Kathy Boomer The Nature Conservancy Smithsonian Environmental Research Center

Size: px
Start display at page:

Download "Kathy Boomer The Nature Conservancy Smithsonian Environmental Research Center"

Transcription

1 Kathy Boomer The Nature Conservancy Smithsonian Environmental Research Center Acknowledgements: Judy Denver and Ward Sanford (USGS), Gopal Bhatt and Chris Duffy (Penn State), Yong Li (Chinese Academy of Sciences), Huan Meng (NOAA), Gary Shenk (CBP), and Todd Walter (Cornell)

2 Cleaning up the Chesapeake Bay Management Needs: Estimate nutrient source-sink transport times (e.g., lag time between fertilizer application or BMP implementation to influence surface water quality) Guide BMP implementations Identify optimal BMPs Estimate BMP requirements Prioritize BMP locations

3 Modeling Nutrient Transport in Groundwater Current Forecasting Tools Lumped-parameter models CBP Hydrologic Simulation Program Fortran 5.3 (CBP5) Soil Water Assessment Tool (SWAT) General Watershed Loading Function Numeric Models ModFlow Penn State Integrated Hydrologic Modeling System Combination Lumped/Numeric Models GS Flow

4 Conceptual Framework: Surface and Ground-Water Hydrology Modified from Schaller and Fan 2009

5

6 Conceptual Framework: Surface and Ground-Water Hydrology Schaller and Fan 2009 modified from Toth 1963 Pucket et al 2011

7 Conceptual Framework: Nutrient Dynamics Nitrogen Dynamics Neitsch et al 2002 Factors potentially affecting stream nitrate : Fertilizer and manure application (cropland area) Spatial distribution of croplands and livestock Age distribution of baseflow Date/Year of sample collection Depth to water table Denitrification Potential Wetlands Subsurface Sanford and Pope 2009

8 Conceptual Framework: Nitrogen Transport and Retention N 2 NO 3 - Fe(III) SO 4 2- CO 2 Redox Gradient

9 Conceptual Framework: Phosphorus Transport and Retention 3 PO 4 NO 3 - Fe(III) SO 4 2- CO 2 3 PO 4 3 PO 4 PO 4 3 PO PO 4 3 PO 4 3 PO 4 3 PO 4 Redox Gradient

10

11 Lumped Parameter Models: CBP5-HSPF Surface Runoff Interflow Active groundwater discharge (baseflow) No loss to deep groundwater Modified from Raffensperger 2004

12 CBP-HSPF Flow Simulation Key Calibration Parameters: EVT coefficient Infiltration rate Soil Moisture Storage Index Interflow:Runoff ratio Interflow recession coefficient EVT from Groundwater

