December 25, 2017 CHAPTER 4 SUPPORTING PLANNING AND CONTROL: A CASE EXAMPLE

Size: px
Start display at page:

Download "December 25, 2017 CHAPTER 4 SUPPORTING PLANNING AND CONTROL: A CASE EXAMPLE"

Transcription

1 December 25, 17 CHAPTER 4 SUPPORTING PLANNING AND CONTROL: A CASE EXAMPLE Chapter Outline 4.1 Background What was the cause of the desperation that lead to the development of the Program Evaluation and Review Technique (PERT)? 4.7 Summary Explain how network analysis can be considered a comprehensive DSS. 4.2 Project Planning - The Network Diagram Explain why any project involves a number of interrelated activities or jobs. What is a predecessor activity. Explain precedence relationships in a project. 4.3 Converting Time Estimates into Planning Information Explain the difference between time estimates (data) and planning information in a PERT system. 4.4 Trade-Off between Time and Cost in Selecting the "Best" Plan Explain why time and cost involve a trade-off in most projects. What is the Least Cost Method as used in project planning? 4.5 Scheduling the Project What is activity scheduling? How does it relate to time analysis? 4.6 Information for Control What happens in a network when activity time estimates change?

2 4.1 Background To illustrate how a DSS can provide actionable information for planning and control, we use Network Analysis, a popular tool for managing projects. We will not discuss the mechanics of this technique since it is covered in all introductory management science books. Our aim is to highlight the "information" aspects of Network Analysis as a DSS to support project management. For readers who are unfamiliar with Network Analysis terminology, we include a brief glossary of terms at the end of the chapter, and flag terms in the text that are explained in the glossary with the symbol. Network Analysis is a generic name for a number of procedures which are all based on the concept of a "network diagram." Some common variants of this basic approach are PERT (Program Evaluation and Review Technique), CPM (Critical Path Method) and RAMPS (Resource Allocation and Multiple Project Scheduling). Program Evaluation and Review Technique - PERT PERT was born of sheer desperation. In 1956, during the initial stages of the U.S. Navy's Polaris missile development program, the Special Projects Office in charge of this immense project found that all the conventional management methods were hopelessly inadequate to keep track of the schedule. Superimposed on the job of coordinating the efforts of 11,000 contractors was a degree of uncertainty as to when crucial research and development stages might be completed. PERT was devised then with time as the critical factor, and its application is credited with saving two years from the original estimate of five years required to complete the project. An interesting aspect of PERT was the use of three completion time estimates for each activity, and the application of statistical probability theory to forecast the likely chance of completing the project within a given date. The success of this application led the U.S. Department of Defense to specify that all future defense contracts must use PERT. Since the Polaris project the method has undergone considerable development and is called PERT/Cost. The expanded version of PERT is a

3 Chapter 4 - Page 2 comprehensive system, which encompasses cost and resource aspects in addition to time. Critical Path Method - CPM Concurrently with PERT, CPM was developed at DuPont for scheduling chemical plant construction. The entire emphasis in the initial development of PERT was on time since early military applications were intent on completing the project in the shortest possible time, there being no cost constraints. In the case of most "business" projects, however, costs also have to be considered. In general, project time can be reduced but only with an attendant increase in costs. The CPM technique relates costs to time and shows how to accelerate the project for the lowest possible cost. Resource Allocation and Multiple Project Scheduling - RAMPS Neither PERT nor CPM in their early development considered the detailed problems of scheduling and allocating resources. Reduction of project duration to a minimum is a desirable aim, but this objective must be tempered with the need to reduce peak resources requirements and to avoid periods when resources are not fully used. Here again, research originated at DuPont and took shape under the name of RAMPS. This technique can be applied to the problem of allocating various resources like manpower, equipment, assembly floor space, etc., over the entire duration of the project in the best possible way. The RAMPS method is also capable, as its name implies, of taking into account several projects running together, with the projects in competition for the same limited resources. 4.2 Project Planning - The Network Diagram Any project involves a number of interrelated activities or jobs. The crux of Network Analysis is the network diagram which reflects the logical flow of the work to be done. The activities are represented by arrows which are linked as follows. Activities that logically are to follow each other are drawn in sequence with the direction of the arrow indicating progress. Activities that can be carried out concurrently are represented by parallel arrows. Exhibit 4.1 shows a network diagram, also called an arrow diagram, for a small project. The diagram would, of course, be much larger for a complex project and would take a considerable amount of time on the part of the project manager and the project planning team to develop. Nevertheless it is worth the effort since the very act of creating the arrow diagram ensures that all the jobs to be done are represented where they belong without any omission. The final diagram enables the entire project scope to be

