins.

23 Extraction Processes Mechanical Extraction

24 Extraction Processes Typical Solvent Extraction Process

25 Biological Processes They are performed by fermentation. Fermentation is the conversion of organic matter from one chemical form to another using enzymes produced by living microorganisms. In general, these bacteria are classified according to their tolerance to oxygen. Which use oxygen are called aerobic and those that not, anaerobic. Both fermentation processes are applied to alcoholic fermentation and anaerobic fermentation. The latter is carried out in anaerobic digesters.

26 Biological Processes Alcohol Production

27 Biological Processes Biogas is a fuel gas generated in specific natural means or devices, for biodegradation reactions of organic matter by the action of microorganisms (methanogenic bacteria, etc.) and other factors, in the absence of oxygen (ie in an anaerobic environment). This gas has been called swamp gas, since in them biodegradation of such vegetable waste is produced as described.

28 Biological Processes

29 Biological Processes Just as in the anaerobic digester, anaerobic bacteria in landfills, digest organic matter and in the process release biogas. The biogas from landfills can be collected to burn or to generate electricity with a motorgenerator or a microturbine.

30

31 Waste to Energy Technologies used to convert waste to energy (other than incineration) Thermal Technologies: gasification thermal depolymerization pyrolysis Plasma gasification Non Thermal Technologies: anaerobic digestion fermentation Mechanical Biological Treatment (MBT) MBT + Anaerobic Digestion MBT + fuel derived from waste

32 Waste to Energy

33 Mechanical Biological Treatment (MBT) It's a pretreatment technology of solid urban waste and special handling. MTB combines classification and mechanical treatment and biological treatment of organic waste. The main goal is to eliminate as much pollution to the atmosphere (biogas) and the subsoil (leachate)

34 Mechanical Biological Treatment (MBT)

35 Biofuels Biofuels are produced organically and unlike fossil fuels are a renewable source of energy. Biofuels come from biomass: organic matter originating from a biological usable or miscarriage, process for energy. To produce biofuels can be used agricultural species such as maize or cassava, rich in carbohydrates, or oilseeds such as soybeans, sunflower and palm. You can also use forest species such as eucalyptus and pine. By using these materials the CO 2 that is sent to the earth's atmosphere is considered the same amount CO 2 that was absorbed during its life.

36 Biofuels Examples of Biofuels: wood manure grass straw Sugar cane domestic Waste commercial waste animal waste others

37 Biofuels Types of Biofuels bioalcohol bioethanol biodiesel bioethanol Bio oil

38 Biomass Energy

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER

DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER DEVELOPMENTS IN HARNESSING OF BIO-MASS POWER Biomass is a source of renewable energy which is biological material derived from living or recently living organisms such as wood, waste and alcohol fuels.

More information

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014

GCE Environmental Technology. Energy from Biomass. For first teaching from September 2013 For first award in Summer 2014 GCE Environmental Technology Energy from Biomass For first teaching from September 2013 For first award in Summer 2014 Energy from Biomass Specification Content should be able to: Students should be able

More information

UNIT 5. Biomass energy

UNIT 5. Biomass energy UNIT 5 1 Biomass energy SYLLABUS 5.1 Types of Biomass Energy Sources 5.2 Energy content in biomass of different types 5.3 Types of Biomass conversion processes 5.4 Biogas production 2 WHAT IS BIOMASS?

More information

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc.

MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES. Francisco Corona Encinas M Sc. MULTI-WASTE TREATMENT AND VALORISATION BY THERMOCHEMICAL PROCESSES Corona, F.; Hidalgo, D.; Díez-Rodríguez, D. and Urueña, A. Francisco Corona Encinas M Sc. PART 1: THERMOCHEMICAL PROCESSES Introduction.

More information

Biomass Energy Slide Index Slide 2: Biomass Energy: What is Biomass? Slide 3: Biomass Energy: Resources Primary biomass Secondary biomass

Biomass Energy Slide Index Slide 2: Biomass Energy: What is Biomass? Slide 3: Biomass Energy: Resources Primary biomass Secondary biomass Biomass Energy Slide Index 1 Introduction 2 3 Biomass Energy: 2 What is Biomass? 3 Resources 4 9 Uses of Biomass: 4 Schematic Representation 5 Combustion (Heating & Cooking) 6 Combustion (Electricity)

