Hydrogen as an energy carrier: production and utilisation

Size: px
Start display at page:

Download "Hydrogen as an energy carrier: production and utilisation"

Transcription

1 Hydrogen as an energy carrier: production and utilisation Dr.-Ing. Roland Hamelmann D Bad Schwartau Vita Dr.-Ing. Roland Hamelmann TU Clausthal, chemical engineering (PhD on continous production of gas diffusion electrodes) Manufacturing of PEMFC for Proton Motor GmbH CoE in hydrogen and fuel cell technology at university of applied sciences, Lübeck eff +: start-up since 2010 (energy efficiency and hydrogen technology) 1

2 Netzlast [MW] Leistung [MW] Structure 1. Intention of hydrogen as an energy carrier 2. (current) Use of hydrogen in chemistry 3. (future) Production of hydrogen in the energy supply chain 4. (future) Utilisation of hydrogen in the energy supply chain 5. Summary Motivation Fluctuating renewable electricity from wind Windkraftcharakteristik 2006 (e.on-regelzone, onshore) e.on-regelzone WK Einspeisung Netzlast Zeit ,73 GW 6,39 GW 5,00 GW 10,47 GW 5,18 GW Storage! 0 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 Data: 2

3 EU targets 2020 Capacity needs 3

4 Principals Storage type... physics... density [kwh/m³] SMES electrical E = ½*L*I² *η (w) Condensator electrical E = ½*C*U² *η (w) 0,1... 0,3 Fly Wheel mechanical E = ½*J x *ω² *η (w) Battery chemical E = Q*U Z *η (w) Pumped Hydro mechanical E = V*ρ*g*h *η (w) 0,2... 1,2 CAES (Air) mechanical E = V*c v *(T/v) NTP *(r-r 1/κ ) *η (w) Hydrogen chemical E = p*v/(r*t)*h i *η (w) Pumped Hydro Source: 4

5 CAES (Air) Source: Hydrogen storage pathways Central Power Plant Feed-in to be prefered! Energy Management System Electric grid Comm erce O 2 H Chemical 2 use Electrolysis H 2 -Storage Mobility CHP 5

6 Structure 1. Intention of hydrogen as an energy carrier 2. (current) Use of hydrogen in chemistry 3. (future) Production of hydrogen in the energy supply chain 4. (future) Utilisation of hydrogen in the energy supply chain 5. Summary H 2 in chemistry Current situation production of appr. 600 x 10 9 Nm³ hydrogen per year by steam reforming of natural gas partial oxidation of heavy oil feedstocks coal gasification byproduct (NaCl-electrolysis, refinery et al.) alternative technologies < 1% usage mainly in chemichal industry (metals, glas, semiconductors, MeOH, NH 3, refinery) excellent knowledge about materials and handling yet no notable usage in energy supply 6

7 Structure 1. Intention of hydrogen as an energy carrier 2. (current) Use of hydrogen in chemistry 3. (future) Production of hydrogen in the energy supply chain 4. (future) Utilisation of hydrogen in the energy supply chain 5. Summary Principles Conventional feedstocks CH 4 (steam reforming) C n H 2n (partial oxidation) C 135 H 96 O 9 NS (coal gasification) H 2 (nuclear fed electrolysis) Renewable feedstocks H 2 (wind & solar fed electrolysis) Bio - CH 4 (steam reforming) Bio CH 4 O (methanol reforming) Bio - C 2 H 6 O (ethanol reforming) C 12 H 22 O 11 (wood / BtH) 7

8 Electrolysis: Basics (1/3) Half cell reactions Cathode (+) ½O 2 + 2H + + 2e - H 2 O E 0 = 1,23 V Anode (-) H 2 2H + + 2e - E 0 = 0,00 V Over all reaction Fuel cell H 2 + ½O 2 H 2 O E 0 = 1,23 V Electrolysis H 2 + ½O 2 H 2 O E 0 = 1,48 V Source: Energietechnik mit Wasserstoff und Brennstoffzellen, Sommerseminar an der FH Lübeck, Electrolysis: Basics (2/3) Source: Fraunhofer ISE 8