4 Chapter 4 - Page 3 immediately, and visually, assimilated. It is superior to a prose description which could run into several pages for a complex project resulting in the interrelationships being lost in the welter of words. The charting tools that are available in several mainframe and personal computer packages enable the arrow diagram to be easily drawn, stored and revised as necessary. Several customized packages for network analysis are also commercially available. Viewed from the perspective of a Decision Support System, the arrow diagram represents the first step to support the planning process for a project. It depicts in a graphical form: * all the activities to be carried out * the prerequisites (or predecessor activities ) for each activity - the activities that must be done before a given activity can be started * activities that are not dependent on each other, and hence can be undertaken concurrently. 4.3 Converting Time Estimates into Planning Information Having drawn the diagram, the next step in the planning process is to estimate the time required for each activity. In case of uncertainty, three time estimates can be provided for the activity representing the optimistic, most likely, and pessimistic time estimates to complete that activity. These time estimates can be viewed as the raw data. A time analysis based on a simple mathematical model converts this raw data into useful planning information such as:

5 Chapter 4 - Page 4 Exhibit 4.1 Network Diagram for a Project to Introduce a New Computer System 2 Send personnel (4) 3 Train #1 (10) Prepare phase 2 (9) Train #2 (12) 6 19 Prepare manual (3) 13 Approve (1) 17 Print (2) 18 Deliver (1) Familiarize (5) 22 Select personnel (2) Prepare phase 1 (8) 5 Draft and approve brochure (4) 11 Layout brochure (5) 14 Print (3) (1) Deliver B and M (8) Salesmen go home 1 General approach (10) 4 Consolidate advertising (6) 9 Prepare advertising (10) 15 Approve advertising (4) Select marketing trainees (4) Consolidate marketing trainees (2) 8 Prepare paper (6) Distribute Advertising (2) (2) Release and carry advertising 12 Submit and publish 7 (8) 21 Bring in (2) Design course (8) Train marketing personnel (8) 10 This diagram is taken from the Instructor's Manual for Casebooks in Production Management: Basic Problems, Concepts and Techniques A. R. Dooley, William K. Holstein, et. al., John W. Wiley & Son, Inc., New York, 1964, p.117. * what is the total project duration? * in the case of uncertainty reflected by the three time estimates for the activities, what is the probability of completing the project in X number of days? * what are the critical activities, i.e., activities that must be completed on time to meet the project deadline? * what is the slack available for the non-critical activities? The planning information enables the project team to set priorities for executing the various activities. Clearly, the critical activities are top priority. For the noncritical activities, the slack is a measure of the amount of leeway that is available for each job. A slack time of one day or week or

6 Chapter 4 - Page 5 whatever time unit is used is indicative of a near-critical job deserving a much higher priority than a a job with a slack time of 10. There is much more in the variety of planning information that is available from the time analysis. Our aim here is to provide just a flavor for how it converts the raw data on time estimates into useful information for the planning function. An example is provided in section 4.5 where the use of this information for scheduling the activities is discussed. 4.4 Trade-Off between Time and Cost in Selecting the "Best" Plan The next step, still in the planning process, is to add cost data to the activities to determine the optimal project duration, i.e., the one that incurs the lowest total project cost. For this purpose, "direct" costs of labor, material, equipment, etc. need to be distinguished from "indirect" costs such as overheads and other costs such as cost of lost sales and penalties for contract delays (or bonuses for early completion). Direct costs tend to increase as project duration is reduced since more resources are used, as opposed to indirect costs, which will decrease. The Least Cost Method compares the two costs for a range of possible project times to determine the duration with the least total cost. We describe the Least Cost Method here in some detail for several reasons. First, it shows that to improve the quality of the planning information, more data is needed. Next, data by itself, is of no value unless it is converted into actionable information. The Least Cost Method performs this conversion and enables the decision-maker to make a choice from the available alternatives during the project planning phase. Finally, it shows how an algorithm, or systematic procedure, can be constructed to determine an optimum solution, in this case, one that minimizes costs. To apply the Least Cost Method, data on direct costs has to be collected for each activity in the following manner: 1. Determine the Normal Cost, which is defined as the minimum direct cost of carrying out the activity, using normal means and avoiding overtime, use of special staff, resources or materials. 2. The minimum time to do the activity for the Normal Cost is called the Normal Time. It is that activity time for which direct costs are lowest. No amount of extra time will reduce the cost below the Normal Cost. In fact, allowing

7 Chapter 4 - Page 6 too much time can produce an inefficient situation and may increase the cost. 3. As the time for performing an activity is compressed, its direct costs will in general increase. The shortest time for completing an activity using whatever means is available is called the Crash Time. 4. Costs are higher in the crash situation than in the normal situation because of extra resources being used. The minimum direct cost for performing the activity in the Crash Time is defined to be the Crash Cost. No amount of extra expense beyond the crash cost will reduce the duration below the Crash Time. To illustrate the Least Cost Method, consider the sample network drawn in Exhibit 4.2 with the Normal and Crash times and costs for the activities as given in Exhibit 4.3. Exhibit 4.2 Sample Project Network Diagram B D 3 G A F C E H 4