More information

Biomass for Energy and Fuel

Biomass for Energy and Fuel Biomass for Energy and Fuel Reference: Donald L. Klass, Biomass for Renewable Energy, Fuels and Chemicals, Academic Press, 1998. http://www.energy.kth.se/compedu/webcompedu/media/lectu re_notes/s1b11c2.pdf

More information

Chapter page 1

Chapter page 1 Chapter 04-04 page 1 04-04: Odd biomass fractions Properties and processes Introduction There are mainly five different processes to choose from to produce useful energy from any type of biomass. Three

More information

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS

GASIFICATION THE WASTE-TO-ENERGY SOLUTION SYNGAS WASTE STEAM CONSUMER PRODUCTS TRANSPORTATION FUELS HYDROGEN FOR OIL REFINING FERTILIZERS CHEMICALS GASIFICATION THE WASTE-TO-ENERGY SOLUTION WASTE SYNGAS STEAM CONSUMER PRODUCTS HYDROGEN FOR OIL REFINING TRANSPORTATION FUELS CHEMICALS FERTILIZERS POWER SUBSTITUTE NATURAL GAS W W W. G A S I F I C A T

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 9 Buchla, Kissell, Floyd Chapter Outline Biomass Technologies 9 9-1 THE CARBON CYCLE 9-2 BIOMASS SOURCES 9-3 BIOFUELS: ETHANOL 9-4 BIOFUELS: BIODIESEL AND GREEN DIESEL 9-5 BIOFUELS

More information

Crude Oil National 4

Crude Oil National 4 Fuels National 4 A fuel is a chemical which burns to give out energy. When a fuel burns the chemical reaction is known as combustion. When combustion takes place the fuel is reacting with oxygen from the

More information

Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management

Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management Torrefaction, Pyrolysis, and Gasification- Thermal Processes for Resource Recovery and Biosolids Management Jeanette Brown, PE, BCEE, D.WRE, F.WEF,F.ASCE NEWEA-Annual Conference January 24, 2018 Presentation

More information

Introduction to Bioenergy

Introduction to Bioenergy 1 Introduction to Bioenergy 1. Global Warming and Carbon Cycle Carbon Cycle Carbon cycle Carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere,

More information

(c) Tertiary Further treatment may be used to remove more organic matter and/or disinfect the water.

(c) Tertiary Further treatment may be used to remove more organic matter and/or disinfect the water. ENERGY FROM SEWAGE Introduction - Sewage treatment, that is, the physical, chemical and biological processes used to clean industrial and domestic wastewater, has improved significantly over the past 20

More information

What is Biomass? Biomass plants animal waste photosynthesis sunlight energy chemical energy Animals store

What is Biomass? Biomass plants animal waste photosynthesis sunlight energy chemical energy Animals store Biomass Energy What is Biomass? Biomass energy is derived from plants and animal waste which are, or were recently, living material Through photosynthesis plants convert sunlight energy into chemical energy

More information

Introduction: Thermal treatment

Introduction: Thermal treatment Thermal Treatment 2 Introduction: Thermal treatment Technologies using high temperatures to treat waste (or RDF) Commonly involves thermal combustion (oxidation) Reduces waste to ash (MSW c. 30% of input)

More information

Organica is a registered trademark of the Keter Group Energy Division.

Organica is a registered trademark of the Keter Group Energy Division. Organica is a registered trademark of the Keter Group Energy Division. Every Day is Earth Day. 04 05 Without energy there is no life... but today s growing use of energy represents the greatest threat

More information

First Edition. Biofuels. Biogas/Biomass

First Edition. Biofuels. Biogas/Biomass First Edition Biofuels Biogas/Biomass What Are Biofuels? Section 1 What are biofuels? Biomass is when you burn a fuel or waste to heat water to make steam to make electricity. https://youtu.be/-ck3fyvnl6s

More information

Topic 6 National Chemistry Summary Notes. Fuels. Fuels and Combustion

Topic 6 National Chemistry Summary Notes. Fuels. Fuels and Combustion Topic 6 National Chemistry Summary Notes Fuels LI 1 Fuels and Combustion Coal, oil, gas and wood can all be used as fuels. These fuels have energy-rich chemical bonds which were created using the energy

More information

The Next Generation of Biofuels

The Next Generation of Biofuels The Next Generation of Biofuels Ocean the final frontier What are biofuels? Why Biofuels! The Industry Pros and Cons By definition, a biofuel is a solid, liquid or gaseous fuel produced from non fossil

