POPULATION- RELATED PROCESSES

Size: px
Start display at page:

Download "POPULATION- RELATED PROCESSES"

Transcription

1 THE ROLE OF FLOW CYTOMETRY IN MARINE BIODIVERSITY AND ECOSYSTEM FUNCTION UNTREATED WATER FLUORESCENT DYE PRESERVED WATER FLUORESCENT PROBE POPULATION- OUTPUTS2 OUTPUTS1 FLOW MULTI- SORTING DATA VARIATE Species Abundance A thingy 1403 RELATED CYTOMETER ANALYSIS B wotsit 0 C blob NOVEL... CONVENTIONAL Population ANALYSIS. Z bug 672 (Images/pulses) ANALYSIS PROCESSES TIME GENERAL TARGETTED COMMUNITY/ POPULATION ACTIVITY COMMUNITY BIODIVERSITY UPTAKE FLUOR. FLUOR. RATE INPUTS LIGHT SCATTER COMMUNITY ABUNDANCE LIGHT SCATTER POPULATION ABUNDANCE CONCENTRATION COMMUNITY/ POPULATION PROCESSES

2 The content of this presentation is the exclusive property of its author. Any use is prohibited. If you wish to use any material for any purpose whatsoever, permission must be obtained from the author.

3 THE ROLE OF FLOW CYTOMETRY IN MARINE BIODIVERSITY AND ECOSYSTEM FUNCTION UNTREATED WATER FLUORESCENT DYE PRESERVED WATER INPUTS FLUORESCENT PROBE OUTPUTS2 SORTING UPTAKE FLOW CYTOMETER DATA CONVENTIONAL ANALYSIS OUTPUTS1 MULTI- VARIATE ANALYSIS NOVEL ANALYSIS (Images/pulses) Species A thingy B wotsit C blob.... Z bug Abundance TIME GENERAL TARGETTED COMMUNITY BIODIVERSITY COMMUNITY/ POPULATION ACTIVITY FLUOR. FLUOR. RATE LIGHT SCATTER COMMUNITY ABUNDANCE LIGHT SCATTER POPULATION ABUNDANCE CONCENTRATION COMMUNITY/ POPULATION PROCESSES

4 Topics to be covered Smallest particles - Viruses and bloom termination Grazing and primary production Elemental cycling: functional role of plankton Carbon Group-specifiic carbon uptake Sulphur DMSP, lab. and field Nitrogen, amino acids bacteria Multiple nutrient limitation inorganic N, P and Fe

5 Phytoplankton bloom termination Mesocosm studies

6 Bloom termination Mesocosm facility, Bergen, Norway Courtesy of W H Wilson, PML

7 Bloom termination Emiliania huxleyi and EhV Courtesy of W H Wilson, PML

8 Bloom termination AFC analysis of EhV Bacteria Green fluorescence EhVs Side scatter (size) Courtesy of W H Wilson, PML

9 Bloom termination 1.0E E+06 Viruses (per ml) 1.0E E+06 E. huxleyi viruses 1.0E E E+03 E. Huxleyi cells per ml 1.0E E Jun 11-Jun 16-Jun 21-Jun Date (2000) Schroeder, D.C. et al. (2003). Applied and Environmental Microbiology. 69,

10 Group-specific grazing Functional role of microzooplankton North Atlantic Ocean

11 roup-specific grazing in the North Atlantic Ocean Iceland PRiME Eddy study area Features: -Anticyclonic -Mesoscale (50 km) -Cold core (-1 o C relative to outside) -Elevated nutrients (1-2 µmol l -1 NO 3 ) UK Studied 7 days

12 Group-specific grazing in the North Atlantic Ocean Chlorophylfluorescence Phytoplankton groups identified for grazing experiments Chlorophyll fluorescence Coccolithus pelagicus Nanophytoplankton Picophytoplankton Side scatter Coccolithophores (5-8 µm) Tarran, GA et al. (2001) Deep-Sea Res. II 48,

13 Group-specific grazing in the North Atlantic Ocean Celabundance 6-3 (1x10m) -3 Biomas(mgCm) Cell abundance (1x10 6 m -3 ) Standing Stocks Phytoplankton abundance picophytoplk nanophytoplk cocco s Day in June Phytoplankton biomass Biomass (mgc m -3 ) Day in June Tarran, GA et al. (2001) Deep-Sea Res. II 48,

14 Group-specific grazing in the North Atlantic Ocean Group-specific grazing by Protozooplankton Cells grazed (10 m d ) picophytopl k Biomass grazed (mgc m d ) Grazing of phytoplankton cells Day in June nanophytoplk. Grazing of phytoplankton biomass Day in June cocco s

15 Group-specific grazing in the North Atlantic Ocean - Relationship between primary production and grazing o 1 production (mgc m -3 d -1 ) Primary production- 14 C technique Day in June picophytopl k. picophytopl k. nanophytoplk. nanophytoplk. cocco s cocco s %1 o production grazed o % primary production grazed Day in June

