Rigorous Criteria for Sustainability: Scope

Size: px
Start display at page:

Download "Rigorous Criteria for Sustainability: Scope"

Transcription

1 Scope NREA What are the renewable electricity potentials in EUMENA* and how could they be linked to provide sustainable power on demand? Assess Renewable Energy Resources IFEED Estimate Power Demand Develop National Electricity Scenarios Concentrating Solar Power for the Mediterranean Region () Trans-Mediterranean Interconnection for CSP () Results of the Study Projects for the Research & Development Programme of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Evaluate Socio-Economic and Environmental Impacts * Europe, Middle East, North Africa Countries in EUMENA analysed within the and Studies Scandinavia Western Europe Eastern Europe South-Eastern Europe Western Asia North Africa Arabian Peninsula Technology Portfolio:, Lignite Oil, Gas Nuclear Fission, Fusion Concentrating Solar Power (CSP) Power (Hot Dry Rock) Power Photovoltaic ideally stored energy storable energy fluctuating energy Renewable Energy Resources in EUMENA (1) in brackets: (Typical Yield in GWh el /km²/y) Energy (1) Energy (3) (3) Rigorous Criteria for Sustainability: Inexpensive low electricity cost no long term subsidies Secure diversified and redundant supply power on demand undepletable resources available or visible technology Solar Energy (2) A CSP plant of the size of Lake Nasser can deliver energy equivalent to Middle East oil production Compatible low pollution climate protection low risks fair access

2 Economic Renewable Electricity Potentials vs. Demand in EUMENA Electricity in TWh/y > 63 What would be a sustainable mix? Potentials Demand 2 Demand 2 Solar Hydro Wave/Tide Desalination MENA Europe Electricity Production [TWh/y] Electricity Production in Europe ( Scenario) 4 Import Solar Oil 1 Gas Nuclear Iceland, Norway, Sweden, Finland, Denmark, Ireland, United Kingdom, Portugal, Spain, France, Belgium, Netherlands, Luxembourg, Germany, Austria, Switzerland, Italy, Poland, Czech Republic, Hungary, Slovakia, Slovenia, Croatia, Bosnia- Herzegovina, Serbia-Montenegro, Macedonia, Greece, Romania, Bulgaria, Cyprus, Malta Electricity Production [TWh/y] Electricity Production in MENA ( Scenario) Export Solar Morocco, Algeria, Tunisia, Libya,, Turkey, Iran, Iraq, Jordan, Israel, Lebanon, Syria, Saudi Arabia, Yemen, Oman, United Arab Emirates, Kuwait, Qatar, Bahrain Electricity Cost of New Plants [c/kwh] Electricity Cost of Power Technologies (Example ) Start 2: oil / gas 2 $/bbl coal 48 $/t escalation 1 %/y discount rate %/y RES: high cost / low share RES: low cost / high share stable cost Inexpensive? Least Cost Electricity after Initial Investment Power On Demand? Fossil Fuels supply Peaking Power Electricity Cost [c/kwh] 8, invest phase least cost phase 7, 7, 6, 6,,, 4, 4, Mix Mix 2 Solar Import Example Spain Germany, Winter Week Mix : Energy Mix as described by Mix 2 : Maintaining the Energy Mix like in the 2 Cogen Fossil PV, Bio., Geo., Hydro. Import CSP Pump Storage Peaking Plants (fossil) RES Surplus Based on hourly time series modelling of power supply in the scenario

3 Compatible? Carbon emissions reduced to 2 % in Europe and kept at low level in MENA in spite of growing demand Redundant? HVDC Interstate Highways for Electricity interconnecting EUMENA CO2-Emissions in Mt/y Avoided Import Solar Nuclear HVDC: High Voltage Direct Current Transmission Water Demand in MENA Study Report and Individual Country Scenarios at: Freshwater Demand [billion m³/y] Industrial Domestic Agricultural Sustainable Water Thank You for Your Attention! Sustainable Water Deficit: today: 6 billion m³/y 2: 16 billion m³/y Positive Impacts in MENA: Concentrating Solar Thermal Power Plants combined with Sea Water Desalination in Coastal Desert Areas AC Grid Energy + Water + Income = Sustainable economic development in arid regions reflector Concentrating Solar Thermal Power: A Technology for Sustainable Energy and Water receiver direct solar beam radiation Concentrating Solar Collector Field Solar Heat Fuel Thermal Energy Storage Power Cycle for Co-Generation MULTI-EFFECT Heat DESALINATION Sea Water Electricity Freshwater HVDC Link (artist view created with Google Earth) Principle of a concentrating solar collector (left) and a solar power station with combined thermal sea water desalination (right). The generated electricity can be used for domestic power, for export and for further desalination via reverse osmosis. At present, a project of this type is developed in Jordan. The AQUA- CSP study starting in July 26 will assess its potentials in MENA.