More information

REALIZING RENEWABLE ENERGY POTENTIAL

REALIZING RENEWABLE ENERGY POTENTIAL REALIZING RENEWABLE ENERGY POTENTIAL BY Patrick Hirl, PE Renewable natural gas (RNG) is a universal fuel that enhances energy supply diversity; uses municipal, agricultural and commercial organic waste;

More information

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems IEA Bioenergy Task 42 on Biorefineries Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems G. Jungmeier, J. Pucker Joanneum Research, Graz, Austria

More information

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11

ABE 482 Environmental Engineering in Biosystems. September 29 Lecture 11 ABE 482 Environmental Engineering in Biosystems September 29 Lecture 11 Today Gasification & Pyrolysis Waste disposal balance Solid Waste Systems Solid Waste Air Limited air No air Combustion Gasification

More information

FLATE Hillsborough Community College - Brandon (813)

FLATE Hillsborough Community College - Brandon (813) The Florida Advanced Technological Education (FLATE) Center wishes to make available, for educational and noncommercial purposes only, materials relevant to the EST1830 Introduction to Alternative/Renewable

More information

Renewable Energy Sources. Lesson Plan: NRES F1-2

Renewable Energy Sources. Lesson Plan: NRES F1-2 Renewable Energy Sources Lesson Plan: NRES F1-2 1 Anticipated Problems 1. What are renewable energy sources? 2. What are advantages and disadvantages of renewable energy sources? 2 Terms biomass biopower

More information

Biofuels. Letizia Bua

Biofuels. Letizia Bua Biofuels Letizia Bua Biofuels What is a biofuel? What the European Community says about it? How we can produce it? (Technology options) eni and renewable energy 2 What is a biofuel? interesting! Life cycle

More information

RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT

RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT RESOURCES, OPPORTUNITIES AND IMPACTS FOR BIOENERGY DEVELOPMENT COMPETE Conference and Policy Debate on Biofuels Sustainability Schemes, 16th to 18th June 2008 Arusha, Tanzania Faith Odongo Senior Renewable

More information

PLASMA ARC THE LEADING LIGHT?

PLASMA ARC THE LEADING LIGHT? http://www.waste-management-world.com/articles/print/volume-11/issue-6/features/plasma-arc-the-leading-light.html PLASMA ARC THE LEADING LIGHT? 11/01/2010 Various thermal processes are now available for

More information

Biomass and the RPS. Anthony Eggert Commissioner. California Energy Commission

Biomass and the RPS. Anthony Eggert Commissioner. California Energy Commission Biomass and the RPS Anthony Eggert Commissioner California Energy Commission 1516 Ninth St, MS-47 Sacramento, CA USA 95814-5504 Introduction Outline Biomass Policy Context California s Electricity Supply

More information

Carbon Footprints 1 of 18 Boardworks Ltd 2016

Carbon Footprints 1 of 18 Boardworks Ltd 2016 Carbon Footprints 1 of 18 Boardworks Ltd 2016 Carbon Footprints 2 of 18 Boardworks Ltd 2016 What is a carbon footprint? 3 of 18 Boardworks Ltd 2016 As we go about our daily lives, we unknowingly contribute

More information

ENERGY GENERATION FROM WASTE. Fatih HOŞOĞLU Operations Manager Istanbul Metropolitan Municipality Istanbul Environmental Management Company

ENERGY GENERATION FROM WASTE. Fatih HOŞOĞLU Operations Manager Istanbul Metropolitan Municipality Istanbul Environmental Management Company ENERGY GENERATION FROM WASTE Fatih HOŞOĞLU Operations Manager Istanbul Metropolitan Municipality Istanbul Environmental Management Company GENERAL INFORMATION The number of refugees in Turkey has reached

More information

Pyrolysis and Gasification

Pyrolysis and Gasification Pyrolysis and Gasification of Biomass Tony Bridgwater Bioenergy Research Group Aston University, Birmingham B4 7ET, UK Biomass, conversion and products Starch & sugars Residues Biological conversion Ethanol;

More information

Biomass Processes & Technologies Adding Value to Home Grown Resources

Biomass Processes & Technologies Adding Value to Home Grown Resources FRONTLINE BIOENERGY, LLC Renewable Fuels & Products Biomass Processes & Technologies Adding Value to Home Grown Resources Jerod Smeenk Frontline BioEnergy, LLC Home Grown Energy Conference Morris, MN February

