Molecular & Atomic Chemistry Enables Sustainable Energy Conversion & Storage. By Zongyou Yin. School of Chemistry

Size: px
Start display at page:

Download "Molecular & Atomic Chemistry Enables Sustainable Energy Conversion & Storage. By Zongyou Yin. School of Chemistry"

Transcription

1 Molecular & Atomic Chemistry Enables Sustainable Energy Conversion & Storage By Zongyou Yin School of Chemistry

2 Australian Government commenced Carbon Pollution Reduction Scheme!

3 Global Status Report 2017 from REN21 Population increases by 149k/day!

4 An unlimited clean energy resource Australian continent has the highest solar radiation per square metre of any continent: 58 million petajoules (PJ)/year Global energy for 7.6 billion population needs: 0.06 million PJ/year

5 Solar to electricity: Efficiency Storage for blackout, rainy days, vehicles & mobile devices Battery, Fuel cell, Capacitor Solar (thermal) to fuels: H 2 O-to-H 2 Efficiency & Gas fuel storage PEC, SWSC, PEWSC, Photocatalysts

6 Need us: Science and Tech! Cost > Cost-effectiveness Efficiency x Lifetime = (Total Cost) x (Recycling Cost) How to?

7 My Research Summary

8 1. Solar cells Organic Photovoltaics (OPV) ACS Appl. Mater. Inter. 3, 1063, 2011 (36 citations).

9 1. Solar cells Organic Photovoltaics (OPV) ACS Appl. Mater. Inter. 3, 1063, 2011 (36 citations).

10 2. Solar cells Dye-sensitized solar cell (DSSC) - 4.4eV CB - 4.0eV - 5.1eV e. - e -. e. -. e -. e ev e - e - e eV ev - 5.5eV FTO VB - 7.2eV TiO 2 Graphene Dye Redox (I / I 3 ) Chem. Eur. J. 17, 10832, 2011 (97 citations).

11 2. Solar cells Dye-sensitized solar cell (DSSC) 5 0 Graphene Potential (ev) TiO Direction of electron flow PCE: 19.1% increase Chem. Eur. J. 17, 10832, 2011 (97 citations).

12 3. Solar cells Ingoranic-organic hybrid solar cells Au PEDOT:PSS P3HT ZnO nanorods Reduced GO film I Energy (ev) II 4.7eV rgo E c LUMO 3.5eV 4.2eV HOMO 5.2eV 5.0eV 5.1eV E v 7.4eV ZnO P3HT PEDOT: PSS Au Small 6, 307, 2010 (464 citations).

13 3. Solar cells Ingoranic-organic hybrid solar cells 1 µm 0.2 µm Capacitance (µf) 1.0 Capacitance 0.9 Mott-Schottky plot Voltage (V vs. Ag/AgCl ) C 1 2 sc = ± eεε o 2 A 2 N D (V V FB kt ) e Mott-Schottky plot /C 2 (F -2 ) Graphene cathode effect Small 6, 307, 2010 (464 citations).

14 4. Solar cells Highly flexible solar cells Annealing reduction PMMA coating GO/SiO 2 /Si rgo/sio 2 /Si PMMA/rGO/SiO 2 /Si Etching SiO 2 rgo/pet Remove PMMA PMMA/rGO/PET Transfer onto PET PMMA/rGO ACS Nano 4, 5263, 2010 (370 citations).

15 4. Solar cells Highly flexible solar cells 2.2eV Al TiO 2 P3HT:PCBM PEDOT:PSS rgo I 3.5eV 3.7eV 4.4eV 4.7eV rgo PEDOT :PSS P3HT:PCBM TiO 2 e - 4.3eV Al PET substrate h + 5.2eV 5.2eV 6.1eV Current density (ma/cm 2 ) Dark Illuminated Voltage (V) Bent > >1000t < >1000 times 8.1eV Relaxed ACS Nano 4, 5263, 2010 (370 citations).

16 5. Solar H2 fuel Nano tree-like structure based PEC Adv. Mater., 24, 5374, 2012 (96 citations).

17 5. Solar H2 fuel Nano tree-like structure based PEC Adv. Mater., 24, 5374, 2012 (96 citations).

18 6. Solar H2 fuel Plasmonic enhanced PEC a b G4 (111) Au 0.24 nm 1 μm Electron beam {100} MoS nm Au MoS 2 EELS detector 5 nm c Au 250 nm MoS 2 d EELS counts (x10-4 ) Au-MoS 2 MoS Plasmon energy (ev) Small, 10, 3537, 2014 (109 citations).

19 6. Solar H2 fuel Plasmonic enhanced PEC Small, 10, 3537, 2014 (109 citations).

20 7. Solar H2 fuel 2D MoS 2-1D TiO 2 photocatalyst Small, 9, 140, 2013 (541 citations).

21 7. Solar H2 fuel 2D MoS 2-1D TiO 2 photocatalyst Small, 9, 140, 2013 (541 citations).

22 8. Solar H2 fuel Extract pure H2 from methanol CH 3 OH + H 2 O = CO 2 + 3H 2 Pressure: > 20 Bar Temperature: o C Greenhouse gas release: global warming Methanol (CH 3 OH): boiling point 64.7 C, liquid at RT. Formaldehyde (CH 2 O): boiling point of 19.3 C, moderate pressure (~5 atm) to liquefy it; 37% solubility in water. Science Advances, 2, e , 2016 (4 citations).

23 8. Solar H2 fuel Ultra-stable H2 from methanol Science Advances, 2, e , 2016 (4 citations).

24 9. Electrolysis for H2 Phase tunable 2D WS2 Submitted 2017

25 9. Electrolysis for H2 Super-endurable performance 0 1T -WS t1/2=42days -60 Y= t ) Time (days) Current Density (ma cm WS2 Current Density (ma cm-2) Thioglycolic Acid (TGA ) 0 Commercial Pt/C(20%) t1/2=53days -60 Y= t Time (Days) 50 60

26 10. Supercapacitor Stacking for novel 2D structures Nano Energy, 20, 185, 2016 (35 citations).

27 10. Supercapacitor Stacking for novel 2D structures Nano Energy, 20, 185, 2016 (35 citations).

28 11. Li-ion battery Bottom-up synthesize 2D materials Nat. Commun. 3, 1177, 2012 (195 citations).

29 11. Li-ion battery Stable performance Nat. Commun. 3, 1177, 2012 (195 citations).

30 12. Li-ion battery Nanolithia anion-redox cathode Nat. Energy 1, 16111, 2016 (23 citations).

31 12. Li-ion battery Nanolithia cathode-li 4 Ti 5 O 12 anode Nat. Energy 1, 16111, 2016 (23 citations).

32 Summary and Future plan Summary- Molecular&atomic chemistry with application: Solar photovoltaics, Solar H2 fuel, Supercapacitor, Li-ion/air battery Future- New science&technology for sustainable energy: Reliability Affordability Cost-effectiveness

33