INTERPRETATION AND GUIDANCE ON THE ESTIMATION OF UNCERTAINTY OF MEASUREMENT IN TESTING

Size: px
Start display at page:

Download "INTERPRETATION AND GUIDANCE ON THE ESTIMATION OF UNCERTAINTY OF MEASUREMENT IN TESTING"

Transcription

1 KAN-G-20 INTERPRETATION AND GUIDANCE ON THE ESTIMATION OF UNCERTAINTY OF MEASUREMENT IN TESTING Issue number : 1 April 2016 Komite Akreditasi Nasional National Accreditation Body of Indonesia Gedung I BPPT, Lt. 14 Jl. MH Thamrin No. 8, Kebon Sirih, Jakarta Indonesia Tel. : ext 173, 194, 195, 197, 210, 211 Fax. : laboratorium@bsn.go.id Website : http//:

2 APPROVAL SHEET Reviewed by : Reviewed by Quality Manager Approved by : Director of Accreditation for Laboratory and Inspection Body

3 LIST OF AMANDMENT No. Date Part number revised Brief description of changes Part revision number

4 1. Introduction This document provides interpretation and guidance for various technical disciplines. It is intended for use by laboratory accreditation bodies as well as laboratories. It is KAN policy that testing laboratories accredited by KAN member accreditation bodies comply with the requirements of ISO/IEC The clauses of ISO/IEC most relevant to uncertainty of measurement are clauses and (c). Practice and recommendations stated in the documents referred to in the notes following clause of ISO/IEC are not requirements. This document is not a mandatory document. However, laboratories are expected to take note of these interpretations and guidance in preparing their uncertainty budgets. In this document, the measurement uncertainty definition in ISO VIM applies. Section 2 gives general interpretation and guidance applicable to all testing disciplines. Interpretation and guidance specific to physical and mechanical testing, construction materials testing, electrical testing, chemical testing and microbiological testing are given in sections 3 to 7 respectively. Further guidance may also be found in ILAC G17 3 and EA 4/ Interpretation and Guidance 2.1 Tests for Which Uncertainty Applies Where a test produces numerical results (or the reported result is based on a numerical result), the uncertainty of those numerical results should be estimated. In cases where the nature of the test method precludes rigorous, metrologically and statistically valid estimation of the measurement uncertainty, a testing laboratory should make a reasonable attempt to estimate the uncertainties of the results. This applies whether the test methods are rational or empirical. Where results of tests are not numerical or are not based on numerical data (e.g., pass/fail, positive/negative, or based on visual or tactile or other qualitative examinations) estimates of uncertainty or other variability are not required. However, laboratories are encouraged to have an understanding of the variability of the results where possible. The significance of the uncertainty of qualitative test results is recognised and so is the fact that the statistical procedure required to handle the calculation of this uncertainty exists. However, in view of the complexity of the issue and the lack of agreed approaches, laboratories are not required to estimate the uncertainty of qualitative test results at this time. This will, however, be kept under review.

5 2.2 Defining the Measurand It is recognised that in testing the measurand is sometimes defined in terms of the method (empirical method) and may not be directly traceable to SI units. Note: An empirical test method is a method intended to measure a property that is dependent on the test method used to measure it. Different methods for the same test parameter may return different results that may not be related. In many cases, one method cannot be verified using another test method. Examples of empirical test methods are the leachable concentration of chemicals and the hardness of a material. For the former, different solvent and leaching conditions will produce different results. For the latter, different indentor shapes, sizes and applied forces will produce different numerical results according to the applicable hardness scale. A rational test method is a test method intended to measure a property that is defined independent of any test method. There is an objective true value to that property and a method can be verified using other test methods. Examples of rational test methods are the total concentration of a chemical in a sample and the voltage generated by a thermocouple at a specified temperature difference. It is recognised that, although there is an objective true value, it may be very difficult to measure that value. 2.3 Identifying the Components of Uncertainty The laboratory should identify all the significant components of uncertainty for each test. One component with an uncertainty of less than ⅕ to ⅓ of the total measurement uncertainty will not usually have much impact on the total measurement uncertainty. However, if there is several or more of such components, their combined contribution to the total measurement uncertainty may become significant and cannot be ignored Even where reliance is to be made on overall precision data or where note 2 of clause of ISO/IEC is to apply, the laboratory should at least attempt to identify all significant components. This will provide information to confirm that the approach taken is reasonable and all significant components have been accounted for. Flowcharting the steps of the test method and using fish-bone diagrams to present the uncertainty components provide useful approaches. In some cases, groups of steps in a test method may be common to several different test methods and, once an estimate of uncertainty has been obtained for that group of steps, it may be used in the estimates of uncertainty for all methods where that group of steps applies.

6 2.4 Approaches to the Estimation of Uncertainty There are various published approaches to the estimation of uncertainty and/or variability in testing. ISO/IEC does not specify any particular approach. Laboratories are encouraged to use statistically valid approaches. All approaches that give a reasonable estimate and are considered valid within the relevant technical discipline are equally acceptable and no one approach is favoured over the others. The following are examples of approaches. a. Both the intermediate precision and reproducibility (from inter- laboratory comparisons) described in ISO (see clause , note 3 of ISO/IEC 17025) may be used in estimating measurement uncertainty. However, these may omit some uncertainty sources that should also be estimated and combined with the precision, if significant. b. Guide to the Expression of Uncertainty in Measurement (GUM 6 ) (see clause , note 3 of ISO/IEC 17025) is often regarded as having the more rigorous approach to the estimation of uncertainty. However, in certain cases, the validity of results from a particular mathematical model may need to be verified, e.g. through inter-laboratory comparisons. c. In those cases where a well-recognised test method specifies the limits to the values of the major sources of uncertainty of measurement, and specifies the form of presentation of calculated results, the laboratory can be considered to have satisfied the uncertainty of measurement requirements (see clause of , note 2 ISO/IEC 17025) by following that test method. 2.5 Degree of Rigour The degree of rigour and the method used for estimating uncertainty should be determined by the laboratory in accordance with note 1 of clause of ISO/IEC To do this, the laboratory should: a. consider the requirements and limitations of the test method and the need to comply with good practice in the particular testing sector; b. ensure that it understands the requirements of the customer (see clause (a) of ISO/IEC 17025). It is often the case that the customer understands the problem but does not know what tests are required, and thus needs guidance on the uncertainty required for solving the problem; c. use methods, including methods for estimating uncertainty, which meet the needs of the customer (see clause of ISO/IEC 17025). It should be noted that what a customer wants may not be what is appropriate for the testing under consideration;

7 d. consider the narrowness of limits on which decisions on conformance with specification are to be made; e. consider the cost effectiveness of the approach adopted. In general, the degree of rigour relates to the level of risk. To properly evaluate safety or substantial property risk or financial risk, a relatively rigorous uncertainty estimate is required for the associated tests or measurements. For property evaluations where the test result supports a fitness for purpose conclusion, the associated test or measurement uncertainty may have a minor effect on the conclusion and would thus require a less rigorous estimate. In general, if less rigour is exercised in estimating measurement uncertainty, the estimated measurement uncertainty value will be larger than an estimate obtained from a more rigorous approach. Semi-quantitative measurements require less rigorous treatment of measurement uncertainty. If there is a large margin between the measured results and the specified limits, test results with a larger uncertainty are acceptable and a less rigorous approach to the estimation of measurement uncertainty can be justified. See of APLAC TC004 7 for a more detailed discussion on how measurement uncertainty affects the ability to distinguish compliance from non-compliance. If the estimated uncertainty is not acceptable to the laboratory s customer or is too large for determination of compliance with the specification, the laboratory should endeavour to reduce the uncertainty, e.g. through identification of the largest contributors to uncertainty and working on reducing these. 2.6 Uncertainty Arising from Sampling Measurement uncertainty strictly applies only to the result of a specific measurement on an individual specimen. During contract review there should be consideration and agreement with the customer as to whether the test result and uncertainty are to be applied to the specific sample tested or to the bulk from which it came. Where sampling (or sub-sampling) is to be treated as part of the test, the uncertainty arising from such sampling should be considered by the laboratory. Estimating the representativeness of a sample or set of samples from a larger population requires understanding of the homogeneity of the larger population and additional statistical analysis. Where a test method includes specific sampling procedures designed to characterise a batch, lot or larger population, the measurement uncertainties for individual measurements are often insignificant relative to the statistical variation of the batch, lot or larger population. In cases where the measurement uncertainty of individual measurements is significant in relation to the standard deviation of the sampling, the measurement uncertainty should be taken into consideration when characterising the batch, lot or larger population.