8 Chapter 4 - Page 7 Exhibit 4.3 Cost of Normal Normal Crash Crash Normal Activity Days Cost Days Cost $ per Day and Crash Time and A 3 $140 2 $ Cost Data B 6 $215 5 $ for C 2 $160 1 $ Diagram in D 4 $130 3 $ Exhibit 4.2 E 2 $170 1 $ F 7 $165 4 $ G 4 $210 3 $ H 3 $110 2 $ The Least Cost Method begins with an analysis of this data. The lowest direct cost of the project, $1,300 in the example, is achieved when all the activities are performed at their Normal Times. The Normal Project Duration, which can be determined by the time analysis, is by definition the longest - 11 days in the example. The next question is; What is the shortest time for completing the project? An immediate answer can be provided by using the Crash Times instead of the Normal Times for all activities in the time analysis. In our example, the Crash Project Duration is 8 days. The project cost when all activities are speeded up (crashed), is $1,890. But, is it necessary to crash all the activities to achieve the Crash Project Duration? The algorithm operates as follows to answer this question: Step 1: Start with the network with the Normal Times and crash only one day from the project duration. Why? Because only the critical activities have to be considered since the noncritical activities will have slack of at least one day. Which critical activities to crash? If there is only one critical path, only one activity on that path has to be crashed. In the case of multiple paths, each path has to be shortened by one day. In our example, there is only one critical path: A-D-G. Select the activity that costs the least to crash by one day - Activity D in the example has a crashing cost of $50 per day, compared to $70 per day for A and $80 per day for G. Note that a linear approximation is used between the costs for the Normal Time and the Crash Time to determine the Crashing Cost per day. Also, there could be other factors that might

9 Chapter 4 - Page 8 favor a more expensive critical activity for crashing such as the reliability of the person doing the job to get it done on time. But these factors are not easy to quantify and, hence, such considerations have to be applied by the user when reviewing the solution generated by the Least Cost Method. Step 2: Redo the time analysis of the network with the selected critical activity crashed by one day. In our example, the project duration with D crashed by one day will be 10 days, with an additional cost of $50, or a total project cost of $1,350. This is the best (i.e. the least cost) schedule for completing the project in 10 days. The old critical path, A-D-G, will still be critical. But there could be new critical paths. In this example, two new critical paths have emerged; B-G and A-F. Note that the three critical paths have some common activities. Step 3: Go back to Step 1. Crash one day from the new network. In our example, we have three critical paths: A (3 days) - D (3 days) - G (4 days) Total = 10 B (6 days) - G (4 days) Total = 10 A (3 days) - F (7 days) Total = 10 D cannot be crashed any more. The alternatives for crashing one day from each path can now be listed: 1. A and B 2. G and F 3. A and G Note that crashing activities A, B and F is also an alternative, but it is ruled out since it will cost more than crashing just A and B. The crashing costs for the three alternatives are: 1. Crash A and B by one day each: Cost = $ Crash G and F by one day each: Cost = $1 3. Crash A and G by one day each: Cost = $150 On the face of it, Alternative 2 costs the least, but is it really so? Look at Alternative 3. When A and G are crashed by one day each, the A-D-G path is now at 8 days, whereas the other two paths, B-G and A-F will take 9 days. This brings up the

10 Chapter 4 - Page 9 possibility of "uncrashing " D from 3 days to its Normal Time of 4 days, leading to a saving of $50. The final cost of Alternative 3, when D is uncrashed, is $100, which is then the cheapest alternative. Thus the algorithm for crashing one day at a time, although straightforward in principle, is tedious to work out because of the different combinations that have to be considered in multiple critical paths as in the case of even a simple example. This is where computer technology comes in - the algorithm can be programmed to operate using the principles that we applied in our simple example. Further, commercial software packages are available because of the popularity of Network Analysis. Step 4: Cycle through Steps 1 and 2 until the Crash Project Duration is achieved. In our example, the schedules for the range of durations from 11 days, the Normal Project Duration, to 8 days, the Crash Project Duration, is shown in Exhibit 4.4. Note that the least cost schedule for achieving the Crash Project Duration does not entail crashing all the activities in the network - only those that matter (C, E and H were not crashed at all in this example) and, further, only to the extent necessary (F was crashed only by one day). The Least Cost Method has thus generated the best schedules for the range of project durations, best in terms of the lowest direct cost for each duration. When plotted, the Direct Project Time-Cost Curve will look like the one shown in Exhibit 4.5. The indirect costs are then added to the graph for each project duration. These costs are not delineated here, but generally indirect costs will increase as the project duration is increased. A straight-line indirect cost function is assumed here. The Total Project Cost, which represents the sum of the direct and indirect costs, will be an U-shaped curve as shown in Exhibit 4.5 and yields the optimum project duration, i.e., the one that costs the least. The shape of the U-curve provides valuable information to the user on the impact of deviations from the optimum duration. A relatively flat U-curve shows that the optimum solution is less sensitive to a deviation than a sharp U-curve.

