Investigation of ex situ carbon mineralization using flue gas

Size: px
Start display at page:

Download "Investigation of ex situ carbon mineralization using flue gas"

Transcription

1 Investigation of ex situ carbon mineralization using flue gas Hariharan Subrahmaniam (MIT), Mischa Repmann (First Climate), Johannes Tiefenthaler, Marco Mazzotti Webinar on Geologic Capture and Sequestration of Carbon November 15, 2017

2 Carbon Capture and Storage geological storage M. Mazzotti 15-Nov-17 1

3 Carbon Capture and Storage geological storage M. Mazzotti 15-Nov-17 1

4 Carbon Capture and Storage ex situ carbon mineralization M. Mazzotti 15-Nov-17 1

5 Carbon Capture and Storage ex situ carbon mineralization M. Mazzotti 15-Nov-17 1

6 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, Industrial wastes: waste concrete, steel slag, M. Mazzotti 15-Nov-17 1

7 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, utilization, landfill, Industrial wastes: waste concrete, steel slag, M. Mazzotti 15-Nov-17 1

8 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, utilization, landfill, Industrial wastes: waste concrete, steel slag, M. Mazzotti 15-Nov-17 1

9 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, utilization, landfill, Industrial wastes: waste concrete, steel slag, M. Mazzotti 15-Nov-17 1

10 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, utilization, landfill, Industrial wastes: waste concrete, steel slag, M. Mazzotti 15-Nov-17 1

11 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, utilization, landfill, Industrial wastes: waste concrete, steel slag, M. Mazzotti 15-Nov-17 1

12 Carbon Capture and Storage ex situ carbon mineralization Natural minerals: olivine, serpentine, utilization, landfill, Industrial wastes: waste concrete, Dehydroxylation/thermal steel slag, activation of serpentine, Mg 3 Si 2 O 5 (OH) 4, at about 600 C, to form forsterite, Mg 2 SiO 4, residual silicate and water marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 1

13 Ex situ carbon mineralization from CO 2 to flue gas Forsterite dissolution kinetics: dissolution rate = f (f.f.e. kinetics, solubility, ) At f.f.e. conditions, dissolution kinetics of forsterite increases with temperature T fugacity of CO 2 f CO2 (via ph) Solubility of forsterite increases with: decreasing temperature T fugacity of CO 2 f CO2 (via ph) Pure CO 2 mineralization Pure CO 2 mineralization Fast kinetics + CO 2 capture cost + CO 2 compression cost + Mineral activation cost Flue gas mineralization moderate kinetics + flue gas compression cost + Mineral activation cost Flue gas mineralization marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 2

14 Flue gas mineralization with heat activated serpentine Serpentine (Shell GSI, NL): Lizardite type: Mg 3 Si 2 O 5 (OH) 4 XRF: 87% pure Activation (ECN, NL): <125 μm powder heated to 610 o C ~75% dehydroxylation marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 3

15 1. Dissolution kinetics of heat activated serpentine far from equilibrium conditions Effect of p CO2 (0.1 to 2 bar) Effect of T at all T, e.g. 30 C at all p CO2, e.g. 2 bar at 60 C at all p CO2, e.g. 2 bar Werner et al., Chem. Eng. J. 241 (2014): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 4

16 1. Dissolution kinetics of heat activated serpentine far from equilibrium conditions Effect of p CO2 Effect of T at all T, e.g. 30 C at all p CO2, e.g. 2 bar at 60 C at all p CO2, e.g. 2 bar Werner et al., Chem. Eng. J. 241 (2014): Hariharan et al., Chem. Eng. J. 241 (2014): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 5

17 2. Dissolution kinetics of heat activated serpentine near equilibrium Effect of high c Mg and c Si T = C, P = 1 atm. y CO2 = 2.5% - 100% No precipitation of secondary phases Measured and modelled Inhibitory effect of Mg 2+ ions Reducing affinity for dissolution of silicate species Enhancing effect of bicarbonate ions y CO2 = 100%, 10%, 2.5% Hariharan et al., Chem. Eng. J. 298 (2016): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 6

18 3. Passivation by amorphous silica Batch dissolution of heat act. serp. T = 60 C T = 30 C and 60 C, y CO2 = 100% w PDL = 10mg 5g / 2.5g (in 100g water) no carbonate precipitation Dissolution profiles simulated rapid precipitation of SiO 2 (am) no passivation empirical description of passivation T dependent dissolution stoichiometry µ 1 µ 1 decreases with T Hariharan and Mazzotti., Chem. Eng. J. 324 (2017): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 7

19 4. Precipitation kinetics of hydromagnesite under flue gas atmosphere Batch seeded- desupersaturation experiments performed T = 90 C CO 2 sorption kinetics independently measured Particle growth model together with a population balance model numerically solved marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 8

20 4. Precipitation kinetics of hydromagnesite under flue gas atmosphere Growth parameters estimated Evolution of particle sizes y CO2, in = 2.5%, 10%, 100%, predicted Desorption of CO 2 during precipitation Model validated Seed mass PSD of seeds Initial supersaturation CO 2 sorption rate Hariharan and Mazzotti, Cryst. Growth Des. 17 (2017): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 9

21 5. Single- and two-step CO 2 mineralization process Single-step process Two-step process CO 2 lean flue gas Flue gas heat activated serpentine heat activated serpentine carbonate seeds Dissolution and precipitation Mg- depleted silicate residual silicate + carbonate Werner et al., Phys. Chem. Chem. Phys. 16 (2014) : marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 10

22 5. Single- and two-step CO 2 mineralization process marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 11

23 5.1. Single-step CO 2 mineralization process 4 single-step experiments T = 60 C, P = 10 bar, y CO2,in = 10%, w serp 5 g Measure the effects of the combination of NaCl and NaHCO 3 in solution 1 NaCl in solution 2 higher CO 2 mass transfer rate (k MT ) and solid dosing rate (J) 1 O Connor et al., Albany Research Center (2005) 2 Wang and Giammar., Environ. Sci. Technol. 47 (2012): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 12

24 5.1. Single-step CO 2 mineralization process Saturated soln. + 1g seeds 5g of serp dosed no passivation with passivation Experiment duration 180min Experiment reproducible Simulated profiles 10% CO 2 no passivation with SiO 2 (am) passivation Hariharan and Mazzotti., Chem. Eng. J. 324 (2017): T = 60 C, P = 10 bar marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 13

25 5.1. Single-step CO 2 mineralization process Good prediction by the model with SiO 2 (am) passivation NaCl / NaHCO 3 no passivation with passivation Increasing J and k MT is favorable Model can describe the effects of NaCl/NaHCO 3 solutes 1 2 J, k MT 3 4 Hariharan and Mazzotti., Chem. Eng. J. 324 (2017): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 14

26 5.2. Two-step CO 2 mineralization process no passivation with passivation Saturated soln g seeds Wait until steady state 5g of serp. dosed [%] T = 90 C T = 60 C 30 C P = 3 bar (Precipitation) R3 P = 10 bar (Dissolution) R1 Hariharan and Mazzotti., Chem. Eng. J. 324 (2017): marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 15

27 6. Recycling waste cement via CO 2 mineralization process marco.mazzotti@ipe.mavt.ethz.ch M. Mazzotti 15-Nov-17 16