8 Where the test procedure includes a specific sub-sampling procedure, it is necessary to analyse the representativeness of the sub-sample as part of the measurement uncertainty estimation. Where there is doubt about the representativeness of a sub-sample, it is recommended that multiple subsamples be taken and tested to evaluate the homogeneity of the prepared sample from which sub-samples were drawn. Where only one sample is available and is destroyed during the test, the precision of sampling cannot be determined directly. However, the precision of the measurement system should be considered. A possible method for estimation of the precision of sampling is to test a batch of homogeneous samples for a highly repeatable measurand and to calculate the standard deviation of sampling from the results obtained. 2.7 Reporting Measurement Uncertainty Laboratories should have the competence to interpret measurement results and their associated measurement uncertainties for their customers. For quantitative test results, measurement uncertainty should be reported, where required, by clause (c) of ISO/IEC 17025, which includes the following circumstances: a. when it is relevant to the validity or application of the result; b. when acustomer s instructions require it; c. when the uncertainty affects compliance with a specification limit. When measurement uncertainty is not reported under the provision of the third paragraph of clause of ISO/IEC 17025, its absence should not affect the accuracy of the conclusion, clarity of the reported information nor should it introduce any ambiguity in the information provided to the customer. The requirement that it is necessary to report measurement uncertainty when the uncertainty is relevant to the validity or application of the test result will often need to be interpreted. In such cases, the customer s needs and the ability of the customer to use the information should be taken into consideration. Although in the short term some customers will not be in a position to make use of measurement uncertainty data, this situation can be expected to improve. When reporting measurement uncertainty, the reporting format recommended in the GUM 6 is recommended. The results of the uncertainty estimations should be reported based on a level of confidence of 95%. The indiscriminate use of a coverage factor of 2 is not recommended. Not all combined uncertainties are normally distributed and, where practicable, the uncertainty appropriate to the 95% confidence level for the appropriate distribution should be used. The coverage factor used for calculating the expanded uncertainty should be reported. When reporting the test result and its uncertainty, the use of excessive numbers of digits should be avoided. Unless otherwise specified, the primary result should be rounded to the number of significant figures consistent with

9 measurement uncertainty. When the test method prescribes rounding to a level that implies greater uncertainty than the actual measurement uncertainty, the uncertainty implied by this rounding should be reported as the measurement uncertainty of the reported result. On the other hand, if the actual uncertainty is larger than that implied by the reporting requirement, the laboratory should include a statement of the estimated measurement uncertainty in the report. 2.8 Determining Compliance with a Specification Decisions on when and how to report compliance or non-compliance vary according to the requirements of the customer and other interested parties. However, the laboratory should take measurement uncertainty into consideration appropriately when making compliance decisions, and customers should not be misled in relation to the reliability of such decisions. 2.9 Assessment for Accreditation During assessment and surveillance of a laboratory, an accreditation body should evaluate the capability of the laboratory in estimating the measurement uncertainty for tests included in its scope of accreditation. The assessment team should check that the methods of estimation applied are valid, all significant uncertainty components have been included, and all the criteria of the accreditation body are met. The assessment team should also ensure that the smallest uncertainties claimed can be achieved by the laboratory. Specific Interpretations Sections 3 to 7 below give, where required, additional interpretations of the guidance given above for some specific technical disciplines. Section 8 gives the requirements and guidance for equipment calibrations carried out in-house by testing laboratories. 3. Physical and Mechanical Testing 3.1 This section gives specific additional guidance in relation to all physical and mechanical tests, including NDT and flammability tests, and for all materials and products, including textiles and garments. 3.2 For tests covered under note 2 of clause of ISO/IEC 17025, assessing the capability of the laboratory to evaluate the measurement uncertainty of the test results may not be required because an estimation of uncertainty for the test is not specifically required by the standard. However, as laboratory customers may request a laboratory to report the measurement uncertainty of such results, an accreditation body may need to evaluate the capability of the laboratory to make such estimates of measurement uncertainty. Interpretation of the terms used in note 2 of clause of ISO/IEC should be as follows.

10 a. Well-recognised test methods (or procedures) should generally be taken as those meeting the conditions stated in clause of ISO/IEC 17025, paragraph 2. That is, those test methods published as international, regional, or national standards, or by reputable technical organisations, or test methods specified in a governing code, law, regulation or specification applying to the specific item under test. Certain test methods specified by reputable manufacturers of testing equipment may also be considered to be well-recognised. The laboratory should provide sufficient evidence to demonstrate that these test methods are valid and are well accepted within the relevant technical discipline. b. Specifies limits to the values of the major sources of uncertainty is taken to mean that the test method specifies (i) the maximum allowable uncertainty or maximum permissible limits for each required measurement, and (ii) limits for environmental conditions or other factors that are known to have a significant influence on the outcome of the test(s). The specified limits should apply to all uncertainty sources that, in combination, contribute at least 95% to the combined uncertainty. A laboratory intending to apply note 2 of clause of ISO/IEC should demonstrate that the conditions detailed above are satisfied. The laboratory should also demonstrate that, in applying the test method, all such measurements and factors are controlled within the specified limits. c. Specifies the form of presentation of calculated results is taken to mean that the standard includes a specific statement regarding the number of significant figures to which a result is to be reported, the rounding procedure or other specific form of expression of results. If the test method (or procedure) refers to another document which specifies any of the following, then the requirement that the test method (or procedure) specifies the form of presentation of calculated results should be considered to have been satisfied: i. the number of significant figures used to report the result; ii. iii. the way the reported results are to be used or interpreted; the method for calculating the reported results limits the number of significant figures. Where all of these conditions are met, no further work in estimating measurement uncertainty is needed and no statement of measurement uncertainty needs to be reported. 4. Construction Materials Testing 4.1 The types of test and measurement included in this discipline may be classified into three categories, and the uncertainty reporting requirements for each of them are stated as follows.

11 a. For purely quantitative tests, the measurement uncertainties should be determined and, where required by (c) of ISO/IEC 17025, should be reported. b. For results of pure qualitative evaluations, including those stated in numerical terms but not obtained from a quantitative measurement, reporting the measurement uncertainty is not necessary. c. For qualitative evaluations based on the application of controlled and measured conditions and, where the allowable variation in conditions has a significant potential effect on the outcome of the evaluation (often a pass/fail conclusion), it is recommended that the measurement uncertainty of the conditions and their potential effects on the test result be evaluated and discussed in the report to the extent practicable. 4.2 a. Conditions for application of note 2 of clause of ISO/IEC are as follows. i. Well recognised test method is taken to mean a test method published by a nationally or internationally recognised standards setting body or a test method specified in a governing code, law, regulation or specification applying to the item under evaluation. It may also include industry standards. ii. iii. Specifies limits to the values of the major sources of uncertainty is taken to mean that the test method specifies the maximum allowable uncertainty for each required measurement and specifies limits for environmental conditions or other factors that are known to have a significant influence on the outcome of the test(s). Specifies the form of presentation of calculated results is taken to mean that the standard includes a specific statement regarding the number of significant figures to which the result is to be reported, the rounding procedure or other specified forms of expression of results. b. Where all these conditions are met, no further statement of measurement uncertainty needs to be reported. c. In cases where the actual measurement uncertainty is larger than that implied by the reporting requirement, the laboratory should include a statement of the estimated measurement uncertainty in the report. 4.3 If the general approaches to estimation of uncertainty discussed in clause 2.4 above cannot be applied, a reasonable estimate of measurement uncertainty based on professional judgement may be used. Such an estimate should be based on substantial relevant experience and analysis of available data. 5. Electrical Testing 5.1 Electrical tests may be categorised under five general areas and this document is applicable to all of them:

12 a. electrical characteristic tests (for materials, components, subassemblies, instruments and apparatus) b. environmental and reliability tests c. electromagnetic compatibility tests d. telecommunications tests e. electrical safety tests. 5.2 Measurement uncertainty for quantitative electrical tests should be evaluated. Laboratories should have the required procedures and uncertainty budgets in place for estimation of measurement uncertainty for all quantitative tests. 5.3 For quantitative tests, GUM 6 procedures should be taken as the general approach in the estimation of measurement uncertainty. In addition, the following documents may be used as references in the specific testing areas: a. electromagnetic compatibility tests: UKAS LAB 34 8 b. telecommunication tests: ETR For electrical testing, ISO 5725 should not be used as a general approach for measurement uncertainty estimation as it is not applicable. 6. Chemical Testing 6.1 Introduction This section elaborates, for chemical testing, the requirements of ISO/IEC and the general interpretations and guidance given in section 2 above. Guidance on measurement uncertainty in analytical chemistry is available from Eurachem and CITAC 10. In considering measurement uncertainty requirements, it is necessary to also consider the measurement specification, method validation and traceability. These issues need to be considered for all measurements, but the degree of rigour required depends on the particular circumstances (see clause 2.5). The measurand needs to be carefully defined, paying particular attention to whether sampling or sub-sampling is included or excluded from the customer s requirements. Sub-sampling in the laboratory will usually be included but sampling of a shipment will often be excluded from the defined measurand. Method validation and verification data from repeat analysis of matrix reference materials, in-house standards, replicate analyses, inter-laboratory comparison programs, etc., will be useful in establishing method precision which, for chemical testing, is usually the major component of uncertainty. The uncertainty of chemical measurements, in most cases, includes components from physical measurements, such as weighing, temperature measurement, volume measurement, etc. Such measurements are traceable

13 to SI units and full uncertainty budgets should be available if such measurements make a significant contribution to the overall uncertainty. Traceability of the final chemical estimation is usually to a reference material which, although often not complying with the VIM definition of a certified reference material, should be the best available. Where specified sample preparation, extraction, digestion, chemical reactions, etc are included in the method and no correction for method bias (e.g. recoveries) is specified, the method is regarded as empirical and is traceable to its specific instructions. A different method purporting to measure the same test parameter as a given method would often give a different result. The uncertainty of physical measurements, the purity of calibration reference materials and their uncertainties, the uncertainties associated with recovery (bias) trials (when recovery factors are applied to results), as well as precision data should all be considered in the evaluation of measurement uncertainty. 6.2 Measurement Uncertainty Evaluation Strategies Measurement uncertainty estimates should cover all significant sources of uncertainty that can be reasonably attributed to the measurand. The following approaches to the evaluation of measurement uncertainty may be taken, depending on circumstances. a. Rigorous consideration of individual sources, combined with mathematical combination to produce a measurement uncertainty. This approach is often considered appropriate for the most critical work, including for the characterisation of reference materials. However, where an inappropriate model is used, this approach will provide an inaccurate measurement uncertainty and is not necessarily better than the following approach. b. Estimation of measurement uncertainty based on the overall estimate of precision through inter-laboratory studies and method validation, taking into consideration additional uncertainty sources. Additional sources that need to be considered may include sample homogeneity and stability, calibration/reference material used, bias/recovery, equipment measurement uncertainty (where only one item of equipment was used in obtaining the precision data). The following give some practical steps for routine chemical testing: a. specify the measurand; b. identify significant sources of measurement uncertainty; c. consider reproducibility data (ISO 5725). In the field of chemical analysis it is considered acceptable to group sources of uncertainty together; d. consider the additional components of uncertainty. Precision data alone may not be sufficient and additional effects should be considered. Additional studies may be needed to evaluate uncertainty sources, which have not been covered by precision data. The additional work required need not involve major research and development;

14 e. combine the precision data with the additional components to determine overall uncertainty of the method. For empirical methods, the method bias is by definition zero and only individual laboratory and measurement standard bias effects need to be considered. Advice on the treatment of recovery is available in Thompson 11. It is important to ensure that all appropriate effects are covered but not double counted. Where appropriate, effects of matrix type and changes in concentration should be included in the measurement uncertainty. Where proficiency testing precision data are used, it is important to ensure that the data used to estimate the measurement uncertainty are relevant. In particular, they should relate to the same measurand, same test method and matrix. In chemical testing it is customary to evaluate the uncertainty at selected concentration levels for a particular test method. However, when a measurement is being made to test compliance with specified, standard or limit values, it is necessary to use an uncertainty value attributable to measurement results close to the specified, standard or limit values. Therefore, it is useful to select the specified, standard or limit values as the levels at which the uncertainty is estimated. This approach is most likely to provide the best estimate of the measurement uncertainty at test result levels adjacent to the specified, standard or limit values. Professional judgement may be used for estimating the magnitude of uncertainty attributed to certain sources where better estimates are not available or readily obtainable. In such cases, at least a short-term precision estimate of the source should be included in the evaluation. Where professional judgement has to be used for significant sources, it must be based on objective evidence or previous experience. Estimates of measurement uncertainty containing significant sources evaluated by professional judgement should not be used for applications demanding the most rigorous evaluation of uncertainty. 7. Microbiological Testing 7.1 There are four main types of microbiological tests: a. general quantitative procedures b. MPN procedures c. qualitative procedures d. specialist tests, e.g. pharmaceutical testing Various approaches to estimating measurement uncertainty are available for general quantitative testing.

15 7.2 The Poisson distribution and confidence limit approaches as described in BS and ISO may significantly underestimate uncertainty as not all sources of uncertainty are taken into account. The distribution of particles or organisms in a liquid may be described using the Poisson distribution but other components of uncertainty associated with the test procedure are not included. Indeed some components of uncertainty such as dilutions and consistency of reading plates will not be described by the Poisson distribution. 7.3 The negative binomial model described in ISO TR may be more appropriate as it covers the Poisson distribution plus over-dispersion factors. 7.4 Some of the approaches described in the Eurachem / CITAC Guide may also be applicable for microbiology. Intermediate precision as set out in ISO 5725 is considered to incorporate most if not all of the significant uncertainty components of microbiological tests. Any components of uncertainty not included in intermediate precision, such as performance of different batches of media, variation in incubator conditions (where only one incubator is available for replicates), etc., may be examined for significance by other statistical means. 7.5 The distribution of results from plate count tests is not normal but skewed (long right tail). Such data may first be transformed by taking the logarithm 10 of each result, to obtain close to a normal distribution. The log standard deviation and confidence limits may then be calculated before anti-logging each limit separately. Where other components of uncertainty such as sampling or equipment variations need to be combined with a precision result estimated using logs and anti-logs, sophisticated mathematical calculations may be required. For those situations where test results are less than about 10 CFU, the distribution may be closer to normal and estimation of precision, perhaps without logs, for these particular ranges, will be necessary. For one-off analyses, the Poisson distribution approach will give a quick estimate of the uncertainty (see note to clause of BS ). However, this is likely to significantly underestimate the actual uncertainty. 7.6 Any uncertainty associated with method bias is not relevant as quantitative microbiological tests are empirical tests with the result of an analysis being dependent on media, incubation times and temperatures specified. A few CRMs are available for quantitative tests. Where they are available, their certified results are mostly obtained from collaborative studies. Therefore only consensus values from the specified method are available and, as with all other microbiological test methods, these methods are also empirical. 7.7 It is traditional in Most Probable Number (MPN) analyses to refer to McCrady s Tables to obtain a test result as well as the 95% confidence limits. These data have been established statistically but possibly without consideration of all sources of uncertainty. Laboratories are encouraged to identify unusual combinations of positive tubes and to reject such results. If this is done effectively, the uncertainties quoted in the tables will, in the meantime, be

16 regarded as a reasonable estimate of uncertainty for these methods. 7.8 In some areas of specialist testing e.g., pharmaceutical microbiological assays, note 2 of clause of ISO/IEC may be applicable, as the methods concerned include validation of the assay parameters, specify limits to the values of the major sources of uncertainty of measurement and define the form of presentation of calculated results. 7.9 At this stage, very little method performance data are available from collaborative trials, although this situation may change in the future. Proficiency testing data may not always provide suitable measurement uncertainty data because significant aspects may not have been taken into account. a. Matrix differences may occur between the proficiency test samples and the samples routinely tested by a laboratory. b. The population levels may not be the levels routinely tested in a laboratory and/or may not cover the full range of population levels encountered in routine laboratory work. c. Participating laboratories may use a variety of empirical methods (different measurands) to produce the results for the proficiency testing programs. However, statistical analysis of results from proficiency testing programs may give an indication of the precision obtainable from a particular method At present, microbiological laboratories often do not have to report uncertainty unless required by customers or unless the interpretation of results may be compromised without it. When reporting uncertainty, a description of the procedure used to estimate the uncertainty should also be included because of the various methods used around the world that give different results Guidelines for reporting compliance with specification are given in APLAC TC 004. However, implementing these guidelines may not be straightforward. a. Specifications rarely quote the empirical method to be used. b. Depending on how a laboratory estimates its uncertainty, situations may arise where, if results are close to a specification limit, one laboratory may state that a sample complies with the specification whereas another laboratory may state that there is doubt as to whether or not that same sample complies with the specification. Where the uncertainty estimate indicates that there is doubt about compliance or non-compliance, the laboratory should report a result and its associated uncertainty without making a statement on compliance or non-compliance.