11 Chapter 4 - Page 10 Exhibit 4.4 Duration Schedule Total Direct Costs Project 11 days All Activities $1,300 Duration at Normal Times versus Direct 10 days Crash only D $1,350 Costs by one day 9 days Crash A and G $1,450 by one day each and "Uncrash" D 8 days Crash D, B and F $1,600 by one day each Exhibit 4.5 Project Time/Cost Graph Cost Total Cost Direct Cost Indirect Cost Time

12 Chapter 4 - Page Scheduling the Project Exhibit 4.6 Having determined the most practicable project duration from the U-shaped Project Time-Cost Curve, the next step in the planning function is to schedule the various activities and organize the necessary resources for implementing these activities. To illustrate how the information from the time analysis is used for the purpose, let us consider the project network shown in Exhibit 4.6. Normal Time estimates and the cost for completing each activity in the Normal Time are displayed. The desired completion time for the project is assumed to be "as early as possible," or in the minimum time. This implies that the length of the critical path will determine the completion time of the project. Sample Network Diagram 2 t = 6 Cost = 90 B t = 2 Cost = 60 3 D t = 3 Cost = 75 A C 4 E 6 I t = 4 Cost = 80 t = 9 Cost = 45 1 t = 1 Cost = 40 G t = 5 Cost = F J t = 2 Cost = 50 7 t = 10 Cost = H t = 7 Cost = 70 The time analysis for the network in Exhibit 4.6 is shown in Exhibit 4.7. The critical activities have zero slack with no leeway in their start times. The noncritical activities have leeway in their start times depending on the amount of slack, in this case from 1 month (activities F, H and J) to 12 months (activity G). In scheduling the project, the critical activities leave no choice. They have to be scheduled at their earliest start times. But there are choices to be made

13 Chapter 4 - Page 12 for the start times of the noncritical activities - they can be scheduled to start at any time between their Early Start and Late Start times. The cost implications of the way in which the activities are scheduled can be observed in Exhibit 4.8, which depicts the two extreme cases - the Early Start Schedule, in which every activity is started at its Early Start Time, and the Late Start Schedule, in which every activity's start is delayed as long as possible. Observe that even though both the schedules end up with the same total cost, $760, the way in which the expenditures are incurred over the life of the project is significantly different - the money is obviously spent sooner in the Early Start Schedule. However, in the Late Start Schedule, there is no slack available for noncritical activities since everything has been scheduled as late as possible (in essence, "using up" any available slack before an activity is started). Exhibit 4.7 Early Late Cost Duration Start Start Total per Time Activity (months) Time Time Slack Cost Month Analysis for Network in A Exhibit 4.6 B C D E F G H I J Between the two extreme schedules is a range of feasible schedules that can be generated by shifting the start time of noncritical activities between the earliest and latest start time values. With the latest technology in personal computers that allow users to use handwriting on a computer screen or panel, managers can try different schedules and see the cash flow implications on a graph similar to those shown in Exhibit 4.9 for the Early Start and Late Start Schedules. A similar analysis will have to be carried out for other critical resources such as people and machinery. Her again, there is no choice available for scheduling the critical activities. If the necessary resources for performing these activities are not made available, the project completion date will be

14 Chapter 4 - Page 13 affected. But the noncritical activities do present choices of management. These choices need to be evaluated in terms of their resource implications to enable a satisficing schedule to be selected. Our point here is to demonstrate that, to make these choices, the manager needs a sizable amount of data - the activity times and costs, Exhibit 4.8 Early and Late Start Schedule Graphs Time scale (Months) Early start schedule Monthly costs (100's of dollars) Cumulative costs Late start schedule Monthly costs (100's of dollars) Cumulative costs This material was adapted from A Management Guide to PERT/CPM Jerome D. Wiest and Ferdinand K. Levy

15 Chapter 4 - Page 14 Exhibit 4.9 $80,000 Cumulative Costs for Early and Late Start Schedules Cumulative costs $70,000 $60,000 $50,000 $40,000 $30,000 Early start cost schedule Range of feasible budgets Late start cost schedule $,000 $10,000 $ Time in months Prentice-Hall, Englewood Cliffs, NJ, 1969, p Information for Control the relationships between and among the activities (the precedence relationships) - and the means to convert this data into useable information for decision-making. The time analysis model, with its emphasis on slack and earliest and latest start times, is of great value in organizing and analyzing the network data. Let us turn next to a consideration of how Network Analysis supports the control function. To begin, the critical path concept provides a means for applying management by exception. Clearly, the critical activities have to receive top priority since any slippage in these activities will affect the planned completion date. Non-critical activities have to be controlled as well depending on the amount of available slack. Further, the time estimates for the activities could change as the project moves forward, making originally non-critical activities

16 Chapter 4 - Page 15 critical, and possibly making some of the originally critical activities noncritical. The time analysis procedure has a simple mechanism for incorporating the project status at any point: * Activities that are completed are assigned a zero time * Activities in progress are assigned the time needed to complete them * Activities that have not yet started are assigned their most recent (updated) time estimates The analysis is then repeated with the new time estimates resulting in updated information on project duration, critical path(s), slack for noncritical activities, etc. A review of the updated information will result in the planning process starting anew for the activities that are in progress or yet to be started. We go on to illustrate the richness of the control information by looking at project costs in addition to time. The basic concept of control says that comparing Actual to Budget means nothing since it all depends on the amount of work done for that expenditure. What should be compared with the Actual is not the Budget, but the value of work completed. For example, suppose the plan calls for the manufacture of 50 units of an item in 10 days at a budgeted cost of $3 per unit, or a total "project" cost of $150. At the end of 6 days, the actual expenditure was $1. The budgeted expenditure for these 6 days is $90 (assuming, as most budgeting procedures do, that the expenditures throughout the 10 days were uniform at $15 per day). Does this mean that there is a cost overrun? We cannot say for sure without knowing how much work was completed in the 6 days. If only units were produced, then the value of the work completed is $60 and there is a cost overrun of $60 or 100 percent. Also, there is a slippage in time since, according to the original plan, units should have been completed in 4 days, not 6. The "project" is therefore 2 days behind schedule. The analysis would obviously be quite different if 40 units had been completed in 6 days rather than. We now illustrate how Network Analysis supports the control of project costs through a comparison of work scheduled with work actually