More information

Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments

Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments Biofuels: Trends, Specifications, Biomass Conversion, and GHG Assessments 6 th International Symposium on Fuels and Lubricants New Delhi, India March 9-12, 2008 S. Kent Hoekman, Ph.D. Desert Research Institute

More information

This is a draft revision of the briefing, and any comments are welcome please them to Becky Slater on

This is a draft revision of the briefing, and any comments are welcome please  them to Becky Slater on January 2009 Briefing Pyrolysis, gasification and plasma This is a draft revision of the briefing, and any comments are welcome please email them to Becky Slater on becky.slater@foe.co.uk. Introduction

More information

Which Technologies. for SWM Treatment? By Eng. Anis ISMAIL Senior Environment and Solid Waste Specialist

Which Technologies. for SWM Treatment? By Eng. Anis ISMAIL Senior Environment and Solid Waste Specialist Which Technologies for SWM Treatment? By Eng. Anis ISMAIL Senior Environment and Solid Waste Specialist MSW Treatment Technologies common to MMCs Usual solid waste management cycle Collection Transfer

More information

Overview of Biomass Energy

Overview of Biomass Energy Overview of Biomass Energy Shaikh Rashedur Rahman 1, Nahid-Al-Mahmud 2, Mumtahina Rahman 3, Md. Yeakub Hussain 4, Md. Sekendar Ali 5 Department of Electrical and Electronic Engineering University of Asia

More information

Lecture 1: Energy and Environment

Lecture 1: Energy and Environment Lecture 1: Energy and Environment Energy is a prime mover of economic growth and is vital to sustain the economy. Energy consumption is an indicator of economic growth of a nation Economic growth depends,

More information

C1 6 MARK QUESTIONS QUESTIONS

C1 6 MARK QUESTIONS QUESTIONS Name: C1 6 MARK QUESTIONS QUESTIONS Date: Questions Q1. * An experiment was carried out to determine the amount of heat energy released when different fuels were burned. Equal masses of four different

More information

Sugar Industry Restructuring by Implementing Biorefinery Technology

Sugar Industry Restructuring by Implementing Biorefinery Technology Sugar Industry Restructuring by Implementing Biorefinery Technology Dr. Maurizio Cocchi THE BIOREFINERY CONCEPT Biorefinery approach Integration of biomass conversion processes and technologies to produce

More information

WHY WASTE TO ENERGY (WTE)?

WHY WASTE TO ENERGY (WTE)? WASTE TO ENERGY TECHNOLOGIES Missouri Waste Control Coalition Laura Drescher Monday, July 13 th, 2015 WHY WASTE TO ENERGY (WTE)? Heightened interest in green energy with President Obama calling for 80%

More information

Production from Organic Residues. Biogas

Production from Organic Residues. Biogas Biogas Production from Organic Residues Biogas Maxx 910 West End Ave, 10025 New York, NY www.biogasmaxx.com Contact: Leodegario Lopez, M.Eng. Rottaler Modell Network Tel: +1 917 2677936 Email: leo@biogasmaxx.com

More information

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches

Thermal Conversion of Animal Manure to Biofuel. Outline. Biorefinery approaches Thermal Conversion of Animal Manure to Biofuel Samy Sadaka, Ph.D., P.E., P. Eng. Assistant Professor - Extension Engineer University of Arkansas Division of Agriculture - Cooperative Extension Service

More information

Chapter Five Waste Processing, Treatment and Recycling Joe Green Dr Chris Wooldridge Cardiff University

Chapter Five Waste Processing, Treatment and Recycling Joe Green Dr Chris Wooldridge Cardiff University Chapter Five Waste Processing, Treatment and Recycling Joe Green Dr Chris Wooldridge Cardiff University Learning Outcomes: By completing this section you should: Be aware of the options for waste separation

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Biomass to Energy

More information

Greenhouse Gas Emissions and Renewable Energy in Alberta

Greenhouse Gas Emissions and Renewable Energy in Alberta Greenhouse Gas Emissions and Renewable Energy in Alberta Why are Greenhouse Gas Emissions Important? Over the last century, modern industry and lifestyles have rapidly increased amounts of greenhouse gas

More information

Sustainable Waste Diversion Technologies to promote a circular economy

Sustainable Waste Diversion Technologies to promote a circular economy NY Federation Conference May 2018 Richard Schofield Project Development Manager Sustainable Waste Diversion Technologies to promote a circular economy Enerkem at a glance Biofuels and renewable chemicals