17 8. Calibrations Done by Testing Laboratories For calibrations affecting test results significantly, the laboratory should have the calibrations performed by an accredited calibration laboratory. Where a testing laboratory opts to carry out its own calibrations in-house, the accreditation body should ensure that the calibration procedures are valid and that the uncertainty is determined following appropriate procedures. The accreditation body will need to ensure that the assessment team includes adequate expertise to make this determination. Accreditation bodies may provide some guidance on estimation of uncertainty for common instruments, e.g., balances, thermometers, volumetric glassware and pressure gauges. 9 References 1. ISO/IEC 17025:2005: General Requirements for the Competence of Testing and Calibration Laboratories. 2. International vocabulary of basic and general terms in metrology (VIM), second edition, 1993, ISO/BIPM/IEC/IFCC/IUPAC/IUPAP/IOML, Published by ISO. 3. ILAC G17: 2002: Introducing the Concept of Uncertainty of Measurement in Testing in Association with the Application of the Standard ISO/IEC 17025; International Laboratory Accreditation Cooperation. 4. EA 4/16: 2003: EA Guidelines on the Expression of Uncertainty in Quantitative Testing; European Cooperation of Accreditation. 5. ISO 5725:1994: Accuracy (trueness and precision) of Measurement Methods and Results Parts 1 to Guide to the expression of uncertainty in measurement, first edition, 1995, ISO/BIPM/IEC/IFCC/IUPAC/IUPAP/IOML. (Published by ISO). 7. APLAC TC004: 2006 Method of Stating Test and Calibration Results and Compliance with Specification. 8. UKAS LAB 34: 2003: The Expression of Uncertainty in EMC Testing; United Kingdom Accreditation Service. 9. ETR 028: Radio Equipment and Systems (RES), Uncertainties in the Measurement of Mobile Radio Equipment Characteristics, 2 nd edition, ETSI, March Eurachem/CITAC Guide, Quantifying Uncertainty in Analytical Measurement, 2 nd edition 2000, (see M Thompson et al, Harmonised Guidelines for the Use of Recovery Information in Analytical Measurement, Pure & Applied Chemistry.,71 (2), , BS 5763: Part 5:1981: Methods for Microbiological Examination of Food and Animal Feeding Stuffs Part 5 - Enumeration of Micro-organism Colony count at 30 C. 13. ISO 7218: 1966: Microbiology of food and animal feeding stuffs General rules for microbiological examinations. ISO TR 13843: 2000: Water quality Guidance on validation of microbiological methods 14. ISO TR 13843: 2000: Water quality Guidance on validation of microbiological methods

This paper describes the interpretation and guidelines set

This paper describes the interpretation and guidelines set 1070 ROBERTSON & CHAN:JOURNAL OF AOAC INTERNATIONAL VOL. 86, NO. 5, 2003 SPECIAL GUEST EDITOR SECTION APLAC Interpretation and Guidance on the Estimation of Uncertainty of Measurement in Testing MAX ROBERTSON

More information

Introducing the Concept of Uncertainty of Measurement in Testing in Association with the Application of the Standard ISO/IEC 17025

Introducing the Concept of Uncertainty of Measurement in Testing in Association with the Application of the Standard ISO/IEC 17025 Introducing the Concept of Uncertainty of Measurement in Testing in Association with the Application of the Standard ISO/IEC 17025 ILAC-G17:2002 Copyright ILAC 2002 ILAC encourages the authorised reproduction

More information

MAURITAS R3:2017 Issue No. 7:Revision 1 Date: November 2017 MAURITAS. Traceability of measurement. Mauritius Accreditation Service. Copyright MAURITAS

MAURITAS R3:2017 Issue No. 7:Revision 1 Date: November 2017 MAURITAS. Traceability of measurement. Mauritius Accreditation Service. Copyright MAURITAS Issue No. 7:Revision 1 MAURITAS R3 Traceability of measurement Mauritius Accreditation Service Copyright MAURITAS CONTENTS FOREWORD... 2 ABOUT MAURITAS PUBLICATIONS... 2 1. PURPOSE... 3 2. SCOPE AND RESPONSIBILITIES...

More information

Quality System Guidance

Quality System Guidance Page 1 of 16 TABLE OF CONTENTS 1.0 SCOPE... 2 2.0 REFERENCES... 2 3.0 TERMS AND DEFINITIONS... 2 4.0 BACKGROUND... 5 5.0 GUIDANCE ON IMPLEMENTATION... 5 5.1 Choosing Type A or Type B... 6 5.2 General considerations...

More information

Quality System Guidance

Quality System Guidance Page 1 of 16 TABLE OF CONTENTS 1.0 SCOPE... 2 2.0 REFERENCES... 2 3.0 TERMS AND DEFINITIONS... 2 4.0 BACKGROUND... 5 5.0 GUIDANCE ON IMPLEMENTATION... 5 5.1 Choosing Type A or Type B... 6 5.2 General considerations...

More information

APLAC GUIDANCE ON REFERENCE MATERIAL USE AND PRODUCTION

APLAC GUIDANCE ON REFERENCE MATERIAL USE AND PRODUCTION APLAC GUIDANCE ON REFERENCE MATERIAL USE AND PRODUCTION Issue 6 Issue Date: 2018/02 Page 1 of 18 PURPOSE Reference Materials (RMs) are used in all stages of the measurement process, for method validation,

More information

CRITERIA FOR VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES AND RELATED INDUSTRIES

CRITERIA FOR VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES AND RELATED INDUSTRIES Document No: SADCAS TR 17 Issue No: 1 CRITERIA FOR VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES AND RELATED INDUSTRIES Prepared by: SADCAS Advisory Committee TLAP Approved by: SADCAS CEO Approval

More information

ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison

ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison ema training workshop August 8-9, 2016 Mexico City Class Schedule Monday, 8 August Types of PT of interest

More information

APLAC GUIDELINES FOR FOOD TESTING LABORATORIES

APLAC GUIDELINES FOR FOOD TESTING LABORATORIES APLAC GUIDELINES FOR FOOD TESTING LABORATORIES Issue No. 2 Issue Date: 01/08 Page 1 of 13 PURPOSE This document provides guidance to APLAC members and their accredited laboratories on the operation of

More information

A016 Traceability of measurement results compared to national and international measurement standards

A016 Traceability of measurement results compared to national and international measurement standards 08.04.2016 Version 08 Page 1 de 9 A016 Traceability of measurement results compared to national and international measurement standards Modifications: p 2 South Lane Tower I 1, avenue du Swing L-4367 Belvaux

More information

OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT

OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT PA/PH/OMCL (05) 49 DEF CORR UNCERTAINTY OF MEASUREMENT - PART 1 Full document title and reference Document type Legislative basis Uncertainty

More information

Guidance on Uncertainty for Testing Laboratories

Guidance on Uncertainty for Testing Laboratories Guidance on Uncertainty for Testing Laboratories May 10, 2012 The purpose of this guidance document is to establish guidance on traceability and measurement uncertainty requirements for all testing laboratories

More information

Guidelines for the assessment of the appropriateness of small interlaboratory comparisons within the process of laboratory accreditation

Guidelines for the assessment of the appropriateness of small interlaboratory comparisons within the process of laboratory accreditation Publication Reference EA-4/21 INF: 2018 Guidelines for the assessment of the appropriateness of small interlaboratory comparisons within the process of laboratory accreditation PURPOSE This paper provides

More information

DESIGN AND OPERATION OF AN INTERLABORATORY COMPARISON SCHEME

DESIGN AND OPERATION OF AN INTERLABORATORY COMPARISON SCHEME DESIGN AND OPERATION OF AN INTERLABORATORY COMPARISON SCHEME R.M. VOICULESCU, M. C. OLTEANU, V.M. NISTOR Institute for Nuclear Research Pitesti, Romania, ramona.voiculescu@nuclear.ro ABSTRACT The competence

More information

Guidelines for the validation and verification of chemical test methods

Guidelines for the validation and verification of chemical test methods Technical Note 17 April 2009 Issued: August 2004 Amended and reissued: December 2006, April 2009 Guidelines for the validation and verification of chemical test methods Be Absolutely Assured Copyright

More information

NATA Policy on Calibration and Measurement Traceability

NATA Policy on Calibration and Measurement Traceability NATA Policy on Calibration and Measurement Traceability Paul McMullen Sector Manager, Calibration This Session 1. VIM Definitions Calibration and Metrological Traceability 2. Previous Policy on Metrological

More information

A2LA. R231 Specific Requirements: Threat Agent Testing Laboratory Accreditation Program. December 6, 2017

A2LA. R231 Specific Requirements: Threat Agent Testing Laboratory Accreditation Program. December 6, 2017 Laboratory Page 1 of 17 Laboratory December 6, 2017 2017 by A2LA All rights reserved. No part of this document may be reproduced in any form or by any means without the prior written permission of A2LA.