17 Chapter 4 - Page 16 accomplished. Graphics provide an excellent medium for providing the control information as can be seen from the following example. Exhibit 4.10 shows the Cumulative Budgeted Cost (Line A) corresponding to the planned schedule for starting the various jobs in the project. The project is scheduled to begin in January, 1990, and to end by the first of April, 1991, at a total cost of $6 million. Suppose the project has been underway for some time - the current date is marked by the vertical line labeled "Today." The dashed line B shows the actual costs expended on the project and indicate that expenditures have exceeded the budget as of today. Of and by itself, this fact does not mean much. Perhaps progress on the project is ahead of schedule and the higher cost reflects this. On the other hand, if the project is just on schedule or, worse, behind schedule based on the work actually accomplished, then actuals have overrun the budget. What is the work that has been completed relative to the dollars budgeted for this work? Dotted line C displays the value of work completed, measured on the basis of the original cost estimates. Since line C is below line B, an overrun in costs has occurred. An underrun would be indicated when line C is above line B. The amount of overrun at any point in time can be seen in the vertical distance between the two lines. As of today, actual costs ($4.7 million) have exceeded the value of work completed ($2.4 million) by $2.3 million, an overrun of 95 percent. The lower part of Exhibit 4.10 displays line D which is a running calculation of the percent overrun (or underrun, if it occurs), from the following formula: Actual Cost - Value of Work Completed % Overrun (Underrun) = Value of Work Completed In this example, Line C also falls beneath line A, indicating that the project is behind schedule. The horizontal distance between line C at any point in time and line A shows the amount of delay at that time point. As of today (November 1), work valued at $2.4 million has been completed, which was originally scheduled to have been completed by the third week in August. The project is hence about 2.25 months behind schedule.

18 Chapter 4 - Page Summary Line E at the bottom of Exhibit 4.10 is a running tally of the number of months behind. It indicates that the project has progressively fallen further and further behind schedule and that initial delays are not being erased by accelerating subsequent work. Rather, delays are being further compounded. The project in this example obviously has serious problems to worry about. After only 10 months, the project is already more than 2 months behind schedule. Actual costs are almost double what they should be for the work accomplished. With the project's scheduled completion date rapidly approaching, the manager's immediate concern will probably be how soon can the project be completed? At what cost? Network Analysis is an excellent example of a comprehensive DSS that supports project management in the full management cycle of planning and control. It provides a logical and disciplined framework for classifying objectives and assumptions, for highlighting what decisions must be made when those decisions must be made. It provides a framework for evaluating alternative strategies for executing the project. In particular, the critical path concept provides a means of managing by exception, rather than managing every detail. This principle that is not practiced often enough, in part because exceptions and "must-do" activities are not easily identified and brought to the manager's attention by the information system.

19 Chapter 4 - Page 18 Exhibit 4.10 Cumulative Actual Costs vs. Budgeted Costs and Work Completed This exhibit and the associated discussion of Value of Work Completed was adapted from A Management Guide to PERT/CPM Jerome D. Wiest and Ferdinand K. Levy Prentice-Hall, Englewood Cliffs, NJ, 1969, p

20 Chapter 4 - Page 19 Glossary of Terms Critical Path: Network Diagram: Predecessor Activity: Uncertainty: Project Duration: Near-Critical Activity: Critical Activity: Non-Critical Activity: Slack: Normal Cost: Normal Time: Crash Cost: Crash Time: The longest path in the network. The path along which any delay will cause a delay in the project completion time. A logical flow diagram showing the work to be performed in a project. Activities are usually represented by arrows that are connected in a manner which shows which activities have to be performed before others can begin. Any activity that must be completed before another activity can be performed. Refers to the degree of error inherent in the time estimate for an activity's completion. The total time required to complete all of the activities that comprise the project. Since some activities may be performed simultaneously, the project duration is equal to the time required for the longest path (measured in time) within the network. An activity with a slack time that is close to zero, e.g. one day or one time unit. An activity with no (zero) slack. An activity that falls along the critical path. An activity with a substantial amount of slack time. The time that an activity's start can be delayed without delaying the completion time of the project. The additional time available to complete an activity without increasing the project duration. The regular direct cost of performing the activity in the normal planned time. Usually the minimum cost for performing the activity. The regular planned time needed to perform an activity at the Normal Cost. Usually the minimum time for performing the activity. The direct cost associated with performing an activity in the crash time. Since the crash time is shorter than the normal time, the crash cost is higher than the normal cost. The shortest time for completing an activity using whatever means that are available. Since reducing (crashing) activity time expends resources, the costs of achieving the crash time are higher than the normal cost.

