Cleanup of Small Dry Cleaner Using Multiple Technologies: : Sages Dry Cleaner Site

Size: px
Start display at page:

Download "Cleanup of Small Dry Cleaner Using Multiple Technologies: : Sages Dry Cleaner Site"

Transcription

1 Cleanup of Small Dry Cleaner Using Multiple Technologies: : Sages Dry Cleaner Site NATO/CCMS Pilot Study Meeting, June 2006 Guy W. Sewell, Ph.D. Professor of Environmental Health Sciences Robert S. Kerr Endowed Chair East Central University

2 Site Size Issues Large Small Waste Type Mixed PH/CH Access Issues flexible less Boundary Issues some many NA-applicable yes less likely Ownership Gov./Corp. Private Time Issues Varies Limited by economics Small Urban Sites are more likely to require source zone treatment to meet remedial time limitations and coordinated remedial approaches to address both source zone and dissolved phase contaminants.

3 Field Evaluation of the Solvent Extraction Residual Biotreatment (SERB) Technology Project Team USEPA-NRMRL-SPRD-Ada Guy W. Sewell, PI, Biological Processes Lynn Wood, Physical Processes Susan Mravik, Site Coordinator Ann Keeley, Norma Duran (Lab Studies) Site Contractor Levine-Fricke Recon UF Mike Annable, PI Solvent Extraction MSU James M. Tiedje, PI Microbial Ecology Shannon Flynn, Rebekah Helton, Frank Loeffler (Lab Studies) Project Funding- SERDP(FIBRC-WES), EPA-TIO, State of Florida

4 OBJECTIVE Integrate Remediation Technologies into a Treatment Train for Comprehensive Site Restoration Target DNAPL Source Zone Decrease Remediation Costs LIMITATIONS Geology Source Zone Delineation Time (?)

5 CONTAMINANT OF INTEREST: Tetrachloroethene (PCE) TECHNOLOGICAL BASIS: Cosolvent Extraction (Ethanol) Biodegradation (Reductive Dechlorination)

6 PCE Spill Residual & Separate Phase Material DNAPL GW Flow

7 Cosolvent Extraction Injection Well Ethanol Flush 90%+ Mass Removal Recovery Well GW Flow

8 Residual Contaminants Restoration?, Risk Reduction? PCE Ethanol Mixed GW Flow

9 Bioremediation FNA, Dissolution < Assimilative Capacity Bioactive Zone GW Flow

10 Why SERB (Source Control) Remove more mobile fraction of DNAPL, lower dissolved concentrations. Reduce time/distance needed to meet GW quality objectives. Activate reductive bio-transformations in high redox environments. Insure supply of e- donor, accelerate process and reduce uncertainty. Regulatory requirement.

11 Biotransformations for Chloroethenes PCE TCE X X No evidence but - G No evidence but - G Reductive Transformation Oxidative Catabolism 1,1-DCE trans-dce cis -DCE Vinyl Chloride CO 2 CO 2 Some field evidence Ethene Ethane CO 2

12 ANAEROBIC OXIDATION-REDUCTION Electron Donors Organic Compound EtOH, H 2 Partially Oxidized Compound(s) acetate CO 2 Electron Acceptors NO - 3 SO = 4 Fe 3+ HCO - 3 R- Cl x N 2 (NH 4 + ) H 2 S Fe 2+ CH 4 R- Cl x-1 Reduced Electron Acceptors SEWELL, '95

13 Chloroethene Sites Plume Type Bio-attenuation Stable Parent Dominant No Yes (PCE or TCE) VC/cis DCE Yes No Dominant Ethene Forming Yes?

14 Field Test of the SERB Technology Sages Dry Cleaner Site Results and Discussion

15 Field Test Table of Events July, 1998 Site Characterization, Ground Water Monitoring, & Partitioning Tracer Test Aug. 9-15, 1998 Ethanol Flush (9000 gallons) Aug. 15, 1998 Partitioning Tracer Test Start Hydraulic Containment Aug. 25, 1998 End Hydraulic Containment Ethanol < 10,000 mg/l

16 Sage s Dry Cleaner Site Jacksonville, Florida MW-514 ASPHALT MW-513 CONCRETE SLAB MW-508 RW-002 RW-003 RW-004 RW-007 RW-006 RW-005 DNAPL AREA 0 ft. 20 ft. 40 ft. 60 ft. 80 ft.

17 Pre-Cosolvent Flush Site Characterization Aerobic Conditions Low levels of daughter products (TCE) DNAPL contamination identified at 26 to 31 ft. bgs

18 PCE ethanol PCE (mg/l) Ethanol (%) Volume (kl) 0 Figure 1. PCE and ethanol concentrations during co-solvent flood at Sages Site in recovery well RW-001.