More information

Meeting the ISO/IEC Requirements for Traceability and Measurement Uncertainty. APLAC Approaches. Dr Bernard King NARL, Australia

Meeting the ISO/IEC Requirements for Traceability and Measurement Uncertainty. APLAC Approaches. Dr Bernard King NARL, Australia Meeting the ISO/IEC 17025 Requirements for Traceability and Measurement Uncertainty APLAC Approaches Dr Bernard King NARL, Australia Interpretation of ISO/IEC 17025 Requirements Extensive consultation

More information

A61-01 CALA Traceability Policy Revision 3.2 September 16, 2016

A61-01 CALA Traceability Policy Revision 3.2 September 16, 2016 A61-01 CALA Traceability Policy Revision 3.2 September 16, 2016 PAGE II TABLE OF CONTENTS TABLE OF CONTENTS... 1 CALA TRACEABILITY POLICY... 2 1.0 SCOPE... 2 2.0 BACKGROUND... 2 3.0 DEFINITIONS... 3 4.0

More information

R205: SPECIFIC REQUIREMENTS: CALIBRATION LABORATORY ACCREDITATION PROGRAM. December 2011

R205: SPECIFIC REQUIREMENTS: CALIBRATION LABORATORY ACCREDITATION PROGRAM. December 2011 Page 1 of 12 R205: SPECIFIC REQUIREMENTS: CALIBRATION LABORATORY ACCREDITATION PROGRAM December 2011 2011 by A2LA All rights reserved. No part of this document may be reproduced in any form or by any means

More information

American Association for Laboratory Accreditation

American Association for Laboratory Accreditation Page 1 of 28 R205: SPECIFIC REQUIREMENTS: CALIBRATION LABORATORY ACCREDITATION PROGRAM November 2012 2012 by A2LA All rights reserved. No part of this document may be reproduced in any form or by any means

More information

SCC Requirements and Guidance for Calibration and Measurement Traceability in Testing Laboratories

SCC Requirements and Guidance for Calibration and Measurement Traceability in Testing Laboratories Accreditation Services SCC Requirements and Guidance for Calibration and Measurement Traceability in Testing Laboratories 2017-07-06 Standards Council of Canada 55 Metcalfe Street, Suite 600 Ottawa, ON

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 13528 Second edition 2015-08-01 Corrected version 2016-10-15 Statistical methods for use in proficiency testing by interlaboratory comparison Méthodes statistiques utilisées

More information

PS5 Policy on Measurement Traceability Issue 7 June 2018 Page 1 of 5

PS5 Policy on Measurement Traceability Issue 7 June 2018 Page 1 of 5 Policy on Measurement Traceability PS5 1) Purpose This Statement outlines INAB policy on traceability of measurement for laboratories accredited to ISO 17025, ISO 15189 and inspection bodies accredited

More information

Measurement Uncertainty Guide. ISO Accreditation Program

Measurement Uncertainty Guide. ISO Accreditation Program Measurement Uncertainty Guide ISO 15189 Accreditation Program Background Why This is Necessary The ISO 15189:2012 standard contains enhanced expectations regarding measurement uncertainty (MU) in clause

More information

Standard Practices for Measurement Traceability in Forensic Toxicology

Standard Practices for Measurement Traceability in Forensic Toxicology ANSI/ASB Standard 017, First Edition 2018 Standard Practices for Measurement Traceability in Forensic Toxicology This document is copyrighted by the AAFS Standards Board, LLC. 2018 All rights are reserved.

More information

Measurement uncertainty in quantitative food microbiology: revision of ISO/TS 19036

Measurement uncertainty in quantitative food microbiology: revision of ISO/TS 19036 Measurement uncertainty in quantitative food microbiology: revision of ISO/TS 19036 Workshop EURL/NRLs Campylobacter, 10 October 2018, Uppsala Dr Bertrand LOMBARD Coordinator EURLs Listeria monocytogenes

More information

Policy on the Traceability of Measurement Results

Policy on the Traceability of Measurement Results Page 1 of 14 Reviewed by: Getnet Tsigemelak Position: Deputy Director General Signature: Approved by: Araya Fesseha Position: Director General Signature: Contents pages 1. Purpose and scope... 2 2. References...

More information

General Accreditation Criteria Equipment assurance, in-house calibration and equipment verification

General Accreditation Criteria Equipment assurance, in-house calibration and equipment verification General Accreditation Criteria Equipment assurance, in-house calibration and equipment verification January 2018 Copyright National Association of Testing Authorities, Australia 2009 This publication is

More information

APPENDIX H TRACEABILITY OF MEASUREMENT

APPENDIX H TRACEABILITY OF MEASUREMENT APPENDIX H TRACEABILITY OF MEASUREMENT Table of Contents 1. SCOPE... 2 2. REFERENCES... 2 3. TERMS AND DEFINITIONS... 2 4. BACKGROUND... 6 5. TRACEABILITY OF MEASUREMENT POLICY... 7 7. GUIDANCE ON IMPLEMENTING

More information

Raad voor Accreditatie (Dutch Accreditation Council RvA) Explanatory document on microbiology

Raad voor Accreditatie (Dutch Accreditation Council RvA) Explanatory document on microbiology Raad voor Accreditatie (Dutch Accreditation Council RvA) Explanatory document on microbiology Document code: A RvA-Explanatory note describes the policy and/or the procedures of the RvA concerning a specific

More information

Statistical methods for use in proficiency testing by interlaboratory comparison

Statistical methods for use in proficiency testing by interlaboratory comparison Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 13528 Second edition 2015-08-01 Corrected version 2016-10-15 Statistical methods for use in proficiency testing by interlaboratory comparison Méthodes

More information

Guidance on the Application. of ISO / IEC Accreditation International Association for Certifying Bodies

Guidance on the Application. of ISO / IEC Accreditation International Association for Certifying Bodies Accreditation International Association for Certifying Bodies Guidance on the Application of ISO / IEC 17020 Guidance on the Application of ISO/IEC 17020 Page 1 of 16 Introduction This guidance document

More information

PALCAN Guidance for the Validation of Test Methods

PALCAN Guidance for the Validation of Test Methods PALCAN Guidance for the Validation of Test Methods CAN-P-1629 PALCAN GUIDANCE FOR THE VALIDATION OF TEST METHODS POLITIQUE DU PALCAN CONCERNANT LA VALIDATION DES MÉTHODES D ESSAIS CAN-P-1629 Copyright

More information

A24 CALA Checklist for Microbiology Revision 4.1 February 16, 2018

A24 CALA Checklist for Microbiology Revision 4.1 February 16, 2018 A24 CALA Checklist for Microbiology Revision 4.1 February 16, 2018 Laboratory Name: Appendix Name: Appendix Number: Assessor: Date: Rev. 4.1 CALA CHECKLIST FOR MICROBIOLOGY Item 01 SAMPLING AND SAMPLE

More information

Guide to Fulfillment of Validation and Verification of Examination Requirements

Guide to Fulfillment of Validation and Verification of Examination Requirements DIAGNOSTIC ACCREDITATION PROGRAM College of Physicians and Surgeons of British Columbia 300 669 Howe Street Telephone: 604-733-7758 ext. 2635 Vancouver BC V6C 0B4 Toll Free: 1-800-461-3008 (in BC) www.cpsbc.ca

More information

GLP/SC/01 Basic statistical tools for analytical chemistry (2 days)

GLP/SC/01 Basic statistical tools for analytical chemistry (2 days) GLP Consulting http://consultglp.com Courses on offer (See outlines below) GLP/SC/01 Basic statistical tools for analytical chemistry (2 days) GLP/SC/02 The GUM bottom-up evaluation technique of measurement

More information

From purpose based interpretation to appropriate application of Calibration and Interlaboratory comparison results

From purpose based interpretation to appropriate application of Calibration and Interlaboratory comparison results From purpose based interpretation to appropriate application of Calibration and Interlaboratory comparison results Mulugeta Derebew mulugetaderebew@yahoo.com Test & Measurement 2017, Conference and Workshop,