13 CBP5 Modeling Segmentation: Combination of Land & River Segments County-based Land Segments Gauged River Segments and/or greater than 100 cfs discharge HERKIMER ONEIDA ONTARIO ONONDAGA CAYUGA MADISON LIVINGSTON YATES CORT LAND OTSEGO SCHOHARIE SCHUYLER TOMPKINS CHENANGO LEE LEE INDIANA SOMERSET ALLEGANY ALLEGANY GARRETT PRESTON MORGAN WASHINGTON CARROLL BALTIMORE CECIL NEW CASTLE MINERAL BERKELEY FREDERICK HARFORD MINERAL FREDERICK HAMPSHIRE JEFFERSON BALTIMORE FREDERICK HOWARD GRANT WINCHEST ER KENT TUCKER CLARKE LOUDOUN MONTGOMERY HARDY KENT HARDY GRANT QUEEN ANNES WARREN ANNE ARUNDEL SHENANDOAH FAUQUIER SHENANDOAH WARREN FAIRFAX FALLS DIST OF COLUMBIA ARLINGTON CHURCH FAIRFAX CITY CAROLINE ALEXANDRIA PRINCE GEORGES PENDLETON ROCKINGHAM RAPPAHANNOCK FAUQUIER MANASSAS PARK PENDLETON RAPPAHANNOCK PRINCE WILLIAM TALBOT PAGE SUSSEX PAGE CALVERT ROCKINGHAM MADISON CULPEPER CHARLES HIGHLAND HARRISONBURG STAF FORD MADISON HIGHLAND ROCKINGHAM GREENE WICOMICO GREENE FREDERICKSBURG DORCHESTER AUGUSTA GREENE ORANGE KING GEORGE ST MARYS STAUNTON AUGUSTA SPOTSYLVANIA BATH ALBEMARLE WORCESTER BATH WAYNESBORO WESTMORELAND CHARLOTT ESVILLE SOMERSET AUGUSTA ALBEMARLE CAROLINE LOUISA ESSEX CLIFTON FORGE ROCKBRIDGE NELSON RICHMOND ALLEGHANY COVINGTON FLUVANNA LEXINGTON HANOVER NORT HUMBERLAND BUENA ROCKBRIDGE AMHERST VISTA NELSON GOOCHLAND KING WILLIAM MONROE BOTETOURT LANCASTER ACCOMACK KING AND QUEEN KING AND QUEEN AMHERST CRAIG BUCKINGHAM MIDDLESEX BOTETOURT POWHATAN MCDOWELL HENRICO BUCHANAN GILES BEDFORD CUMBERLAND RICHMOND NEW KENT LYNCHBURG GLOUCESTER GILES BEDFORD APPOMATTOX CHEST ERF IELD ROANOKE AMELIA MATHEWS TAZEWELL SALEM CHARLES CITY DICKENSON GILES ROANOKE BLAND BEDFORD WISE MONTGOMERY HOPEWELL JAMES CITY TAZEWELL CAMPBELL PRINCE EDWARD COLONIAL NORT HAMPTON ROANOKE PETERSBURG HEIGHTS WILLIAMSBURG RADFORD RUSSELL PETERSBURG PRINCE GEORGE YORK PRINCE GEORGE NORT ON PULASKI FRANKLIN NOTTOWAY SCOTT POQUOSON RUSSELL WYT HE FRANKLIN DINWIDDIE SURRY NEWPORT NEWS SCOTT CHARLOTT E SMYTH HAMPTON FLOYD LUNENBURG ISLE OF WIGHT SCOTT WASHINGTON WYT HE PITTSYLVANIA SUSSEX ISLE OF WIGHT NORF OLK SMYTH CARROLL GRAYSON HALIF AX PATRICK PORTSMOUTH BRISTOL WASHINGTON GRAYSON GALAX PATRICK MART INSVILLE BRUNSWICK VIRGINIA BEACH HENRY SOUTH BOSTON MECKLENBURG SULLIVAN CARROLL EMPORIA SOUTHAMPTON FRANKLIN SUF FOLK CHESAPEAKE JOHNSON ASHE DANVILLE GREENSVILLE ASHE ALLEGHANY ALLEGHANY SURRY STOKES ROCKINGHAM CASWELL WAT AUGA PERSON VANCE WARREN NORT HAMPTON GRANVILLE JEFFERSON ELK CAMBRIA MCKEAN CLEARFIELD BLAIR CAMERON ALLEGANY POTTER CENTRE HUNTINGDON CLINTON CENTRE MIF FLIN STEUBEN DELAWARE CHEMUNG TIOGA BROOME 1000 Land/River BRADF ORD SUSQUEHANNA TIOGA BRADF ORD WAYNE WYOMING LYCOMING WYOMING SULLIVAN LACKAWANNA LUZERNE LYCOMING LUZERNE CLINTON MONTOUR COLUMBIA UNION UNION JUNIATA PERRY SNYDER CUMBERLAND BEDFORD BEDFORD CUMBERLAND FRANKLIN FULTON BEDFORD FRANKLIN ADAMS ADAMS NORT HUMBERLAND DAUPHIN DAUPHIN YORK LEBANON SCHUYLKILL LANCASTER BERKS CARBON CHEST ER CHEST ER Segments, 50 to 90 sq miles FORSYTH GUILFORD ALAMANCE ORANGE