9 Electrolysis: Basics (3/3) H 2 + ½O 2 H 2 O Cell voltage U = 1,48 25 C, 1 bar Heating value (H s ) E = 3,5 kwh / Nm³ H 2 = 12,6 MJ / Nm³ H 2 Water need V = 0,805 dm³ / Nm³ H 2 Faraday-Constant 1/F = 2,39 kah / Nm³ H 2 Real cell voltages are higher due to Ohmic losses (electrolyte, diaphragma) Wiring losses Electrochemical over-voltages (cathodic, anodic), caused by mass transport and electrical field phenomena Source: Energietechnik mit Wasserstoff und Brennstoffzellen, Sommerseminar an der FH Lübeck, Alkaline Electrolysis e e - H 2 O A OH - K 4OH - O 2 + 2H 2 O + 4e - 4H 2 O + 4e - 2H 2 + 4OH - 9

10 Acidic Electrolysis e e - H 2 O A H + K 2H 2 O 4H + + 4e - + O 2 4H + + 4e - 2H 2 System comparison Acidic el. Alcaline el. Temperature [ C] Pressure [Mpa] < 30 < 30 Power range [kw] Current density [ka/m ²] < Cell voltage [V] 1,7 2,1 1,7 2,1 Spec. Energy consumption [kwh/nm³ H 2 ] 4,1 4,9 4,1 4,9 Efficiency, based on Hu [%] Catalysts K: Pt / A: Ir K: Stahl / A: Ni More details: 10

11 Eingespeiste Windleistung [MW] Hydrogen storage pathways Central Power Plant Feed-in to be prefered! Energy Management System Electric grid Comm erce O 2 H Chemical 2 use Electrolysis H 2 -Storage Mobility CHP Effect Windstrom 2006 (eon-regelzone) % 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Cap (101 GWh = 0,8 %) Electrolysis (1.083 GWh = 8,3 %) Feed-in ( GWh = 90,9 %) Data: 11

12 Renewable potential Ex. 1: eon control region GWh 253 Mio Nm³ H t H 2 Ex. 2: Vattenfall control region GWh 193 Mio Nm³ H t H 2 Ex. 3: Offshore-scenario Schleswig-Holstein 2015 (2,24 GW) 357 GWh 83 Mio Nm³ H t H 2 η Electrolysis = 70 % H u = 3,00 kwh/nm³ ρ = 0,089 kg/nm³ Saline storage options Saline caverns with net volume V = m³ are creatable Pressure range depends on depth (p = bar at m) Suitability of saline caverns for H 2 -storage is proven (Teesside/UK, Texas/USA) pics: KBB Underground Technologies GmbH 12

13 Structure 1. Intention of hydrogen as an energy carrier 2. (current) Use of hydrogen in chemistry 3. (future) Production of hydrogen in the energy supply chain 4. (future) Utilisation of hydrogen in the energy supply chain 5. Summary Ex. mobile usage GM Chevrolet Equinox MAN ARGEMUC Ex. 1: Fahrzeuge Ex. 2: Fahrzeuge Ex. 3: km / 1,4 kg H 2 / 100 km Ex. 1: 1923 Fahrzeuge Ex. 2: Fahrzeuge Ex. 3: km / 13 kg H 2 / 100 km 13

14 Ex. stationary usage option co-firing option CHP option micro-chp Ex. 1: 75,9 MW Ex. 2: 57,9 MW Ex. 3: 24, h / η el = 40 % Ex. 1: 265 x 200 kw Ex. 2: 202 x 200 kw Ex. 3: 87 x h / η el = 35 % Ex. 1: x 2 kw Ex. 2: x 2 kw Ex. 3: x h / η el = 25 % Structure 1. Intention of hydrogen as an energy carrier 2. (current) Use of hydrogen in chemistry 3. (future) Production of hydrogen in the energy supply chain 4. (future) Utilisation of hydrogen in the energy supply chain 5. Summary 14

15 Summary 1. Energy markets tend to be more renewable and more electrical 2. Fluctuations in renewable power generations require large capacities for load leveling 3. Hydrogen technology offers high storage capacities as well as sustainable supply options for mobile and stationary power needs 15