4 Adequate Political and Legal Framework Required Diversification of the energy portfolio is a key to energy security. The cost-stabilising effect of renewables must be valued adequately. RD&D for the cost reduction of renewables must be extended. Feed in tariffs are very effective instruments for market introduction. A EUMENA free trade zone for renewables should be established. Evaluation and negotiation of HVDC interconnections must start soon. Subsidisation of all energy technologies should be limited to a reasonable time span and subsequently reduced to zero. European support for MENA for the market introduction of renewables can attenuate the growing pressure on fossil resources that would otherwise origin from the economic growth of this region, thus helping indirectly to secure fossil supply in Europe. As a long term perspective, EUMENA could become a Community for Energy, Water and Climate Security. Public and Private Investment by Renewable Electricity Feed-In Laws Low private investment risk through long term power purchase agreement granted by law Low equity interest rates required by private investors due to low investment risk Least cost market introduction of renewables through low equity interest rates of private investors Diversity of supply through individually adapted feed-in tariffs for each technology Stimulation of private investment and R&D for cost reduction through retrogressive feed-in tariffs Feed-in laws provide public investment over limited time span to stimulate private investment for the market introduction of renewables The initial tariff addition is covered by the consumers who benefit from future cost stability. Due to initially low renewable shares, the effect on consumer prices is very low. Conclusions Renewable energy sources backed by fossil s can provide sustainable, secure and least cost electricity for Europe, with a share of 8 % in 2. Within 1 years, a well balanced power mix leads to less expensive electricity than business as usual. Domestic sources will reduce the import of s. Solar electricity from concentrating solar power stations in MENA transferred to Europe via high voltage direct current transmission can provide firm capacity for base-, intermediate- and peaking power, and supply up to 1 % of the European demand at a cost of cent/kwh. Carbon emissions can be reduced to 2 % compared to the year 2. 1 % of the European land will be required for the power mix, equivalent to the land presently used for transport and mobility. European support for MENA for the market introduction of renewables can attenuate the growing pressure on fossil resources that would otherwise result from the economic growth of this region, thus helping to secure fossil supply also in Europe. The necessary political process should be initiated by a renewable energy partnership and a common free trade area for renewable energies in EUMENA and culminate in a Community for Energy, Water and Climate Security. Long term power purchase agreements guaranteed by law (e.g. feed-in tariffs) can provide an adequate frame for industry and investors. Fuel #2 and equivalent CSP Cost [$/MWh) Instead of being escalating, volatile and hidden, renewable energy costs tend to decrease due to learning and economies of scale, as long as market introduction continues under a reliable legal policy framework CSP Cost Projection Fuel Price History Fuel #2 Cost price level of the 199ies achievable in 21 Equivalent CSP Cost similar curves for all renewables Comparing Strategies for Electricity in Europe Electricity Mix dominated by Renewable Energy with Fossil Fuel Backup Electricity Mix dominated by Fossil Fuels and Nuclear Power : CO 2 Emissions of All Countries Diversified supply and renewable resources Domestic sources dominate the electricity mix Low vulnerability of decentralised generation Low hazardous waste, recyclable materials Low risk of contamination or major accidents Requires public investment over limited time Low environmental impact Trend to lower cost and low price volatility Power on demand by a well balanced mix Based on proven and demonstrated technologies Supply based on few and limited resources Energy imports dominate the electricity mix High vulnerability of large generation units Unsolved disposal of nuclear waste and CO 2 Risks of nuclear proliferation and accidents Requires long-term continuous subsidisation Climate change and pollution Trend to higher cost and high price volatility Power on demand by ideally stored energy Still requires major technical breakthroughs: Safe fission and breeder technology. Commercial fusion reactor. Carbon capture and sequestration. RUE Rational Use of Energy RES Renewable Energy Systems CCS Carbon Capture & Sequestration Avoided CO 2 is calculated with respect to a mix as in the year 2 including nuclear power

