Richard Bain. 9 May 2013

Size: px
Start display at page:

Download "Richard Bain. 9 May 2013"

Transcription

1 TCPDU Operations in Support of 2012 Thermochemical Joule Milestone IEA Task 33 NREL Workshop Richard Bain 9 May 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

2 Presentation Objectives of Testing TCPDU Design Operating Parameters Unit Operations Characteristics Product Gas Conversions Achieved

3 Acknowledgements The dedication and extra effort of the TCPDU staff instrumental in the successful completion of pilot operations supporting the 2012 DOE Thermochemical Joule Milestone is gratefully acknowledged. Richard Bain Danny Carpenter Steve Deutch Calvin Feik Joe Gardner Katie Gaston Ray Hansen Dave Isham Christa Loux Bill Michener Marc Oddo James Page Steve Phillips Kristin Smith Mike Sprague Jim Stunkel

4 Objectives Demonstrate Long Term Operability of the Thermochemical PDU (TCPDU) Gasifier (fluid bed reactor and thermal cracker) Char cyclones Fluid bed reformer (NREL Ni catalyst) Packed bed filters Packed bed catalytic reactor Scrubber Blower Generate a Conditioned Syngas Meeting the Biomass Program 2012 Purity Targets Provide Conditioned Syngas to the Mixed Alcohol Synthesis System as Part of an Integrated 200 hour Campaign to Produce Mixed Alcohols from a NREL Mixed Alcohol Catalyst

5 Steam reforming targets for the 2012 demonstration Species Conversion Methane 80% Benzene 99% Tars 99% Catalyst replenishment rate (for fluidizable catalyst) 0.1% of inventory per day

6 Integrated NREL Thermochemical Pilot Process

7 NREL Thermochemical Pilot Development Unit (TCPDU)

8 Schematic of the fluidized bed reformer (R600)

9 Schematic of the PBR

10 Benzene Fractional Conversion, N1D1 Model Fractional Conversion X A e 1 e k ( a s1 k ( a (1 a s1 s1 (1 a ) e s1 t ) e ) t Time (Hours) ) Bain, R. L., D. C. Dayton, D. L. Carpenter, S. R. Czernik, C. J. Feik, R. J. French, K. A. Magrini Bair and S. D. Phillips (2005). An Evaluation of Catalyst Deactivation During Catalytic Steam Reforming of Biomass Derived Syngas, I&ECR, 44, p

11 Catalyst Performance in SMARTS Reactor

12 Proximate and ultimate analysis of white oak pellets Loss on drying (wt%) 6.12 Proximate Analysis (wt% dry) Volatile matter Fixed carbon Ash 0.39 Ultimate Analysis (wt% dry) Carbon Hydrogen 6.42 Nitrogen 0.09 Oxygen Sulfur 0.01 HHV (MJ/kg) 18.68

13 Operating parameters for the gasification system Parameter Value Steam flow to 8FBR Gasifier 13.4 kg-h -1 CO 2 flow to 8FBR Gasifier 4.0 kg-h -1 Biomass (oak) feed rate 7.5 kg-h -1 8FBR Gasifier Temperature 650 C 8FBR Pressure kpa 8FBR Initial Olivine kg Thermal Cracker Temperature 900 C Plant Heat Trace Temperatures 550 C Fluidized Bed Tar Reformer Temperature 900 C R600 Initial Catalyst 60 kg PPBR Upstream Filters (FQ10 & FQ20) Heaters Temperature Set Point C PPBR (RQ40) Heaters Temperature Set Point 840 C Flow Set Point to Fuel Synthesis Room 6.5 kg-h -1

14 Overall nitrogen free mass balance for 150 h of gasifier operation Flow, kg/h Oak in 7.48 Steam in CO 2 in 6.78 He & Ar Tracers in 0.35 N 2 in (not measured) SUM of INPUTS Gas out of Scrubber Char out 0.74 Water out 8.20 N 2 out SUM of OUTPUTS Overall Closure 96.00

15 Gas Composition Through Gasifier/Reformer (N 2 Free) Configuration Gasifier Only G + R600 G + R600 + PBR Gasifier Only G + R600+PBR Carrier Steam + CO2 Steam + CO2 Steam + CO2 Steam Steam S/B CO2/B No. Samples Gas Composition, Mole % Nitrogen Free H / / / / / CO / / / / / CO / / / / / CH / / / / / C2H / / / / / C2H / / / / / C2H / / / / / C3H / / / / / C3H / / / / / C4H / / / / / t C4H / / / / / c C4H / / / / / Ar/He / / / / H2S (ppmv) / / / ND ND COS (ppmv) / / / ND ND H2/CO / / / / /- 1.17