More information

~' ~fcan KAN-TN-LI 02

~' ~fcan KAN-TN-LI 02 \1\11111/11 I ''" \ I f 1,,, ' " ';::::::./,,.,. ~' ~fcan KAN-TN-LI 02 ii.a...-::::::=:, -::- ~...----...-...;: 'l /...--... " ' "'"'/. I' r"'\ "', ~' 'if. \,,, '''"'",, Komite Akreditasi Nasional KAN

More information

Establishment of an Accredited Reference Measurement Laboratory

Establishment of an Accredited Reference Measurement Laboratory Establishment of an Accredited Reference Measurement Laboratory Francesco Dati, PhD IVD-Consulting Marburg / Germany E-mail: f.dati@t-online.de Quality of Analytical Systems Reference Measurement Systems

More information

A Primer on Reference Materials Matthew Sica Environmental Program Manager

A Primer on Reference Materials Matthew Sica Environmental Program Manager A Primer on Reference Materials Matthew Sica Environmental Program Manager Overview Related Standards Definitions and types of RMs Data Supporting RMs Use of RMs 2 RM Related Standards ISO Guide 30 Vocabulary

More information

ILAC P10 TRACEABILITY

ILAC P10 TRACEABILITY ACTIVITY 1.3 TRAINING SESSION FOLLOWING THE FINDINGS FROM PREVIOUS ACTIVITIES: ILAC P10 TRACEABILITY Maria Pia Toni Slide 1 of XX REFERENCE ILAC P10:2013 ILAC Policy on the Traceability of Measurement

More information

Guidance Document. A Guide for the Validation and Approval of New Marine Biotoxin Test Methods. 10 April 2017

Guidance Document. A Guide for the Validation and Approval of New Marine Biotoxin Test Methods. 10 April 2017 Guidance Document A Guide for the Validation and Approval of New Marine Biotoxin Test Methods A guidance document issued by the Ministry for Primary Industries Title Guidance Document: Validation and Approval

More information

Policy on Measurement Traceability

Policy on Measurement Traceability Policy on Measurement Traceability Date of Issue: January 1, 2006 Voluntary EMC Laboratory Accreditation Center, Inc. (VLAC) This document is copyrighted under the Copyright Act. Unauthorized reproduction,

More information

Specific Accreditation Criteria Materials ISO/IEC Annex. Cement testing

Specific Accreditation Criteria Materials ISO/IEC Annex. Cement testing Specific Accreditation Criteria Materials ISO/IEC 17025 Annex Cement testing January 2018 Copyright National Association of Testing Authorities, Australia 2013 This publication is protected by copyright

More information

General requirements for the competence of testing and calibration laboratories. In this presentation:

General requirements for the competence of testing and calibration laboratories. In this presentation: General requirements for the competence of testing and calibration laboratories ISO/IEC 17025:2017 In this presentation: Explanation New requirement Interpretation / Examples / Questions Agenda Welcome

More information

~~~\ VKAN KAN-TN-LI 05

~~~\ VKAN KAN-TN-LI 05 ''\"l"/ 1 1,,,, '-J '/ ~ ~~~\ VKAN KAN-TN-LI 05 il.ac MRA -... _ ~ -:::- Komite Akreditasi Nasional ~,..~'2,./. ~,~' ''!. 1 1/11111 \,,,,, KAN TECHNICAL NOTES FOR THE ACCREDITATION OF INSPECTION BODIES

More information

- CONTAMINANTS IN FOOD (COUNCIL REGULATION (EEC) No 315/93 OF 8 FEBRUARY 1993 LAYING DOWN COMMUNITY PROCEDURES FOR CONTAMINANTS IN FOOD 1 )

- CONTAMINANTS IN FOOD (COUNCIL REGULATION (EEC) No 315/93 OF 8 FEBRUARY 1993 LAYING DOWN COMMUNITY PROCEDURES FOR CONTAMINANTS IN FOOD 1 ) REPORT ON THE RELATIONSHIP BETWEEN ANALYTICAL RESULTS, MEASUREMENT UNCERTAINTY, RECOVERY FACTORS AND THE PROVISIONS OF EU FOOD AND FEED LEGISLATION, WITH PARTICULAR REFERENCE TO COMMUNITY LEGISLATION CONCERNING

More information

ILAC Policy on Traceability of Measurement Results

ILAC Policy on Traceability of Measurement Results ILAC Policy on Traceability of Measurement Results ILAC-P10:2002 Copyright ILAC 2002 ILAC encourages the authorised reproduction of its publications, or parts thereof, by organisations wishing to use such

More information

GENERAL GUIDELINES FOR THE ACCREDITATION OF FOOD AND ENVIRONMENTAL MICROBIOLOGICAL LABORATORIES

GENERAL GUIDELINES FOR THE ACCREDITATION OF FOOD AND ENVIRONMENTAL MICROBIOLOGICAL LABORATORIES GENERAL GUIDELINES FOR THE ACCREDITATION OF FOOD AND ENVIRONMENTAL MICROBIOLOGICAL LABORATORIES ESYD G-MICROBIOL/01/02/20-10-2016 1/12 ESYD G-MICROBIOL Issue: 01 Revision: 02 Issue Date: 20-06-2007 Revision

More information

PRINCIPLES FOR THE USE OF SAMPLING AND TESTING IN INTERNATIONAL FOOD TRADE CAC/GL Adopted in Revision: 2015.

PRINCIPLES FOR THE USE OF SAMPLING AND TESTING IN INTERNATIONAL FOOD TRADE CAC/GL Adopted in Revision: 2015. PRINCIPLES FOR THE USE OF SAMPLING AND TESTING IN INTERNATIONAL FOOD TRADE CAC/GL 83-2013 Adopted in 2013. Revision: 2015. CAC/GL 83-2013 2 1. INTRODUCTION Sampling and testing are, among others, procedures

More information

ILAC-P10:01/2013 -Calibration-

ILAC-P10:01/2013 -Calibration- ACTIVITY 1.4 TRAININGS OF MOLDAC PERSONNEL INVOLVED IN ACCREDITATION PROCESS INCLUDING THE ISSUE REGARDING THE REQUIREMENTS OF THE NEW VERSIONS OF THE EA, IAF, ILAC DOCUMENTS ILAC-P10:01/2013 -Calibration-

More information

PROFICIENCY TESTS PROTOCOL. Document valide au 21/02/2018. Editor: Marie-Phillipe SEILLER

PROFICIENCY TESTS PROTOCOL. Document valide au 21/02/2018. Editor: Marie-Phillipe SEILLER PROFICIENCY TESTS PROTOCOL Editor: Marie-Phillipe SEILLER This booklet gives information about the design of proficiency tests offered by BIPEA. For any further information, please feel free to contact

More information

Presented By: Matt Sica

Presented By: Matt Sica FQS Accreditation for forensic testing agencies Presented By: Matt Sica ANSI-ASQ National Accreditation Board Implies an unbroken path to a higher level of accuracy or authority. Characterized by a number

More information

CRITERIA FOR VALIDATION AND QUALITY ASSURANCE IN MICROBIOLOGICAL TESTING

CRITERIA FOR VALIDATION AND QUALITY ASSURANCE IN MICROBIOLOGICAL TESTING Document No: SADCAS TR 18 Issue No: 1 CRITERIA FOR VALIDATION AND QUALITY ASSURANCE IN MICROBIOLOGICAL TESTING Prepared by: SADCAS Advisory Committee TLAP Approved by: SADCAS CEO Approval Date: 2018-03-24

More information

TECHNICAL AND PRODUCTION REQUIREMENTS of ISO Guide 34:2009

TECHNICAL AND PRODUCTION REQUIREMENTS of ISO Guide 34:2009 SANAS Accr. No/s. TECHNICAL AND PRODUCTION REQUIREMENTS of ISO Guide 34:2009 Date/s of evaluation Assessor/s & Observers Facility Area / field of Representative operation This report covers the following:

More information

Estimation of measurement uncertainty in food microbiology: a normative approach

Estimation of measurement uncertainty in food microbiology: a normative approach Estimation of measurement uncertainty in food microbiology: a normative approach 3 rd AOAC Europe Eurachem Symposium, 3-4 March 2005, Brussels Bertrand LOMBARD AFSSA-LERQAP, Maisons-Alfort, France E-mail:

More information

ILAC-P10:2002. ILAC Policy on Traceability of Measurement Results

ILAC-P10:2002. ILAC Policy on Traceability of Measurement Results ILAC-P10:2002 ILAC Policy on Traceability of Measurement Results Copyright ILAC 2002 ILAC encourages the authorised reproduction of its publications, or parts thereof, by organisations wishing to use such

More information

Equipment In-house Calibration Requirements and use of Non-Accredited Calibration Service Providers

Equipment In-house Calibration Requirements and use of Non-Accredited Calibration Service Providers Issue 5.0: Provided additional clarification on record retention and non-conforming work with In- House calibration. Issue 6.0: Updated UL internal approvers only. No other changes. For Client Labs Purpose

More information

CRITERIA FOR PERFORMING CALIBRATION AND INTERMEDIATE CHECKS ON EQUIPMENT USED IN ACCREDITED FACILITIES

CRITERIA FOR PERFORMING CALIBRATION AND INTERMEDIATE CHECKS ON EQUIPMENT USED IN ACCREDITED FACILITIES CRITERIA FOR PERFORMING CALIBRATION AND INTERMEDIATE CHECKS ON EQUIPMENT USED IN ACCREDITED FACILITIES Approved By: Chief Executive Officer: Ron Josias Senior Manager: Mpho Phaloane Reviewed By: Field

More information

Application of ISO/IEC 17025

Application of ISO/IEC 17025 Application of ISO/IEC 17025 A Testing Perspective Colleen M. Cotter, Accreditation Manager Outline An overview of CALA Application of ISO/IEC 17025 Specific requirements for Testing Laboratories (5.6.2.2)

More information

American Association for Laboratory Accreditation

American Association for Laboratory Accreditation Page 1 of 14 P113 A2LA Policy on Measurement Traceability for Life (November 2012) 2012 by A2LA. All rights reserved. No part of this document may be reproduced in any form or by any means without the

More information

KAN GUIDE ON MEASUREMENT ASSURANCE

KAN GUIDE ON MEASUREMENT ASSURANCE KAN-G-06 KAN GUIDE ON MEASUREMENT ASSURANCE Issue Number : 3 April 2016 Komite Akreditasi Nasional National Accreditation Body of Indonesia Gedung I BPPT, Lt. 14 Jl. MH Thamrin No. 8, Kebon Sirih, Jakarta

More information

The role of accreditation bodies and EQA organisers in the. specifications

The role of accreditation bodies and EQA organisers in the. specifications The role of accreditation bodies and EQA organisers in the assessment of analytical quality specifications Ian Mann Swiss Accreditation Service ian.mann@sas.ch Content Important partners and aspects of

More information

Terms and conditions for laboratories appointed to undertake the testing of compost under the Compost Certification Scheme aligned to PAS 100 and the

Terms and conditions for laboratories appointed to undertake the testing of compost under the Compost Certification Scheme aligned to PAS 100 and the Terms and conditions for laboratories appointed to undertake the testing of compost under the Compost Certification Scheme aligned to PAS 100 and the Compost Quality Protocol Renewable Energy Assurance

More information

A2LA. P113a Policy on Reference Material Traceability for Life Sciences Testing Laboratories

A2LA. P113a Policy on Reference Material Traceability for Life Sciences Testing Laboratories Page 1 of 6 Introduction The Life Sciences Advisory Committee realizes that the traceability of reference materials (RMs) per the requirements of ISO/IEC 17025:2005 (Section 5.6.3) or ISO/IEC 17025:2017(Section

More information

Specific Accreditation Criteria

Specific Accreditation Criteria Specific Accreditation Criteria ISO/IEC 17025 Application Document Materials - Annex Characterisation of industrial materials - General July 2018 Copyright National Association of Testing Authorities,

More information

General Accreditation Guidance. ISO/IEC 17025:2017 Gap analysis. April 2018

General Accreditation Guidance. ISO/IEC 17025:2017 Gap analysis. April 2018 General Accreditation Guidance Gap analysis April 2018 Copyright National Association of Testing Authorities, Australia 2018 This publication is protected by copyright under the Commonwealth of Australia

More information

EA Guidance on Accreditation of Pesticide Residues Analysis in Food and Feed

EA Guidance on Accreditation of Pesticide Residues Analysis in Food and Feed Publication Reference EA-4/22 G: 2018 EA Guidance on Accreditation of Pesticide Residues Analysis in Food and Feed PURPOSE This paper provides guidance to develop harmonized accreditation of Pesticide

More information

Available online at ScienceDirect. Procedia Engineering 132 (2015 )

Available online at  ScienceDirect. Procedia Engineering 132 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 132 (2015 ) 811 815 The Manufacturing Engineering Society International Conference, MESIC 2015 Metrological Regulations for

More information

ISO/IEC 17025:2017 Working Document Instruction Page

ISO/IEC 17025:2017 Working Document Instruction Page Instruction Page NOTES: 1. This working document is intended as a checklist for the assessor when conducting Testing and Calibration Laboratory and Sampling Organization Assessments according to ISO/IEC

More information

Guide on measurement uncertainty for the enumeration of Listeria monocytogenes

Guide on measurement uncertainty for the enumeration of Listeria monocytogenes EU COMMUNITY REFERENCE LABORATORY FOR LISTERIA MONOCYTOGENES Site de Maisons-Alfort LABORATOIRE D ÉTUDES ET DE RECHERCHES SUR LA QUALITÉ ALIMENTAIRE ET SUR LES PROCÉDÉS AGROALIMENTAIRES Guide on measurement

More information

WELMEC European cooperation in legal metrology

WELMEC European cooperation in legal metrology WELMEC 8.6 Issue 1 WELMEC European cooperation in legal metrology Measuring Instruments Directive 2004/22/EC Presumption of Conformity of the Quality System of Manufacturers with Module D or H 1 when EN

More information

Traceability Exercise Documenting Vendor Evaluations and Calibration Certificate Review

Traceability Exercise Documenting Vendor Evaluations and Calibration Certificate Review Traceability Exercise Documenting Vendor Evaluations and Calibration Certificate Review Douglas Berg Testing Technical Program Mgr Perry Johnson Laboratory Accreditation PJLA NIST Traceability What is

More information

ISO/IEC 17025:2017 Transition Webinar Questions & Answers

ISO/IEC 17025:2017 Transition Webinar Questions & Answers Contents 1. Complaints... 1 2. Decision Rules... 2 3. General... 3 4. MS Options... 4 5. Risk... 5 6. Sampling... 6 7. Traceability... 7 8. Transition... 8 1. Complaints Is the Complaints process expected

More information

IL AC-G22:2004. Use of Proficiency Testing as a Tool for Accreditation in Testing

IL AC-G22:2004. Use of Proficiency Testing as a Tool for Accreditation in Testing IL AC-G22:2004 Use of Proficiency Testing as a Tool for Accreditation in Testing Copyright ILAC 2004 ILAC encourages the authorised reproduction of its publications, or parts thereof, by organisations

More information

TECHNICAL GUIDANCE FOR THE VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES IN THE FOOD, WATER AND RELATED INDUSTRIES

TECHNICAL GUIDANCE FOR THE VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES IN THE FOOD, WATER AND RELATED INDUSTRIES TECHNICAL GUIDANCE FOR THE VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES IN THE FOOD, WATER AND RELATED INDUSTRIES Approved By: Chief Executive Officer: Ron Josias Senior Manager: Christinah Leballo

More information

ISO INTERNATIONAL STANDARD. Statistical methods for use in proficiency testing by interlaboratory comparisons

ISO INTERNATIONAL STANDARD. Statistical methods for use in proficiency testing by interlaboratory comparisons INTERNATIONAL STANDARD ISO 13528 First edition 2005-09-01 Statistical methods for use in proficiency testing by interlaboratory comparisons Méthodes statistiques utilisées dans les essais d'aptitude par

More information

MODULE 2A GENERAL MANAGEMENT SYSTEM REQUIREMENTS

MODULE 2A GENERAL MANAGEMENT SYSTEM REQUIREMENTS MODULE 2A GENERAL MANAGEMENT SYSTEM REQUIREMENTS 2A.1 SCOPE (See ISO/IEC 17025:2005, Section 1) Laboratories shall meet all requirements of the ISO/IEC 17025:2005 International Standard and other AIHA-LAP,

More information

A12 CALA Policy on Reference Methods Revision 1.4 July 6, 2018

A12 CALA Policy on Reference Methods Revision 1.4 July 6, 2018 Revision 1.4 July 6, 2018 TABLE OF CONTENTS TABLE OF CONTENTS... 1 CALA POLICY ON REFERENCE METHODS... 1 1.0 SCOPE... 1 2.0 BACKGROUND... 1 3.0 DEFINITIONS:... 1 4.0 POLICY... 2 5.0 REQUIREMENTS FOR IMPLEMENTATION