5 Life Cycle Assessment of Materials and Emissions of Solar Import Electricity Installed Capacity in MENA ( Scenario) Impact of Solar Electricity Import compared to Reference Mix 23 9% 8% 7% 6% % 4% 3% 2% 1% % CEE Global warming Acidification Eutrophication Summer smog CEE Cumulated Energy Expenditure Particle CO2 Iron Bauxite Copper Line 1 Line 2 Line 3 Installed Capacity [GW] Export Solar Nuclear 3 Analysed Samples for EU-MENA HVDC Interconnection A Well Balanced Mix provides Firm Power on Demand Capacity Balance Germany 2 1 Deficit and Surplus Capacity [GW] Deficit Surplus required peaking capacity Hour of 3 x GW x 7 h/y = 1 TWh/y Total EU-MENA HVDC Interconnection 22 2 * Comparison of AC and DC investment cost Lines x Capacity GW Transfer TWh/y Capacity Factor Turnover Billion /y Land Area CSP km x km HVDC Investment CSP Billion HVDC Elec. Cost CSP /kwh HVDC 22 2 x x 1 31 x x x 3 36 x x x 4 36 x x x 36 x Investment [M ] Cost of GW Overhead Link Distance [km] 11 kv HVAC ± 8 kv HVDC * All countries analysed in