19 Cosolvent Flush Performance Pre-Cosolvent Flush Partitioning Tracer Post-Cosolvent Flush Partitioning Tracer Estimated Recovery Based on Partitioning Tracer Tests Mass Recovery Based on PCE Concentrations in Recovery Wells 44.3 L (PCE) 13.9 L (PCE) 30.4 L (PCE) (70%) 41.5 L (PCE)

20 Monthly Precipitation (inches) Elevation (feet) 0 35 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Date Ground Water (Avg) Canal

21 Ethanol 350 mm = 16 g/l = 1.6 % ~1 Month Post-Flush ~2 Months Post-Flush 350 mm 300 mm 250 mm ~3.5 Months Post-Flush ~5.5 Months Post-Flush 200 mm 150 mm 100 mm 50 mm 0 mm

22 Ethanol 350 mm = 16 g/l = 1.6 % ~9.5 Months Post-Flush ~13.5 Months Post-Flush 350 mm 300 mm 250 mm ~19 Months Post-Flush ~22 Months Post-Flush 200 mm 150 mm 100 mm 50 mm 0 mm

23 Ethanol 1000 mm = 4.6 g/l = 0.46 % ~28 Months Post-Flush ~31 Months Post-Flush 100 mm 75 mm ~35 Months Post-Flush ~40 Months Post-Flush 50 mm 25 mm 0 mm

24 Ethanol 1000 mm = 4.6 g/l = 0.46 % ~45 Months Post-Flush ~50 Months Post-Flush 100 mm 75 mm ~56 Months Post-Flush ~62 Months Post-Flush 50 mm 25 mm 0 mm

25 PCE 500 um = 83 mg/l Pre-Ethanol Flush ~1 Month Post-Flush ~2 Months Post-Flush ~3.5 Months Post-Flush 500 um 450 um 400 um 350 um 300 um 250 um 200 um 150 um 100 um 50 um 0 um

26 PCE 500 um = 83 mg/l ~5.5 Months Post-Flush ~9.5 Months Post-Flush ~13.5 Months Post-Flush ~19 Months Post-Flush 500 um 450 um 400 um 350 um 300 um 250 um 200 um 150 um 100 um 50 um 0 um

27 PCE 500 um = 83 mg/l ~22 Months Post-Flush ~25 Months Post-Flush ~28 Months Post-Flush ~31 Months Post-Flush 500 um 450 um 400 um 350 um 300 um 250 um 200 um 150 um 100 um 50 um 0 um

28 PCE 500 um = 83 mg/l ~50 Months Post-Flush ~56 Months Post-Flush ~62 Months Post-Flush ~65 Months Post-Flush 500 um 450 um 400 um 350 um 300 um 250 um 200 um 150 um 100 um 50 um 0 um

29 TCE 100 um = 13 mg/l Pre-Ethanol Flush ~1 Month Post-Flush ~2 Months Post-Flush ~3.5 Months Post-Flush 100 um 90 um 80 um 70 um 60 um 50 um 40 um 30 um 20 um 10 um 0 um

30 TCE 100 um = 13 mg/l ~5.5 Months Post-Flush ~9.5 Months Post-Flush ~13.5 Months Post-Flush ~19 Months Post-Flush 100 um 90 um 80 um 70 um 60 um 50 um 40 um 30 um 20 um 10 um 0 um

31 TCE 100 um = 13 mg/l ~50 Months Post-Flush ~56 Months Post-Flush ~62 Months Post-Flush ~65 Months Post-Flush 100 um 90 um 80 um 70 um 60 um 50 um 40 um 30 um 20 um 10 um 0 um

32 cis-dce 175 um = 17 mg/l Pre-Ethanol Flush ~1 Month Post-Flush 175 um 150 um 125 um ~2 Months Post-Flush ~3.5 Months Post-Flush 100 um 75 um 50 um 25 um 0 um

33 cis-dce 175 um = 17 mg/l ~22 Months Post-Flush ~25 Months Post-Flush 175 um 150 um 125 um ~28 Months Post-Flush ~31 Months Post-Flush 100 um 75 um 50 um 25 um 0 um

34 cis-dce 175 um = 17 mg/l ~50 Months Post-Flush ~56 Months Post-Flush 175 um 150 um 125 um ~62 Months Post-Flush ~65 Months Post-Flush 100 um 75 um 50 um 25 um 0 um

35 Vinyl Chloride 2.0 um = 125 ug/l ~28 Months Post-Flush ~31 Months Post-Flush 2.0 um 1.8 um 1.6 um 1.4 um 1.2 um ~35 Months Post-Flush ~40 Months Post-Flush 1.0 um 0.8 um 0.6 um 0.4 um 0.2 um 0.0 um

36 Vinyl Chloride 2.0 um = 125 ug/l ~42 Months Post-Flush ~45 Months Post-Flush 2.0 um 1.8 um 1.6 um 1.4 um 1.2 um ~50 Months Post-Flush ~56 Months Post-Flush 1.0 um 0.8 um 0.6 um 0.4 um 0.2 um 0.0 um

37 Vinyl Chloride 2.0 um = 125 ug/l ~62 Months Post-Flush ~65 Months Post-Flush 2.0 um 1.8 um 1.6 um 1.4 um 1.2 um 1.0 um 0.8 um 0.6 um 0.4 um 0.2 um 0.0 um