21 Chapter 4 - Page Crashing Cost Per Day: Uncrashing: Schedule (activities): Early Start Schedule: Latest Start Schedule: The direct cost per day for reducing the time needed to complete an activity. Usually determined by calculating the per day cost between the crash time and cost and the normal time and cost. Increasing the time to perform an activity in the interest of saving direct cost. Typically done when an activity was crashed, but the effect was unnecessary because of delays in other parts of the network. The process of specifying which activities will be performed at what time. Usually done by setting the start date or time of each activity in the network. The schedule in which all activities are started at their earliest possible start time. The schedule in which all activities are started at their latest possible start time.

MBP1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar

MBP1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar MBP1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar L7 Project Time Management - II www.notes638.wordpress.com Content 1. Slack Time 2. Network Replanning 3. Estimating Activity

More information

MBH1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar. Lecture 6b Project Time Management - II

MBH1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar. Lecture 6b Project Time Management - II MBH1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar Lecture 6b Project Time Management - II MBP1123 Scope, Time & Cost Management Prepared by Dr. Zohreh Content 1. Introduction

More information

Scheduling Resources and Costs

Scheduling Resources and Costs Student Version CHAPTER EIGHT Scheduling Resources and Costs McGraw-Hill/Irwin Copyright 2011 by The McGraw-Hill Companies, Inc. All rights reserved. Gannt Chart Developed by Henry Gannt in 1916 is used

More information

Program Evaluation and Review Technique (PERT)

Program Evaluation and Review Technique (PERT) Program Evaluation and Review Technique (PERT) PERT Bar charts and CPM networks assume all activity durations are constant or deterministic. The assumption of constant durations may not be realistic because

More information

Project Management in Practice Fifth Edition

Project Management in Practice Fifth Edition Project Management in Practice Fifth Edition Chapter 5 Scheduling the Project Copyright 2014 John Wiley & Sons, Inc. Introduction Project schedule is the project plan in an altered format It is a convenient

More information

MBP1133 Project Management Framework Prepared by Dr Khairul Anuar

MBP1133 Project Management Framework Prepared by Dr Khairul Anuar MBP1133 Project Management Framework Prepared by Dr Khairul Anuar L4 Project Time Management www.notes638.wordpress.com Content 1. Scheduling 2. Common Scheduling Techniques 3. PERT 4. Network Fundamentals

More information

PMP Exam Preparation Course Project Time Management

PMP Exam Preparation Course Project Time Management Project Time Management 1 Project Time Management Processes Define Activities Sequence Activities Estimate Activity Resources Estimate Activity duration Develop Schedule Control Schedule In some projects,

More information

12/26/2013. Sharif University of Technology. Session#11. Instructor. Class time. Course evaluation. International Campus Kish

12/26/2013. Sharif University of Technology. Session#11. Instructor. Class time. Course evaluation. International Campus Kish International Campus Kish Sharif University of Technology Session#11 Instructor Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University of Technology Email: Fvalilai@Sharif.edu,

More information

FIGURE 8-8 Computer Printout of Sewer Line Activities Only (Sort of Activities List by Code Digit #I Equal to One).

FIGURE 8-8 Computer Printout of Sewer Line Activities Only (Sort of Activities List by Code Digit #I Equal to One). It****t**.**.****..****t " ACTIVITY SCHEDULE ** *t***************tt*.*t***** PROJECT: SEWER AND WATER LINES SCHEDULE FOR SEWER LINE ACTIVITIES ONLY '* PAGE 1 ** ACTIVITY SCHEDULE ACTIVITY NUMBER ACTIVITY

More information

PLANNING & SCHEDULING

PLANNING & SCHEDULING PLANNING & SCHEDULING 1 Planning & Scheduling Planning: Process of choosing the method and order of work Scheduling: Process of determining the interrelationship of associated timings of operations. 2

More information

Cost Classifications. Tools and Analysis. Cost Classifications. Cost Classifications

Cost Classifications. Tools and Analysis. Cost Classifications. Cost Classifications Cost Classifications Tools and Analysis Costs can be classified as tangible or intangible, direct or indirect, fixed or variable, and developmental or operational. Peter Lo CS211 Peter Lo 2004 1 CS211

More information

Chapter 4 Project Management

Chapter 4 Project Management Chapter 4 Project Management For internal use of BSNL only Page 1 Project Management 1.0 Introduction Project management is concerned with the overall planning and co-ordination of a project from conception

More information

Project Time Management

Project Time Management Project Time Management Understand the importance of project schedules and good project time management. Define activities as the basis for developing project schedules. Describe how project managers use

More information

Scheduling. Adapted from John Musser

Scheduling. Adapted from John Musser Scheduling Adapted from John Musser Today Network Fundamentals Gantt Charts PERT/CPM Techniques WBS Review Types: Process, product, hybrid Formats: Outline or graphical organization chart High-level WBS

More information

Modern Systems Analysis and Design Seventh Edition

Modern Systems Analysis and Design Seventh Edition Modern Systems Analysis and Design Seventh Edition Jeffrey A. Hoffer Joey F. George Joseph S. Valacich Managing the Information Systems Project Learning Objectives ü Explain the process of managing an

More information

Operations Management

Operations Management 17-1 Project Management Operations Management William J. Stevenson 8 th edition 17-2 Project Management CHAPTER 17 Project Management McGraw-Hill/Irwin Operations Management, Eighth Edition, by William

More information

Introduction. Project Scheduling. Morgan State University ARCH 738: REAL ESTATE PROJECT MANAGEMENT. Jason E. Charalambides, PhD, M.