14

15

16

17 Lumped Parameter Models: SWAT 2 to 5%

18 Meng et al 2009

19 Meng et al 2009 Meng et al 2009

20 Lumped Parameter Models: SWAT Key Calibration Parameters: Recharge GW flow response to recharge GW Delay Coefficient Stream Channel K Runoff SCS Curve Number Rain-to-Snow Temp Saturated K

21 Conceptual Framework: Nutrient Dynamics Nitrogen Dynamics Phosphorus Dynamics Neitsch et al 2002

22 Lumped Parameter Models: GWLF Key Calibration Parameters: Groundwater recession constant N concentration in runoff Haith and Shoemaker 1987

23 Lumped Parameter Model: GWLF Evans 2007 Haith and Shoemaker 1987

24 Numerical Models: ModFlow Key Calibration Parameters: Recharge Rate Hydraulic K Aquifer Thickness Schaller and Fan 2009

25 Sanford and Pope 2009

26 Sanford and Pope 2009

27 Numerical Models: ModFlow, with ModPath Particle Tracking Package

28 Numerical Models: PIHM Watershed >> Domain Decomposition >> Model Kernels Bhatt and Duffy

29 Bhatt and Duffy

30 Bhatt and Duffy

31 Bhatt and Duffy

32 Watershed Model Comparison Lumped Parameter (bucket) Models: CBP5-HSPF Land-River segments Lag time constant: 10 yrs Shallow soil nutrient dynamics Constant nutrient load reduction proportional to buffered stream length SWAT HRU segments Calibrated Groundwater Delay Factor Shallow soil nutrient dynamics Nutrient Delivery Lag : exponential decay weighting function GWLF Delineated watershed subbasins TN increases directly with cropland area TN retention based on transport coefficient No nutrient transport lag time (estimates represent long-term average) Numerical (interpolation) Models: ModFLOW 3D grid based on stratigraphy GW residence time related to flow length estimates and hydraulic K MODPATH particle tracking overlay simulates nutrient bio-retention PIHM Triangulated network GW residence time related to flow length estimates and hydraulic K Nutrient transport dynamics in development

33 Summary Findings & Conclusions All agreed: nutrient transport and storage in regional aquifers insignificant compared to local, unconfined aquifers. Critical Science:Management gap: Hydrologic Controls Lumped parameter models indicate runoff and/or EVT Numerical models indicate infiltration Critical Science:Management gap: Locating and quantifying biogeochemical hot spots for nutrient removal Data on BMP effectiveness Research inefficiencies due to data access issues (lack of data hub ) With increasing data availability and computer power, distributed, numerical models are feasible for regional analysis. Provides information at scale relevant to land managers. Provides framework for integrating field-based science research.

34 Potential Future Pathways/Strategies Integrate models. Use ModFLOW results to define more precise lag times Incorporate spatially explicit biogeochemical models. Boomer et al Adopt multiple watershed model framework. Enhance efforts to centralize raw and derived model input data.

35 Summary Findings & Conclusions All agreed: nutrient transport and storage in regional aquifers insignificant compared to local, unconfined aquifers. Critical Science:Management gap: Hydrologic Controls Lumped parameter models indicate runoff and/or EVT Numerical models indicate infilitration Critical Science:Management gap: Locating and quantifying biogeochemical hot spots for nutrient removal Data on BMP effectiveness Research inefficiencies due to data access issues (lack of data hub ) With increasing data availability and computer power, distributed, numerical models are feasible for regional analysis. Provides information at scale relevant to land managers. Provides framework for integrating field-based science research.

36 Potential Future Pathways/Strategies Integrate models. Use ModFLOW results to define more precise lag times Incorporate spatially explicit biogeochemical models. Boomer et al Adopt multiple watershed model framework. Enhance efforts to centralize raw and derived model input data.