More information

Green Chemistry Five ways in which the Chemical industry can become Greener Changing to renewable sources Use of alternatives to hazardous chemicals

Green Chemistry Five ways in which the Chemical industry can become Greener Changing to renewable sources Use of alternatives to hazardous chemicals Green Chemistry Green Chemistry refers to the processes in the chemical industry that are being reinvented to make them more sustainable. The term sustain means to keep going. If we use resources faster

More information

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels

Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Nuclear Hydrogen for Production of Liquid Hydrocarbon Transport Fuels Charles W. Forsberg Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 Email: forsbergcw@ornl.gov Abstract Liquid fuels (gasoline,

More information

FUTURE WITH RENEWABLE ENERGY SOURCES

FUTURE WITH RENEWABLE ENERGY SOURCES FUTURE WITH RENEWABLE ENERGY SOURCES Electronics Heat Transportation Computers Food Preparation Communication And Many More Fossil Fuels Oil Coal Natural Gas Main types of renewable energy Solar energy

More information

International Workshop on Bioenergy Policies, Technologies and Financing

International Workshop on Bioenergy Policies, Technologies and Financing International Workshop on Bioenergy Policies, Technologies and Financing Utilisation of Biomass European Technologies and Expectations Dr.-Ing. Herbert-Peter Grimm Ribeirao Preto, September 2004 Energy

More information

WASTE & RECYCLING SERVICES

WASTE & RECYCLING SERVICES UCS2018-0153 ATTACHMENT 2 WASTE & RECYCLING SERVICES 2018 Report on Waste to Energy UCS2018-0153 Waste & Recycling Services Outlook ATT2 Table of Contents 1. INTRODUCTION... 3 2. CONSIDERATIONS FOR INVESTING

More information

People have used biomass energy energy from living things since the earliest cave men first made wood fires for cooking or keeping warm.

People have used biomass energy energy from living things since the earliest cave men first made wood fires for cooking or keeping warm. This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry biomass energy

More information

SOLID WASTE DISPOSAL A BURNING PROBLEM TO BE RESOLVED

SOLID WASTE DISPOSAL A BURNING PROBLEM TO BE RESOLVED SOLID WASTE DISPOSAL A BURNING PROBLEM TO BE RESOLVED A. Introduction The disposal of solid waste is a problem. This problem continues to grow with the growth of population and development of industries.

More information

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc

Anaerobic Digestion not just biogas production. FARM BIOGAS Methane consulting cc Anaerobic Digestion not just biogas production FARM BIOGAS Methane consulting cc Use of fire - the greatest achievement of the human race FARM BIOGAS Methane consulting cc Reduction of GHG s emission FARM

More information

The Production of Electricity Power from Biomass. Image Source: National Agroforestry Center, Canada

The Production of Electricity Power from Biomass. Image Source: National Agroforestry Center, Canada The Production of Electricity Image Source: National Agroforestry Center, Canada How does it work? Image source: http://biomassbess.weebly.com/scientist.html How does it work? Biomass Gasification Furnace

More information

DESCRIPTION OF A SYSTEM THAT TRANSFORM S ORGANIC MATER IALS INTO SYNTETIC FUEL S

DESCRIPTION OF A SYSTEM THAT TRANSFORM S ORGANIC MATER IALS INTO SYNTETIC FUEL S DESCRIPTION OF A SYSTEM THAT TRANSFORM S ORGANIC MATER IALS INTO SYNTETIC FUEL S 1 INDEX 2 DESCRIPTION OF THE SISTEM.. 4 3 USABLE MATERIALS..6 2 4 CARACTERISTICS OF THE MATERIAL..7 5 CARACTERISTICS OF

More information

Thermal Treatment. For more information, contact us: E :

Thermal Treatment. For more information, contact us:   E : Thermal treatment is the release of energy from waste. This results in a change to the chemical structure of the waste and this change is not reversible 1. The most common thermal treatment is incineration.

More information

FREQUENTLY ASKED QUESTIONS (FAQS)

FREQUENTLY ASKED QUESTIONS (FAQS) FREQUENTLY ASKED QUESTIONS (FAQS) Q: Why is this different from every other incinerator out there? A: Incinerators are usually multi-chamber, or have a moveable grate where the waste sits while burning.