Introduction. Project Scheduling. Morgan State University ARCH 738: REAL ESTATE PROJECT MANAGEMENT. Jason E. Charalambides, PhD, M. Project Scheduling ARCH 738: REAL ESTATE PROJECT MANAGEMENT Morgan State University Jason E. Charalambides, PhD, M.ASCE, AIA, ENV_SP (This material has been prepared for educational purposes) Introduction

More information

Chapter 3 Managing Systems Projects

Chapter 3 Managing Systems Projects Chapter 3 Managing Systems Projects Harry J. Rosenblatt. (2014). Systems Analysis and Design, 10 th Edition, International Edition. Course Technology, Cengage Learning. Modified by Nichnan K., 2013 Systems

More information

Information Technology Project Management, Seventh Edition

Information Technology Project Management, Seventh Edition Information Technology Project Management, Note: See the text itself for full citations. Understand the importance of project schedules and good project time management Discuss the process of planning

More information

Cambridge International AS & A Level Computer Science

Cambridge International AS & A Level Computer Science Topic Support Guide Cambridge International AS & A Level Computer Science 9608 For examination from 2017 Topic 4.4.3 Project management PERT and GANTT charts Cambridge International Examinations retains

More information

13 Project Graphics Introduction

13 Project Graphics Introduction Page 725 13 Project Graphics 13.0 Introduction In Chapter 11, we defined the steps involved in establishing a formal program plan with detailed schedules such that the total program can be effectively

More information

Estimating Project Schedule-Time and Cost

Estimating Project Schedule-Time and Cost Estimating Project Schedule-Time and Cost Chapter 5 5 1 Where We Are Now 5 2 1 Overview Seminar Agenda What is involved in schedule and cost management? In-depth Determining the sequence of activities

More information

DAMELIN CORRESPONDENCE COLLEGE

DAMELIN CORRESPONDENCE COLLEGE DAMELIN CORRESPONDENCE COLLEGE DATE: 11 JUNE 2012 TIME: 14H00 16H00 TOTAL: 100 MARKS DURATION: 2 HOURS PASS MARK: 40% THIS EXAMINATION PAPER CONSISTS OF 5 SECTIONS: SECTION A: CONSISTS OF 20 MULTIPLE-CHOICE

More information

E2-E3: MANAGEMENT. CHAPTER-3 PROJECT MANAGEMENT (Date of creation: )

E2-E3: MANAGEMENT. CHAPTER-3 PROJECT MANAGEMENT (Date of creation: ) E2-E3: MANAGEMENT CHAPTER-3 PROJECT MANAGEMENT (Date of creation: 01-04-2011) Page: 1 Project Management Introduction: Project management is concerned with the overall planning and co-ordination of a project

More information

Lecture- 10. Project Scheduling. Dronacharya College of Engineering

Lecture- 10. Project Scheduling. Dronacharya College of Engineering Lecture- 10 Project Scheduling Dronacharya College of Engineering Scheduling and Planning The majority of projects are 'completed' late, if at all. A project schedule is required to ensure that required

More information

Charting and Diagramming Techniques for Operations Analysis. How to Analyze the Chart or Diagram. Checklist of Questions - Example

Charting and Diagramming Techniques for Operations Analysis. How to Analyze the Chart or Diagram. Checklist of Questions - Example Chapter 9 Charting and Diagramming Techniques for Operations Analysis Sections: 1. Overview of Charting and Diagramming Techniques 2. Network Diagrams 3. Traditional Engineering Charting and Diagramming

More information

Seminar 6: Project Management Part 1 Semester 1, 2005

Seminar 6: Project Management Part 1 Semester 1, 2005 IMS 1501 Studio 1: Information Systems Foundations 1 Seminar 6: Project Management Part 1 Semester 1, 2005 Seminar 6.1 - Sem 1, 2005 IMS1501: Unit framework Ethics Documentation Efficiency Tools System

More information

Seminar 6: Project Management Part 1 Semester 1, 2005

Seminar 6: Project Management Part 1 Semester 1, 2005 IMS1501: Unit framework IMS 1501 Studio 1: Information Systems Foundations 1 Ethics Documentation Developing Information Systems Efficiency Tools Seminar 6: Project Management Part 1 Semester 1, 2005 System

More information

Application of a PERT-Type System and "Crashing" in a Food Service Operation

Application of a PERT-Type System and Crashing in a Food Service Operation Hospitality Review Volume 7 Issue 2 Hospitality Review Volume 7/Issue 2 Article 8 1-1-1989 Application of a PERT-Type System and "Crashing" in a Food Service Operation Glenn A. Leitch Michigan State University,