6 Remarks: Southern EU-MENA Renewable Electricity Potentials in TWh/year Hydro Geo Bio CSP PV Wa/Ti Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Bahrain. n.a. n.a. n.a. n.a n.a..1 n.a..3 n.a. n.a. Cyprus n.a. n.a. n.a n.a..2 n.a..2 Iran n.a n.a > 2 n.a. 8. n.a. 16. n.a. n.a. Iraq n.a. n.a. n.a n.a. 6.8 n.a. n.a. Israel n.a. n.a. n.a n.a. 4. n.a. n.a. Jordan n.a..1 n.a. n.a. n.a n.a. 4. n.a. n.a. Kuwait n.a. n.a. n.a. n.a. n.a n.a. n.a. n.a. 2. n.a. n.a. Lebanon n.a. n.a. n.a n.a. 1. n.a. n.a. Oman n.a. n.a. n.a. n.a. n.a n.a. 4.1 n.a. n.a. Qatar n.a. n.a. n.a. n.a. n.a n.a. n.a. n.a. 1. n.a. n.a. Saudi Arabia n.a. n.a. n.a. 7.9 n.a n.a n.a. n.a. Syria n.a. n.a. n.a n.a. 8. n.a. n.a. UAE n.a. n.a. n.a. n.a. n.a n.a. n.a. n.a. 3. n.a. n.a. Yemen n.a. n.a. n.a. 17. n.a n.a. 2.8 n.a. n.a. Algeria.. n.a. 4.7 n.a n.a n.a. n.a. 8.. n.a. 2.7 n.a n.a. 36. n.a. n.a. Libya n.a. n.a. n.a. n.a. n.a n.a. 3.9 n.a. n.a. Morocco. 4. n.a. 1. n.a n.a. 17. n.a. n.a. Tunisia 1.. n.a. 3.2 n.a n.a.. n.a. n.a. Greece n.a. 4.7 n.a n.a. 4. n.a. 4. Italy n.a. 9.8 n.a n.a. 1. n.a. 3. Malta n.a. n.a. n.a. n.a. n.a n.a..2 n.a..1 n.a..1 Portugal n.a. 7. n.a n.a. 3. n.a. 7. Spain n.a. 9.4 n.a n.a.. n.a. 13. Turkey n.a. 1. n.a n.a n.a. n.a. Total Total well documented resource taken from literature from m temperature map considering areas with T>18 C as economic from agricultural (bagasse) and municipal waste and renewable solid mass potentials for Iran, the CSP potentials are still rough estimates from DNI and CSP site mapping taking sites with DNI > 2 kwh/m²/y as economic from speed and site mapping taking sites with a yield > 14 GWh/y and from literature (EU) No information except for EU. General PV growth rates used for calculation No information except for EU mid term economic potentials Northern EU-MENA Renewable Electricity Potentials in TWh/year Hydro Geo Bio CSP PV Wa/Ti Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Tech. Econ. Austria 6, 6, n.a. 4,1 n.a. 3,6 n.a. n.a. n.a. 3, n.a. 2,9 n.a. n.a. Cyprus 24, 1, n.a. n.a. n.a., n.a. 6, n.a.,1 n.a.,2 Denmark,, n.a. n.a. n.a. 6,6 n.a. n.a. n.a., n.a. 1,3 n.a. 2,2 Finland 2, 2, n.a. n.a. n.a. 3,7 n.a. n.a. n.a. 27, n.a. 1,7 n.a. 2, France 72, 72, n.a. 14,1 n.a. 79,1 n.a. n.a. n.a. 129, n.a. 23,4 n.a. 12, Czech Republic 4, 3, n.a. n.a. n.a. 2, n.a. n.a. n.a.,8 n.a. 1,1 n.a. n.a. Belgium,3, n.a. n.a. n.a. 7,3 n.a. n.a. n.a. 13, n.a. 2,1 n.a.,2 Ireland 1, 1,3 n.a. n.a. n.a. 6,2 n.a. n.a. n.a., n.a. 1,1 n.a. 4, Luxembourg n.a. 1, n.a. n.a. n.a.,4 n.a. n.a. n.a., n.a.,8 n.a. n.a. Netherlands,1,1 n.a. 1,3 n.a. 9,6 n.a. n.a. n.a. 4, n.a. 4,3 n.a. 1, Sweden 13, 9, n.a. 1,3 n.a. 8,4 n.a. n.a. n.a. 63, n.a. 3,7 n.a. 2, Switzerland 41, 38,3 n.a. n.a. n.a. 8, n.a. n.a. n.a., n.a. 3,7 n.a. n.a. United Kingdom 7,8 8, n.a.,3 n.a. 3,7 n.a. n.a. n.a. 344, n.a. 7,8 n.a. 6, Poland 14, 7, n.a. 1,7 n.a. 2,1 n.a. n.a. n.a. 6, n.a. 3,1 n.a. 1, Bulgaria 1, 12, n.a.,8 n.a. 7,7 n.a. n.a. n.a. 8,9 n.a. 2, n.a. n.a. Slowac Republic 7, 6, n.a. 3,1 n.a. 1,7 n.a. n.a. n.a.,7 n.a. 2, n.a. n.a. Slowenia 9, 8, n.a.,4 n.a. 6,3 n.a. n.a. n.a.,3 n.a. 1, n.a. n.a. Germany 26, 26, 12, 28,2 n.a. 87, n.a. n.a. n.a. 262, n.a. 23,4 n.a. 7, Hungary, 4, n.a. 1,9 n.a. 11,3 n.a. n.a. n.a. 1,3 n.a. 2, n.a. n.a. Greece 1, 12, n.a. 9,4 n.a. 7, n.a. 49, n.a. 3,9 n.a. 4, Italy 1, 6, n.a. 19,6 n.a. 46, n.a. 79, n.a. 17,6 n.a. 3, Malta n.a. n.a. n.a. n.a. n.a.,1 2 2 n.a.,2 n.a.,1 n.a.,1 Portugal 33, 2, n.a. 14,1 n.a. 1, n.a. 18, n.a. 3,9 n.a. 7, Spain 7, 41, n.a. 28,2 n.a. 4, n.a. 93, n.a. 19, n.a. 13, Turkey 216, 122, n.a. 3,1 n.a. 44, n.a. 11, n.a. 1,6 n.a. n.a. Macedonia 6, 4, n.a. n.a. n.a. 2,6 n.a. n.a. n.a.,1 n.a.,6 n.a. n.a. Croatia 9, 8, n.a. 1,1 n.a. 8,9 n.a. n.a. n.a. 2,6 n.a.,8 n.a. 3, Romania 36, 18, n.a. 1, n.a. 4,9 n.a. n.a. n.a. 7,9 n.a. 2, n.a. n.a. Serbia & Montenegro 27, 27, n.a. 4,1 n.a. 14,3 n.a. n.a. n.a.,3 n.a. 1, n.a. 2, Bosnia-Herzegowina 24, 19, n.a. n.a. n.a. 9, n.a. n.a. n.a.,1 n.a.,6 n.a. n.a. Iceland 64, 4, n.a. 182,4 n.a.,1 n.a. n.a. n.a. 1, n.a.,3 n.a. 1, Norway 2, 178, n.a. n.a. n.a. 2,8 n.a. n.a. n.a. 76, n.a. 1, n.a. 1, Total Total Parameters for Electricity Cost Calculation Electricity Cost of Power Technologies (Example ) Electricity Cost of New Plants [c/kwh] oil / gas coal escalation discount rate 2 $/bbl 48 $/t 1 %/y %/y RES: high cost / low share RES: low cost / high share stable cost Electricity Cost of Power Technologies (Example Spain) Day in 21 - Scenario CG/HE Scenario Day in 22 - Scenario CG/HE Electricity Cost [c/kwh] Oil Gas Nuclear Import Solar CO 2 Capture and Sequestration (CCS) included in fossil ed generation costs after 22 CSP in solar only operation. CSP import starts Day in 23 - Scenario CG/HE Day in 2 - Scenario CG/HE