More information

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU

Plastics Recycling. Datchanee Pattavarakorn Industrial Chemistry, Science, CMU 2 0 Plastics Recycling 9 7 8 3 Datchanee Pattavarakorn Industrial Chemistry, Science, CMU Why recycle plastics? Waste emissions Industrial waste Domestic waste Why recycle plastics? Waste emissions 640

More information

What is Bioenergy? William Robinson B9 Solutions Limited

What is Bioenergy? William Robinson B9 Solutions Limited What is Bioenergy? William Robinson B9 Solutions Limited Contents Introduction Defining Bioenergy Biomass Fuels Energy Conversion Technologies Conclusion Introduction William Robinson B9 employee for nearly

More information

Fuel classification 2013

Fuel classification 2013 01.01.2013 (updated 15.04.2013) 1(8) Fuel classification 2013 Definitions for classification of fuels and energy sources 2013 Petroleum products 111 Petroleum gases 1111 Refinery gas Refinery gas is gas

More information

TOPIC 4.3 CARBON CYCLING

TOPIC 4.3 CARBON CYCLING TOPIC 4.3 CARBON CYCLING INTRO http://nas-sites.org/americasclimatechoices/files/2012/10/figure4.png IB BIO 4.3 The carbon cycle is made up of the series of processes that convert 2 and move carbon in

More information

Study and Design on Small Scale Biomass Gasification for Electricity Generation (Dual Fuel)

Study and Design on Small Scale Biomass Gasification for Electricity Generation (Dual Fuel) Study and Design on Small Scale Biomass Gasification for Electricity Generation (Dual Fuel) Prepared by: Assoc. Prof. Sengratry Kythavone Prof. Dr. Khamphone Nanthavong Mr. Vongsavanh Chanhthaboune. Outline

More information

International ejournals

International ejournals Available online at www.internationalejournals.com International ejournals ISSN 0976 1411 ANALYSIS OF BIOMASS AND BIOFUELS AS A SOURCE OF ENERGY Arvind Dewangan 1 Purushottam Patel 2 Rohit Chopra 3 1.

More information

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels

Module 1d. The Bioenergy Chain. new technologies HTU, supercritical gasification, pyrolysis importance of energy condensed bio-fuels Module 1d The Bioenergy Chain Overview presentation introduction conversion-technologies combustion gasification anaerobe digestion bio transport fuels new technologies HTU, supercritical gasification,

More information

Biomass. Introduction. Biomass knowledge. What is it? What is for?

Biomass. Introduction. Biomass knowledge. What is it? What is for? Biomass Introduction In 2014 biomasses satisfied 10.3% of energy requirement worldwide (International Energy Agency Key World Energy Statistics 2016). Exploitation of this resource is not distributed homogeneously

More information

Biogas Production from Lignocellulosic Biomass

Biogas Production from Lignocellulosic Biomass Biogas Production from Lignocellulosic Biomass Dr. Ram Chandra Scientist, Energy Bioscience Overseas Fellow Centre for Rural Development & Technology Indian Institute of Technology Delhi 1 Introduction

More information

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00.

Production of synthesis gas from liquid or gaseous hydrocarbons, and the synthesis gas per se, are covered by group C01B 3/00. C10J PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES (synthesis gas from liquid or gaseous hydrocarbons C01B; underground gasification

More information

Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source

Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source Municipal Organic Solid Waste as an Alternative Urban Bioenergy Source WANG Jing-Yuan Associate Professor, School of Civil & Environmental Engineering Director, Environmental Engineering Research Centre

More information

Unit C1, C1.4 and C1.5

Unit C1, C1.4 and C1.5 rude oil, fuels and other useful substances from crude oil 1. rude oil is a resource from which fuels can be separated. (a) The name of the main fuel fractions and one of the hydrocarbons in each fraction

More information

CHAPTER - 14 SOURCES OF ENERGY

CHAPTER - 14 SOURCES OF ENERGY CHAPTER - 14 SOURCES OF ENERGY PREPARED BY NIKHIL V JONES 1) Characteristics of a good source of fuel :- i) It should have a high energy output per unit mass or volume. ii) It should be easily available.