16 Fluid Bed Gasifier and Thermal Cracker Temperatures NREL TCPDU Temperature, o C Load R600 Replace FQ10 Rupture Disk Fluid Bed Average Temp (R500) Thermal Cracker Average Temp Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012

17 Fluid Bed Gasifier and Blower Inlet Pressures NREL TCPDU Fluid Bed Gasifier Freeboard Blower inlet (PI860) R500 Fluid Bed Pressure Drop (PDI515) System Pressure Raised High FQ20 dp 8 80 Pressure, kpa Load R600 Replace FQ10 Rupture Disk 6 4 Pressure Drop, kpa Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012

18 Fluid bed reformer temperature and pressure drop 12 Load R600 Replace FQ10 Rupture Disk R600 Pressure Drop, kpa R600 Temperature, o C 2 Pressure Drop R600_bedtemp 6 kg Catalyst Added 60 kg catalyst added Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012

19 Packed Bed Reactor Subsystem Temperatures NREL TCPDU Load R600 Replace FQ10 Rupture Disk Lower FQ20 Temp High FQ20 dp 800 Temperature, o C Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012 Filter FQ10 Avg Temp Filter FQ20 Avg Temp Reactor RQ40 Avg Temp

20 Packed Bed Filters Temperatures and Pressure Drop NREL TCPDU FQ10 Avg Temp FQ20 Avg Temp FQ10/20 Pressure Drop Replace FQ10 Rupture Disk Reduce FQ20 Temperature to Reduce FQ20 dp Temperature, o C Load R Pressure Drop, kpa Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012

21 Biomass, steam, and gas flow rates 20 CO2 into R500 Steam into R500 Biomass Feed CO2 Purges Gas To Fuel Synthesis 15 Amount, kg/hr 10 Load R600 Replace Q10 Rupture Disk 5 0 Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012

22 Gas Composition, Scrubber Exit NDIR Data, NREL TCPDU 50 Load R600 Replace FQ10 Rupture Disk 40 H2 Component Volume % CO2 CO 10 0 Sun 09 Mon 10 Tue 11 Wed 12 Thu 13 Fri 14 Sat 15 Sun 16 September 2012 CH4

23 Methane conversion across sum of reformers and H 2 :CO ratio at scrubber exit Methane Conversion, % CH 4 Conversion (GC) Load R600 Methane Conversion Target Level H 2 /CO CH 4 Conversion (RGA) 6 kg NREL 60 Added to R kg NREL 60 Added to R600 0 Sun 09 Tue 11 Thu 13 Sat 15 September 2012 Replace FQ10 Rupture Disk H2/CO Ratio

24 Schematic of the Molecular Beam Mass Spectrometer

25 Mass spectral peak assignments of common hydrocarbons sampled with the TMBMS during steam gasification. Molecular Formula Chemical Name(s) Weight 15,16 CH 4 methane 26 C 2 H 2 acetylene 78 C 6 H 6 benzene 91,92 C 7 H 8 toluene 94 C 6 H 6 O phenol 104 C 8 H 8 styrene 106 C 8 H 10 (m-, o-, p-) xylene 108 C 7 H 8 O (m-, o-, p-) cresol 116 C 9 H 8 indene 118 C 9 H 10 indan 128 C 10 H 8 naphthalene 142 C 11 H 10 (1-, 2-) methylnaphthalene 152 C 12 H 8 acenapthylene 154 C 12 H 10 acenaphthene 166 C 13 H 10 fluorene 178 C 14 H 10 anthracene, phenanthrene 192 C 15 H 12 (methyl-) anthracenes/phenanthrenes 202 C 16 H 10 pyrene/fluoranthene 216 C 17 H 12 methylpyrenes/benzofluorenes 228 C 18 H 12 chrysene, benz[a]anthracene, 242 C 19 H 14 methylchrysenes, methylbenz[a]anthracenes 252 C 20 H 12 perylene, benzo[a]pyrene, 266 C 21 H 14 dibenz[a,kl]anthracene, 278 C 22 H 14 dibenz[a,h]anthracene,

26 Average steady state tar conversions during integrated run Compound Conversion Benzene 97% Naphthalene* 100% Benzo(a)Pyrene* 100% * Surrogates used to represent tars. 100% conversion indicates that effluent concentration is below detection limits