7 Scenario Scenario PV Day in 21 - Scenario Day in 22 - Scenario Day in 21 - Scenario "PV" Day in 22 - Scenario "PV" Day in 23 - Scenario Day in 2 - Scenario Day in 23 - Scenario "PV" Day in 2 - Scenario "PV" Scenario Scenario Scenario Scenario PV ELECTRICITY ELECTRICITY Electricity [TWh/y] Electricity [TWh/y] CSP 1Plants Electricity [TWh/y] Electricity [TWh/y] CSP 1Plants INSTALLED CAPACITY INSTALLED CAPACITY Installed Power Capacity [GW] Installed Power Capacity [GW] Installed Power Capacity [GW] Installed Power Capacity [GW] Solar Thermal Electricity Generating Potentials in Technology Portfolio: Renewable Energies Technical Potential - Power (Enercon) (Tauernkraft) Solar Chimney (SBP) Electricity Potential [TWh/y > 28 DNI [kwh/m²a] Coastal Potential - (2 m a. s. l.) Electricity Potential [TWh/y] DNI [kwh/m²a] > 28 Technical Potential: Economic Potential: Power Demand 2: Power Demand 2: Tentative CSP 2: Coastal Potential: Water Demand 2: DNI [kwh/m²/y] 7366 TWh/y (DNI > 18 kwh/m²/y) 736 TWh/y (DNI > 2 kwh/m²/y) 71 TWh/y 631 TWh/y (Scenario CG/HE) 39 TWh/y (Scenario CG/HE) 496 TWh/y (< 2 m a. s. l.) 26 TWh/y (Power for Desalination) Photovoltaic (NREL) Hot Dry Rock (Stadtwerke Urach) Power (NREL)

8 Driving Force: Growth of Population Technology Portfolio: Concentrating Solar Power (CSP) 9 parabolic trough (PSA) solar tower (SNL) North Africa Western Asia Arabian Peninsula Southern Europe linear Fresnel (Solarmundo) parabolic dish (SBP) Source: United Nations Intermediate Growth Scenario /FAO 24/ Population [millions] Urban Rural Development Trends of Population in the Regions analysed within Per Capita Power Consumption in EU-MENA in the Scenario Southern Europe Western Asia Greece Italy Spain Portugal Cyprus Malta Iran Iraq Turkey Syria Lebanon Jordan Israel North Africa Arabian Peninsula Libya Tunisia Algeria Morocco Bahrain Yemen UAE Saudi Arabia Qatar Kuwait Oman Electricity Demand [kwh/capita/y] North Africa Western Asia Arabian Peninsula Southern European Countries Correlation and Extrapolation of Total Final Electricity Consumption per capita and GDP per capita for a Sample of 2 (1) Countries Driving Force Growth of Economy: Per Capita GDP Growth Rates of the Scenario Southern Europe (CG/HE) North Africa (CG/HE) 1 Cyprus Greece Libya Electricity/Capita [kwh/cap] Malta Italy Spain Portugal Average GDP Growth Rates 23-2 [%/cap/y] Western Asia (CG/HE) Iran Iraq Turkey Syria Tunesia Algeria Morocco Average GDP Growth Rate 23-2 [%/cap/y] Arabian Peninsula (CG/HE) Bahrain Yemen UAE Saudi-Arabia Lebanon Qatar Jordan Kuwait GDP/Capita [1 US$ 1996 PPP] Israel Average GDP Growth Rate 23-2 [%/cap/y] Oman Average GDP Growth Rate 23-2 [%/cap/y]