More information

Global Warming. Department of Chemical Engineering

Global Warming. Department of Chemical Engineering Global Warming How Can Biofuels Help? Clint Williford Department of Chemical Engineering Introduction ti Greenhouse emissions Reducing growth of GHG emissions Biofuels Why and why now? What they are? How

More information

BIO FUELS. Sustainable Energy Options. UAU212F Spring Throstur Thorsteinsson 1. Biomass share in TPES

BIO FUELS. Sustainable Energy Options. UAU212F Spring Throstur Thorsteinsson 1. Biomass share in TPES Sustainable Energy Options UAU212F BIO FUELS Throstur Thorsteinsson ThrosturTh@hi.is Biomass share in TPES Provided about 10.2% (50.3 EJ) of global (TPES) in 2008. Traditional use of wood, straws, charcoal,

More information

Biofuels and Biorefineries

Biofuels and Biorefineries Biofuels and Biorefineries Stella Bezergianni, Angelos Lappas, and Iacovos Vasalos Laboratory of Environmental Fuels and Hydrocarbons (LEFH) (www.cperi.certh.gr) Center of Research & Technology Hellas

More information

Biofuel Sources and Emerging Technologies. The Future of Biofuels in Minnesota Minnesota Environmental Initiative November 13, 2008

Biofuel Sources and Emerging Technologies. The Future of Biofuels in Minnesota Minnesota Environmental Initiative November 13, 2008 Biofuel Sources and Emerging Technologies The Future of Biofuels in Minnesota Minnesota Environmental Initiative November 13, 2008 Overview: 1.Agricultural Research Station NWROC 2.Serve as Living Lab

More information

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore BIO MASS ENERGY For the complete encyclopedic entry with media resources,

More information

Introduction to Engineering

Introduction to Engineering Introduction to Engineering Lecture 36: Alternate Energy Sources Approximate Runtime: 38 minutes Copyright Baylor University 006 1 Introduction Steven Eisenbarth, Ph.D. Associate Dean of Engineering and

More information

In the UK, the most common disposal method is landfill. Incineration, anaerobic digestion and other disposal methods are also used.

In the UK, the most common disposal method is landfill. Incineration, anaerobic digestion and other disposal methods are also used. In the UK, the most common disposal method is landfill. Incineration, anaerobic digestion and other disposal methods are also used. Landfill Each year approximately 111 million tonnes, or 57%, of all UK

More information

green energy to the power3

green energy to the power3 green energy to the power3 Three exhibitions in parallel, 30-31 january, Parc Expo Rennes ReGen Europe Biogaz Europe Bois Energie waste to energy biogas-biomethane wood heating networks 1-4 Coming to Rennes

More information

1/14/2017. Treatment options: thermal EST 3201 Waste Management. Chapter outline. Main objectives of treatment. Chapter References

1/14/2017. Treatment options: thermal EST 3201 Waste Management. Chapter outline. Main objectives of treatment. Chapter References Treatment options: thermal EST 3201 Waste Management Integrated Sustainable Waste Management Framework (ISWM) 2 R E Z A U L K A R I M A S S I S T A N T P R O F E S S O R D E P T. O F E N V I R O N M E

More information

Emerging and future bioenergy technologies

Emerging and future bioenergy technologies Downloaded from orbit.dtu.dk on: Apr 30, 2018 Andersen, Per Dannemand; Christensen, John M.; Kossmann, J.; Koukios, E. Published in: Risø energy report 2. New and emerging bioenergy technologies Publication

More information

How can hydrocarbons be broken down into smaller molecules? What is an alkane? Give an example and draw it

How can hydrocarbons be broken down into smaller molecules? What is an alkane? Give an example and draw it How can hydrocarbons be broken down into smaller molecules? What is an alkane? Give an example and draw it What kind of reaction happens when large hydrocarbons are broken down? What is the general formula

More information

Biomass. Introduction. Biomass knowledge. What is it? What is for?

Biomass. Introduction. Biomass knowledge. What is it? What is for? Biomass Introduction In 2010 biomasses satisfied approximately 10% of energy requirement worldwide (International Energy Agency Key World Energy Statistics 2012). Exploitation of this resource is not distributed

More information

Biomass. Introduction. Biomass knowledge. What is it? What is for?

Biomass. Introduction. Biomass knowledge. What is it? What is for? Biomass Introduction In 2012 biomasses satisfied approximately 10% of energy requirement worldwide (International Energy Agency Key World Energy Statistics 2014). Exploitation of this resource is not distributed

More information

The potential and challenges of drop in biofuels

The potential and challenges of drop in biofuels The potential and challenges of drop in biofuels OH OH H O H H OH H HO OH H OH - O 2 H H H H H O H H H C C C C H OH H H H H H HO OH Carbohydrate Hydrocarbon Petroleum-like biofuel H OH Sergios Karatzos,

More information

Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013

Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013 Renewable gases : What are the challenges? François CAGNON CEDEC Gas DAY, February 18, 2013 RENEWABLE GASES: Definitions Biogas is the raw product of the biological process of anaerobic fermentation. Typically