16 Elemental cycling Carbon Functional role of picophytoplankton in Primary Production NE Atlantic

17 Group-specific primary production Group-specific primary production Seawater + 14 C bicarbonate Incubate 8 hours Flow Cytometric sorting Phycoer ythr in Chlorophyll 10 2 Synechococcus Picoeukaryotes < 1 µm Prochlorococcus Picoeukaryotes > 1 µm Side scatter Side scatter Li, W.K.W. (1994) Limnol. And Oceanogr. 39,

18 Group-specific primary production 14 C uptake Synecho >1 µm eukars Prochloro <1 µm eukars 14 C (dpm) C (dpm) Synecho x10 4 >1 µm eukars x10 3 Cells sorted 0 Prochloro x10 3 <1 µm eukars x Cells sorted Li, W.K.W. (1994) Limnol. And Oceanogr. 39,

19 Group-specific primary production Depth(m) Contribution to primary production Production (µgc L -1 h -1 ) Total Sum from sorting Li, W.K.W. (1994) Limnol. And Oceanogr. 39,

20 Elemental Cycling Sulphur

21 Acid rain ATMOSPHERE OCEAN Zooplankton grazing Sulphur dioxide DMSP in zooplankton The fate of DMSP (global albedo & weather) Methane Sulphonic acid Egestion Bacterial breakdown Cloud formation DMS in the atmosphere Dimethylsulphide (DMS) dissolved in seawater Sulphate aerosol particles Volatilisation Bacterial consumption Di methylsulphoniopropionate (DMSPp) in phytoplankton Senescence Natural release Virus/bacterial attack DMSP dissolved in seawater Dimethyl sulphonio propionate

22 North Sea DMSPp dynamics Field Studies Northern North Sea: June 1999 Archer, S.D. et al. (2001) AME 24,

23 North Sea DMSPp dynamics DMSPp Standing stocks DMSPp (nm) Day in June Unact'd P.minimum OthDino Oth.Nplk E.hux Peuk Archer, S.D. et al. (2001) AME 24,

24 North Sea DMSPp dynamics Dilution plot to estimate grazing Apparrent growth rate (d ) Chl a DMSP E. hux Proportion undiluted seawater Archer, S.D. et al. (2001) AME 24,

25 North Sea DMSPp dynamics Contribution of E. huxleyi to Total DMSPp production & Total DMSPp consumed DMSPp production DMSPp grazing DMSPp Productionn (nm d -1 ) % 13% 13% 24% Other E. huxleyi 2% Day in June DMSPp grazing (nm d -1 ) Other E. huxleyi 10% 14% 23% 9% 6% Day in June Archer, S.D. et al. (2001) AME 24,

26 Elemental Cycling Organic Nitrogen Functional role of bacteria

27 Analysing Microbial Biodiversity In The Indian OceaN (AMBITION) Cruise track, September o N 20 o N Mu scat, Oman o N 6 10 o N 5 5N o o 5S o 50 o E Victoria, Seychelles 60 o E o E Part of the field work of UK NERC_funded research programme Marine and Freshwater Microbial Biodiversity

28 Organic nitrogen iptake by cyanobacteria Organic nitrogen (amino acid) uptake by autotrophic Cyanobacteria in the Arabian Sea Samples incubated with 35 S methionine Prochlorococcus Synechococcus SORTING Unstained Pro gate Syn gate To waste BECTON DICKINSON Sorted cells Catcher tube Sample input Heterotrophic bacteria Sybr Green stained Pro gate Syn gate LIQUID SCINTILLATION COUNTING Zubkov, M.V. et al. (2003). Appl. Envl. Microbiol. 69(2),

29 Organic nitrogen iptake by cyanobacteria Autotrophs take up amino acids Cellular incorporation, x10-3 DPM cell -1 h n=8 n=11 Pro Syn Zubkov, M.V. et al. (2003). Appl. Envl. Microbiol. 69(2),

30 Organic nitrogen iptake by cyanobacteria -3 Uptakerate,x10DPM -1-1 prochlorophyteh Prochlorophyte -1 methionineturnover,%d Uptake rate, x10-3 DPM Prochlorococcus -1 h Prochlorococcus takes up amino acids at ecologically significant rates UPTAKE Uptake rate, x10-3 DPM average bacterium -1 h -1 Prochlorococcus methionine turnover, % d TURNOVER Slope = 1.1 r 2 = Slope = 0.35 r 2 = Total bacterioplankton methionine turnover, % d -1 Zubkov, M.V. et al. (2003). Appl. Envl. Microbiol. 69(2),

31 And finally.. where it happens. From small boats

32 ..to ships RRS Charles Darwin RRS Discovery RRS James Clark Ross