More information

Preparation Approval Authorisation Application date. Directive Council The President

Preparation Approval Authorisation Application date. Directive Council The President Title Proficiency Testing Reference RT-24 Revision 02 Date 2015-10-27 NOTE: The present document represent the English version of document under reference at the specified revision. In case of conflict

More information

TECHNICAL REQUIREMENTS (CLAUSE 5)

TECHNICAL REQUIREMENTS (CLAUSE 5) LECTURE 4 THE ELEMENTS OF ISO/IEC 17025 - TECHNICAL REQUIREMENTS (CLAUSE 5) Slide 1 ISO 17025 - RELATIONSHIP OF EACH REQUIREMENTS Management System Organization Quality system Continual Improvement Management

More information

American Association for Laboratory Accreditation

American Association for Laboratory Accreditation ISO 15189 Page 1 of 17 Accredited clinical laboratories are required to meet the following additional requirements as contained in P905 - A2LA Metrological Traceability Policy for ISO 15189 Laboratory

More information

General Protocol. SENATE Microbiological Proficiency Testing Schemes

General Protocol. SENATE Microbiological Proficiency Testing Schemes SENATE Microbiological Proficiency Testing Schemes General Protocol Bio Senate Ltd. Unit 12B, Britannia Mill, Cobden Street, Bury, Lancashire, BL9 6AW, UK. Telephone: + 44 (0) 161 764 4998 Fax: + 44 (0)

More information

Exposing Myths, Legends and Tales About Reference Materials. Presented by: Matt Sica - ANAB Steve Arpie Absolute Joe Konschnik - RESTEK

Exposing Myths, Legends and Tales About Reference Materials. Presented by: Matt Sica - ANAB Steve Arpie Absolute Joe Konschnik - RESTEK Exposing Myths, Legends and Tales About Reference Materials Presented by: Matt Sica - ANAB Steve Arpie Absolute Joe Konschnik - RESTEK Overview Reference Materials Accreditation Reference Materials Production

More information

The Uncertain State of Uncertainty in Industry

The Uncertain State of Uncertainty in Industry The Uncertain State of Uncertainty in Industry Dilip A. Shah President, E = mc 3 Solutions Excellence = Measurement, Calibration, Computers, Consulting Solutions 197 Great Oaks Trail #130 Wadsworth, Ohio

More information

''---""//,. v KAN TECHNICAL NOTES FOR ACCREDITATION OF INSPECTION BODIES IN THE SCOPE OF INDUSTRIAL EQUIPMENT AND MACHINERY

''---//,. v KAN TECHNICAL NOTES FOR ACCREDITATION OF INSPECTION BODIES IN THE SCOPE OF INDUSTRIAL EQUIPMENT AND MACHINERY ''---""//,. v \1\"l "/'1,_,,\: \..._,/ /'~,,,, '- '-" / " '~.::. ~ D.ac MffA _ KAN ~~.J Komite Akreditasi Nasional,,, ~...,... '',,!. r'\ ';\,'' '''"I 11\\\ KAN-TN-LI 04 KAN TECHNICAL NOTES FOR ACCREDITATION

More information

Measurement Traceability

Measurement Traceability Measurement Traceability NANDTB Aircraft Inspection and Maintenance Seminar Oct 2017 Brett Hyland Sector Manager, Infrastructure This Session Aims to explain Traceability represents a process of comparison

More information

Guidance for Swedac s assessors on the assessment of laboratories based on the requirements set out in SS-EN ISO/IEC 17025:2005

Guidance for Swedac s assessors on the assessment of laboratories based on the requirements set out in SS-EN ISO/IEC 17025:2005 SWEDAC DOC 02:5 Version 10 2016-05-16 Guidance for Swedac s assessors on the assessment of laboratories based on the requirements set out in SS-EN ISO/IEC 17025:2005 Swedac, Swedish Board for Accreditation

More information

OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT

OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT OMCL Network of the Council of Europe QUALITY ASSURANCE DOCUMENT PA/PH/OMCL (13) 113 2R Evaluation and Reporting of Results Core document Full document title and reference Evaluation and Reporting of Results

More information

Examples of reference materials

Examples of reference materials Examples of reference materials JCTLM Working Group for Traceability: Education and Promotion (WG-TEP) Area 2: Mini-presentations to explain scientific concepts What are reference materials? Reference

More information

A69 Checklist for Bulk Asbestos Revision 1.2 May 5, 2015

A69 Checklist for Bulk Asbestos Revision 1.2 May 5, 2015 A69 Checklist for Bulk Asbestos Revision 1.2 May 5, 2015 Laboratory Name: Appendix Name: Appendix Number: Assessor: Date: 01 DOCUMENT CONTROL 01 4.3 : is there a documented method? : Verify that the current

More information

P112 Flexible Scope Policy

P112 Flexible Scope Policy Page 1 of 6 Introduction A flexible Scope of Accreditation, as described in this policy, is only available to laboratories accredited to ISO/IEC 17025 in either calibration or the biological, chemical

More information

KAN-TN-LI 07 KAN TECHNICAL NOTES FOR ACCREDITATION OF INSPECTION BODIES PERFORMING NOT. Issue Number: 3 April 2016

KAN-TN-LI 07 KAN TECHNICAL NOTES FOR ACCREDITATION OF INSPECTION BODIES PERFORMING NOT. Issue Number: 3 April 2016 KAN-TN-LI 07 KAN TECHNICAL NOTES FOR ACCREDITATION OF INSPECTION BODIES PERFORMING NOT Issue Number: 3 April 2016 Komite Akreditasi Nasional National Accred itation Body of Indonesia Gedungl BPPT Lt. 14

More information

STATIONARY SOURCE AUDIT SAMPLE PROGRAM [VOLUME 1, MODULE 1] GENERAL REQUIREMENTS FOR STATIONARY SOURCE AUDIT SAMPLE PROVIDERS

STATIONARY SOURCE AUDIT SAMPLE PROGRAM [VOLUME 1, MODULE 1] GENERAL REQUIREMENTS FOR STATIONARY SOURCE AUDIT SAMPLE PROVIDERS [V1M1-2014]-Rev2.0 STATIONARY SOURCE AUDIT SAMPLE PROGRAM [VOLUME 1, MODULE 1] GENERAL REQUIREMENTS FOR STATIONARY SOURCE AUDIT SAMPLE PROVIDERS TNI Working Draft Standard P.O. Box 2439 Weatherford, TX

More information

VALIDATION OF ANALYTICAL PROCEDURES: METHODOLOGY *)

VALIDATION OF ANALYTICAL PROCEDURES: METHODOLOGY *) VALIDATION OF ANALYTICAL PROCEDURES: METHODOLOGY *) Guideline Title Validation of Analytical Procedures: Methodology Legislative basis Directive 75/318/EEC as amended Date of first adoption December 1996

More information

Guidance document Regulation (EC) 882/2004 Microbiological sampling and testing of foodstuffs. Enne de Boer. II. Analysis

Guidance document Regulation (EC) 882/2004 Microbiological sampling and testing of foodstuffs. Enne de Boer. II. Analysis TAIEX workshop Ankara, 4-5 March 2013 Guidance document Regulation (EC) 882/2004 Microbiological sampling and testing of foodstuffs II. Analysis Enne de Boer Contents Sample testing at laboratories Requirements

More information

ISO General Requirements for Competence of Testing Laboratories Procedure

ISO General Requirements for Competence of Testing Laboratories Procedure Competence of Testing Laboratories Page: 1 of 24 ISO 17025 General Requirements for Competence of Testing Laboratories Procedure Competence of Testing Laboratories Page: 2 of 24 Table of Contents Para.

More information

Specific Accreditation Criteria

Specific Accreditation Criteria Specific Accreditation Criteria ISO/IEC 17025 Application Document Manufactured Goods - Annex Physical July 2018 Copyright National Association of Testing Authorities, Australia 2013 This publication is

More information

GUIDE Uncertainty of measurement Part 1: Introduction to the expression of uncertainty in measurement

GUIDE Uncertainty of measurement Part 1: Introduction to the expression of uncertainty in measurement GUIDE 98-1 Uncertainty of measurement Part 1: Introduction to the expression of uncertainty in measurement First edition 2009 ISO/IEC 2009 This is a preview - click here to buy the full publication PDF

More information