More information

How to make greener biofuels

How to make greener biofuels Published on ScienceNordic (http://sciencenordic.com) Home > Printer-friendly PDF > Printer-friendly PDF How to make greener biofuels Technology[1] Technology[1]Green Energy [2]Researcher Zone [3]Denmark

More information

Conversion of Biomass Particles

Conversion of Biomass Particles Conversion of Biomass Particles Prof.dr.ir. Gerrit Brem Energy Technology (CTW) 4th of March 2015, Enschede Contents of the lecture Conversion of Biomass Particles Introduction on Sustainable Energy Energy

More information

A is any natural material that is used by humans.

A is any natural material that is used by humans. Chapter 5 Notes Energy Resources Section 1 Natural Resources Describe how humans use natural resources. Compare renewable resources with nonrenewable resources. Explain three ways that humans can conserve

More information

The role of 2 nd generation biofuels in tackling climate change with a positive social and economic dimension

The role of 2 nd generation biofuels in tackling climate change with a positive social and economic dimension The role of 2 nd generation biofuels in tackling climate change with a positive social and economic dimension Dr. Mairi J. Black Conference on Advanced Biofuels and Bioeconomy 2 nd December 2016, Canning

More information

Biogeochemical cycles

Biogeochemical cycles Biogeochemical cycles MATTER CYCLING IN ECOSYSTEMS Nutrient Cycles: Global Recycling Global Cycles recycle nutrients through the earth s air, land, water, and living organisms. Nutrients are the elements

More information

Describe the molecules involved in photosynthesis and used as biofuels.

Describe the molecules involved in photosynthesis and used as biofuels. Dry Activities Activity 4A - Making biofuel molecules Learning objectives: By the end of the session students should be able to: Construct some simple molecules. Describe the molecules involved in photosynthesis

More information

TECHNOLOGY. E-COMPANY Holding, s.e., Europe

TECHNOLOGY. E-COMPANY Holding, s.e., Europe TECHNOLOGY E-COMPANY Holding, s.e., Europe With ZERO-EMISSION WASTE TREATMENT RECYCLING is guaranteed and total ENVIRONMENT is safeguarded COMBUSTIBLE is green and free BAT - Best Available Techniques

More information

Waste to Energy Technologies

Waste to Energy Technologies Waste to Energy Technologies Presented by: Stephen Simmons, Senior Vice President Gershman, Brickner & Bratton, Inc. (GBB) January 25, 2018 Outline Introduction MSW Management Overview Waste Conversion

More information

Questions Q1. (b) Molecules of two compounds W and X are shown. (i) Compound W is an alkane. Explain what is meant by the term alkane.

Questions Q1. (b) Molecules of two compounds W and X are shown. (i) Compound W is an alkane. Explain what is meant by the term alkane. Questions Q1. (a) Crude oil is separated into useful fractions by fractional distillation. Diesel oil and kerosene are two of these fractions. Draw one straight line from each of these fractions to a use

More information

Biomass and Biofuels. Biomass

Biomass and Biofuels. Biomass and Biofuels Prof. Tony Bridgwater BioEnergy Research Group Aston University, Birmingham B4 7ET AV Bridgwater 2008 Energy crops Agricultural and forestry wastes Industrial & consumer wastes 2 Why convert

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

Energy Values and Technologies for Non woody Biomass: as a clean source of Energy

Energy Values and Technologies for Non woody Biomass: as a clean source of Energy IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 1, Issue 2 (May-June 2012), PP 10-14 Energy Values and Technologies for Non woody Biomass: as a clean source of

More information

Module 3b. Bioenergy end-use and applications

Module 3b. Bioenergy end-use and applications Module 3b Bioenergy end-use and applications Outline Solids, gas, liquids Electricity, heat, power, CHP Prime movers Small scale rural and urban usage Modern industrial usage slide 2/24 1 Biofuels Solid

More information

BIOMASS AS A FUEL A Lesson Plan developed for Teachers of Agriculture This lesson plan is designed to assist teachers in guiding the learning process

BIOMASS AS A FUEL A Lesson Plan developed for Teachers of Agriculture This lesson plan is designed to assist teachers in guiding the learning process BIOMASS AS A FUEL A Lesson Plan developed for Teachers of Agriculture This lesson plan is designed to assist teachers in guiding the learning process in students as they learn more about biomass as an

More information