38 Ethene 0.5 um = 14 ug/l ~50 Months Post-Flush ~56 Months Post-Flush 0.5 um 0.4 um ~62 Months Post-Flush ~65 Months Post-Flush 0.3 um 0.2 um 0.1 um 0.0 um

39 Chloride 2250 um = 80 mg/l ~50 Months Post-Flush ~56 Months Post-Flush 2250 um 2000 um 1750 um 1500 um ~62 Months Post-Flush ~65 Months Post-Flush 1250 um 1000 um 750 um 500 um 250 um 0 um

40 Acetic Acid 1600 um = 96 mg/l ~56 Months Post-Flush ~62 Months Post-Flush 1600 um 1400 um 1200 um 1000 um ~65 Months Post-Flush 800 um 600 um 400 um 200 um 0 um

41 Sulfate 900 um = 86 ug/l ~56 Months Post-Flush ~62 Months Post-Flush 900 um 800 um 700 um 600 um ~65 Months Post-Flush 500 um 400 um 300 um 200 um 100 um 0 um

42 Methane 1100 um = 18 mg/l ~1 Month Post-Flush ~2 Months Post-Flush ~3.5 Months Post-Flush ~5.5 Months Post-Flush 1100 um 1000 um 900 um 800 um 700 um 600 um 500 um 400 um 300 um 200 um 100 um 0 um

43 Methane 1100 um = 18 mg/l ~22 Months Post-Flush ~56 Months Post-Flush ~62 Months Post-Flush ~65 Months Post-Flush 1100 um 1000 um 900 um 800 um 700 um 600 um 500 um 400 um 300 um 200 um 100 um 0 um

44 SUMMARY Solvent Extraction: 41.5 L PCE Removed (Mass Recovery) ~70 % PCE Removed (Partitioning Tracer) PCE Daughter Product Formation TCE, cis-dce, VC, ethene, methane (?) Change in Geochemistry Dissolved Oxygen, Sulfate, and Redox Indications of Biological Activity Methane, Volatile Fatty Acid, and Hydrogen

45 Partial Oxidation of Ethanol: CH 3 CH 2 OH + H 2 O -----> CH 3 COOH + 2 H 2 Complete Oxidation of Ethanol: CH 3 CH 2 OH + 3H 2 O -----> 2CO H 2 Dechlorination of PCE: C 2 Cl X + H > C 2 Cl x-1 + H + + Cl - Complete Dechlorination of PCE Requires 1-2 Moles of Ethanol (excluding competing processes)

46 Source Area = 40 ft. diameter X 5 ft. depth Assume Porosity = 0.4 Pore Volume = 70,000 L Concentrations: Average Ethanol = 8,000 mg/l Average PCE = 50,000 ug/l Total Mass: Ethanol Kg or 12,350 Moles PCE Kg or 21.5 Moles Theoretically, we have >250 times the amount of ethanol present for complete dechlorination of the estimated remaining PCE times the amount needed to degrade the moles of the (estimated) PCE in the source zone (136 moles residual PCE moles dissolved PCE). While this estimate assumes no competing terminal oxidation processes such as methanogenesis or sulfate reduction, an efficiency greater that 2% would still meet the theoretical demand.

47 Concentration (ug/l) cis-dce Formation y = 52.7 x R 2 = Time (Days) y = 10.3 x R 2 = 0.68 y = 1.1 x R 2 = 0.49 MW-514 RW-007

48 First Order Degradation Rates (Based on Total Mass) Ethanol year -1 (R ) t ½ = 2.1 yrs PCE year -1 (R ) t ½ = 1.2 yrs cis-dce 0.81 year -1 (R ) t ½ = 0.9 yrs

49 Total Chlorides Organic Cl Inorganic Cl Total Time (Years)

50 Currently the system remains biologically active and the dechlorination products are accumulating. High levels of dissolved methane and hydrogen have also been detected in the treatment zone. The maximum and minimum observed rate of dechlorination (based on cis-dce production) are approximately 43.6 and 4.2 ug/liter/day, respectively. These rates can be extrapolated to a multi-step, concurrent, dechlorination process to predict that the dissolved phase PCE could be removed in 3 to 30 years, and that the total source zone PCE could be transformed in 24 to 240 years.

51 Publications Sewell, G.W. et al Chlorinated Solvent Contaminated Soil and Ground Water: Field Application of the Solvent Extraction Residual Biotreatment Technology, Chapter 5. In Bioremediation of Recalcitrant Compounds. Taylor & Francis Publishers, Boca Raton. Pp Mravik, S., R.K.Sillan, A.L. Wood, and G.W. Sewell Field Evaluation of the Solvent Extraction Residual Biotreatment (SERB) Technology. Environ. Sci. Technol. 37: Jawitz, J., R.K. Sillan, M.D. Annable, P.S.C. Rao and K. Warner In-Situ Alcohol Flushing of a DNAPL Source Zone at a Dry Cleaner Site. Environ. Sci. Technol. 34:

52 Questions? Questions