27 Benzene, naphthalene, and heavy tar conversions % benzene % naphthalene % heavy tar conversion conversion conversion R600 R600 R600 Date Time R600 +PBR R600 +PBR R600 +PBR 9/10/12 11:00 n/a 93.5 n/a 99.8 n/a 100 9/10/12 12: /10/12 15: /11/12 11:30 n/a 97.5 n/a 99.8 n/a /11/12 12: /11/12 13: /11/12 14:15 n/a 98.3 n/a 100 n/a 100 9/11/12 15: /11/12 16:30 n/a 98.2 n/a 99.9 n/a 100 9/11/12 18:45 n/a 98.0 n/a 99.9 n/a 100 9/12/12 10: /12/12 11:30 n/a 99.1 n/a 100 n/a 100 9/12/12 13: /12/12 15: /12/12 16: /12/12 17: /13/13 15: /13/12 16:45 n/a 97.5 n/a 99.7 n/a 100 9/14/12 10:45 n/a 97.3 n/a 99.9 n/a 100 9/14/12 11:45 n/a 99.2 n/a 99.9 n/a 100 9/14/12 13: /14/12 14: n/a n/a 9/14/12 17:00 n/a 96.9 n/a 99.8 n/a n/a 9/15/12 10:00 n/a 96.8 n/a 99.9 n/a 100 9/15/12 11:00 n/a 97.0 n/a 99.9 n/a 100 9/15/12 12: n/a 99.5 n/a 100 n/a Average R500 outlet concentrations (wet basis): Benzene: 6.40±0.33 g/nm 3 (1840±90 ppmv) Naphthalene: 2.44±0.10 g/nm 3 (430±20 ppmv) Heavy Tar : 3.95±0.79 g/nm 3 (350±60 ppmv)

28 Reformers benzene and tar conversion Benzene Naphthalene Heavy Tar Inlet concentration, ppmv / / /- 60 R600 AVE Conversion, % / / /- 2.0 MAX conversion, % MIN conversion, % R600 + PBR AVE Conversion, % / / /- 0.1 MAX conversion, % MIN conversion, %

29 MBMS Ion traces - gasifier/reformer/pbr/scrubber NREL TCPDU 6e+8 RQ40 R600 RQ40 gasifier R600 RQ40 gasifier scrubber outlet R600 RQ40 offline signal intensity (arb.) 4e+8 2e+8 m/z 78 - benzene m/z naphthalene m/z C 20 H 12 14:00 15:00 16:00 17:00 18:00 Sep 12, 2012

30 Signal Intensity (arb.) 6e+8 5e+8 4e+8 3e+8 2e+8 1e+8 16-methane R500 gasifier outlet 26-acetylene 40-argon tracer 78-benzene 3e+8 2e+8 1e+8 91/ ,92 - toluene styrene cresols indene naphthalene methylnaphthalenes acenaphthalene flourene methylanth./phenanth pyrene/flouranthene benzo(a)flourene, etc chrysene, etc methylchrysenes, etc perylene, etc dibenz[a,kl]anthracene dibenz[a,h]anthracene anthracene/phenanth dibenzochrysenes, etc dibenzoperylenes, etc Signal Intensity (arb.) 6e+8 5e+8 4e+8 3e+8 2e+8 1e+8 R600 reformer outlet 16-methane 40-argon tracer 78-benzene 3e+7 2e+7 1e Mass spectra for gases at the outlet of the gasifier, fluid bed reformer, and PPBR 128 Signal Intensity (arb.) 6e+8 5e+8 4e+8 3e+8 2e+8 1e+8 RQ40 packed bed outlet 16-methane 40-argon tracer 3e+7 2e+7 1e benzene m/z

31 Summary Results Key technical targets for tar reforming and mixed alcohol synthesis consistent with those outlined for 2012 in the Office of Biomass Programs Multi Year Program Plan were met or exceeded. Successful production of mixed alcohols from biomass was demonstrated in an integrated pilot plant process, with additional bench scale experiments conducted to further validate performance measures beyond the constraints of the integrated runs. When the technological improvements are translated into an estimated n th plant commercial cost of production (MESP) using NREL s techno economic models (described in report NREL/TP available at the resulting MESP is $2.05/gallon and the conversion cost is $1.31/gallon, as shown below in Table ES 1. Furthermore, the $61.57/dry ton feedstock cost was demonstrated by the Idaho National Laboratory. The catalysts developed to meet technical targets are robust and can be produced at scale. Integrated gasification, reforming, acid gas removal, and mixed alcohol synthesis was demonstrated at pilot scale for 330 h using both industrial and in house catalysts.