Voltage jump switching shunts

Size: px
Start display at page:

Download "Voltage jump switching shunts"

Transcription

1 Voltage jump switching shunts 0,0% 1,0% 2,0% 3,0% 4,0% 5,0% ED_150 DR_150 R_150C ER_150 GD_150 AE_150 AS_150 IN_150 VV_150 TR_150 JE_150 E_150C SP_150 RI_220 SR_400 ER_400 GD_400 DU_400 AG_400 JE_400 RI_400 HA_ Scenario n-0 Dato - Dok.nr. 46 Titel 0,0% 1,0% 2,0% 3,0% 4,0% 5,0% BED_150 EDR_150 EDR_150C FER_150 FGD_150 KAE_150 KAS_150 KIN_150 NVV_150 STR_150 TJE_150 TJE_150C ÅSP_150 TRI_220 ASR_400 FER_400 FGD_400 IDU_400 LAG_400 TJE_400 TRI_400 VHA_ kv 220 kv 400 kv Scenario BED_150 EDR_150 EDR_150C FER_150 FGD_150 KAE_150 KAS_150 KIN_150 NVV_150 STR_150 TJE_150 TJE_150C ÅSP_150 TRI_220 ASR_400 FER_400 FGD_400 IDU_400 LAG_400 TJE_400 TRI_400 VHA_400 n-1

2 HVDC ramping without central power plants 01_SSVS (300 MW/forb.) MW 429 MW Før ramping Efter ramping Ramping og justering 01_SSVS (u/central) MW 900 MW 729 MW W:0 MW H:0 MW Q: 300 MW L:1.484 MW C:0 MW 853 MW 291 MW VHA_400 NVV_400 FER_400 IDU_400 Sufficient voltage regulation TJE_400 ASR_400 REV_400 EDR_400 TRI_400 LAG_400 KIN_400 FGD_400 KAS_400 W:0 MW H:0 MW Q: 300 MW L:1.484 MW C:0 MW MW 591 MW 01_SSVS (600 MW/forb.) MW 129 MW Spændingsændring ved 1800 MW ændring på SK, SB og KS Sufficient reactive power, Need for automatic regulation Før ramping Efter ramping Ramping og justering W:0 MW H:0 MW Q: 300 MW L:1.484 MW C:0 MW 1800 MW 9 MW MW 400 VHA_400 Dok.nr NVV_400 FER_400 IDU_400 TJE_400 ASR_400 REV_400 EDR_400 TRI_400 LAG_400 KIN_400 FGD_ KAS_400

3 Dynamic studies - Stability Voltage range after fault clearing 1,4 1,2 1,3/100ms 1,2/5s 1,07/5s 1,05 Voltage [pu u] 1 0,8 0,6 0,4 0,25+0,5*t 0,75/10s 0,9 Overvoltage Undervoltage 0, Time [s] Dato - Dok.nr. Titel 48

4 Example with a new synchronous condenser Reference case SVC STV132 SVC SPA132 Syn. Comp. BJS400 SVC KYV132 Dato - Dok.nr. Titel 49

5 Risk of voltage collapse in DK2 Busbar fault disconnecting a 400 kv line to Sweden Import on system 2 increases kv The voltage drop leads to a disconnection of CHPs The import to DK increases 400 kv voltage in DK drops further Wind turbines disconnect Risk of voltage collapse 1,00 Voltage [p.u.] 0,96 0,92 with SC 0,88 0,84 without SC 0,80 0,000 4,000 8,000 12,00 16,00 [s] Voltage Lower Boundary 400: Voltage, Magnitude in p.u. 20,00

6 Tripping of land wind and CHP 01_SSVS 02_NNØN 03_SNØS 04_SSØS 05_NNØN 06_OOOS Scen MW 740 MW W:0 MW H:0 MW Q: 0 MW L:1.484 MW C:300 MW 600 MW MW MW 740 MW W:2.142 MW H:615 MW Q: 0 MW L:1.484 MW C:300 MW 600 MW MW MW MW MW 370 MW 740 MW 740 MW W:2.142 MW W:0 MW W:2.410 MW H:769 MW H:0 MW H:692 MW Q: 0 MW Q: MW Q: MW L:2.968 MW L:3.340 MW L:3.154 MW C:300 MW 600 MW C:300 MW 600 MW C:300 MW 600 MW 776 MW 224 MW MW Vind MW 0 MW W:2.410 MW H:769 MW Q: MW L:2.969 MW C:300 MW 0 MW MW Trip in each scenario One power plant Year 2014 Worst fault Worst power plant DKV _SSVS 02_NNØN 03_SNØS 04_SSØS 05_NNØN 06_OOOS Dok.nr

7 Construction specific studies Induced voltages [PSCAD] Reduce the risk of personal injury Damage to infrastructure Noise Zero miss [PSCAD] Zero miss studies are only relevant when planning reactive compensation of cables. Dato - Dok.nr. 52

8 Isolation coordination studies [PSCAD (PowerFactory)] Dielectric strength of equipment Temporary over voltages (lasting up to minutes) (earth fault, resonance, etc.) Switching over voltages (lasting up to several ms) Lightning surge voltages (lasting up to several us) Very Fast transient (in a GIS system, lasting up to 1 us) Source: [IEC ] Dato - Dok.nr. 53

9 Connecting wind parks We will take a lot of the risk, which will allow more contractors and a lower price for the wind power Dato - Dok.nr. 54

10 The Anholt project 400 MW wind park Energinet.dk is responsible for: Connection finished First turbine spinning this year Price: approx. 200 Mio USD Dato - Dok.nr. 55

11 The Anholt project 400 MW wind park Dato - Dok.nr. 56

12 The Anholt project 400 MW wind park Wind turbine type Source: Dong Energy Dato - Dok.nr. 57

13 Wind turbine technologies in Denmark (as of 2006) Dato - Dok.nr. 58

14 Wind turbine model types A normal old type wind mill, No/full load compensated, is modeled as a asynchronous machines with 10 % reactive power consumption of the active power production (PQ) Windmill parks are modeled as asynchronous machines with neutral reactive power (PQ) For dynamic studies we use asynchronous machines and converter based models Dato - Dok.nr. Titel 59

15 Capacity assessment [Delfin] With the introduction of much fluctuating, unreliable wind power it is very important to analyze if there is sufficient reliable capacity to cover the peak demands when the wind does not blow. Dato - Dok.nr. 60

16 Static capacity assessment [CA_02] Historical availability The geographical spread of wind is small A period with high consumption is often a period with high pressure and low temperature. This is often a period with no wind Low reliability Dato - Dok.nr. 61

17 Dynamic capacity assessment [CA_01] 100x8760 of 2010 data scaled to 2020 Randomizer Difference between wind and no wind Political down time Also use Assess (probabilistic model with the grid) Dato - Dok.nr. 62

18 System structure and reliability There are two main reasons for system reinforcement: Better utilization of energy by reduction of bottlenecks Better reliability or reduced requirement for reserves at the same reliability In both cases, the chain is not stronger than its weakest link It is important to identify the weak links regarding both bottlenecks and reliability to avoid wrong investments.

19 ENTSO-E: Power system reliability The power system reliability is defined as the ability to: ensure normal system operation; limit the number of incidents and avoid major incidents; limit the consequences of major incidents whenever they do occur. UCTE Operation Handbook, Appendix 3: Operational Security

20 ENTSO-E: Power system reliability In order to ensure the safety of the system, protection must be provided against four main phenomena that may deeply disturb the system or initiate a large scale incident, naming: cascade tripping; voltage collapse; frequency collapse; loss of synchronism UCTE Operation Handbook, Appendix 3: Operational Security

21 Reliability, but not at any price The cost curve can be affected by e.g. environmental constraints The penalty curve depends of the socio economic value of the energy The optimum is different for different countries Cost Investment costs Penalties + Investment costs Security of supply Penalties Figure: UCTE Operation Handbook, Appendix 3: Operational Security

22 CNRED December 12,

23 CNRED December 12,