More information

Schedule Compression

Schedule Compression Schedule Compression The need to reduce the time allowed for a schedule, or a part of a schedule is routine, some of the times the need arises include: When the initial schedule is too long to meet contractual

More information

6 PROJECT TIME MANAGEMENT

6 PROJECT TIME MANAGEMENT CHAPTER 6 PROJECT TIME MANAGEMENT LEARNING OBJECTIVES After reading this chapter, you will be able to: Understand the importance of project schedules and good project time management Define activities

More information

Schedule Compression

Schedule Compression Schedule Compression The need to reduce the time allowed for a schedule, or a part of a schedule is routine, some of the times the need arises include: When the initial schedule is too long to meet contractual

More information

Project Management Professional (PMP) Exam Prep Course 6 - Project Schedule Management

Project Management Professional (PMP) Exam Prep Course 6 - Project Schedule Management Project Management Professional (PMP) Exam Prep Course 6 - Project Slide 1 Looking Glass Development, LLC (303) 663-5402 / (888) 338-7447 4610 S. Ulster St. #150 Denver, CO 80237 information@lookingglassdev.com

More information

ACTIVITY SCHEDULING IN THE DYNAMIC, MULTI-PROJECT SETTING: CHOOSING HEURISTICS THROUGH DETERMINISTIC SIMULATION. Robert C. Ash

ACTIVITY SCHEDULING IN THE DYNAMIC, MULTI-PROJECT SETTING: CHOOSING HEURISTICS THROUGH DETERMINISTIC SIMULATION. Robert C. Ash Proceedings of the 999 Winter Simulation Conference P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds. ACTIVITY SCHEDULING IN THE DYNAMIC, MULTI-PROJECT SETTING: CHOOSING HEURISTICS

More information

Project Management. Learning Objectives. What are Projects? Dr. Richard Jerz. Describe or Explain:

Project Management. Learning Objectives. What are Projects? Dr. Richard Jerz. Describe or Explain: Project Management Dr. Richard Jerz 1 Learning Objectives Describe or Explain: What are projects The role of the project manager Work breakdown structure Project management tools (Gantt, PERT, & CPM) The

More information

Project Management. Dr. Richard Jerz rjerz.com

Project Management. Dr. Richard Jerz rjerz.com Project Management Dr. Richard Jerz 1 2010 rjerz.com Learning Objectives Describe or Explain: What are projects The role of the project manager Work breakdown structure Project management tools (Gantt,

More information

MODULE 15 OPERATIONAL PLANNING TECHNIQUES (USE OF PLANNING TOOLS LIKE GANTT CHART, PERT/CPM)

MODULE 15 OPERATIONAL PLANNING TECHNIQUES (USE OF PLANNING TOOLS LIKE GANTT CHART, PERT/CPM) MODULE 15 OPERATIONAL PLANNING TECHNIQUES (USE OF PLANNING TOOLS LIKE GANTT CHART, PERT/CPM) Content Writer/Author: Email id: Mrs. RENU ARORA renu214@gmail.com Structure of Module/Syllabus of module(define

More information

Chapter 2 The Project Management Life Cycle

Chapter 2 The Project Management Life Cycle Information Systems Project Management: A Process and Team Approach 1 Chapter 2 The Project Management Life Cycle Multiple Choice 1. The phases of managing a project are called: a. systems development

More information

International Association of Certified Practicing Engineers

International Association of Certified Practicing Engineers www.iacpe.com Knowledge, Certification, Networking Page: 1 71 IACPE No 19, Jalan Bilal Mahmood 80100 Johor Bahru Malaysia The International is providing the introduction to the Training Module for your

More information

CC 01-Principles & Practices of Management

CC 01-Principles & Practices of Management Module-5 CC 01-Principles & Practices of Management Module 5 Management Control Control:- System and process of Controlling - Requirements for effective control - The Budget as Control Technique - Information

More information

Chapter 5 Project Scheduling. (Source: Pressman, R. Software Engineering: A Practitioner s Approach. McGraw-Hill,

Chapter 5 Project Scheduling. (Source: Pressman, R. Software Engineering: A Practitioner s Approach. McGraw-Hill, Chapter 5 Project Scheduling (Source: Pressman, R. Software Engineering: A Practitioner s Approach. McGraw-Hill, Project Scheduling Project Scheduling Project Scheduling important task to completed in

More information

Understanding and Managing Uncertainty in Schedules

Understanding and Managing Uncertainty in Schedules Understanding and Managing Uncertainty in Schedules Realistic Plans for Project Success Presented by: John Owen MPUG Project Integration Month July 20 th, 2016 John Owen 2 1981-1985 Worley Engineering

More information

Prepared by: Mr.M.SYED SHAHUL HAMEED CHAPTER 3 SYSTEMS PLANNING - MANAGING SYSTEMS PROJECTS

Prepared by: Mr.M.SYED SHAHUL HAMEED CHAPTER 3 SYSTEMS PLANNING - MANAGING SYSTEMS PROJECTS CHAPTER 3 SYSTEMS PLANNING - MANAGING SYSTEMS PROJECTS 1 Project Management: - Is the process of planning, scheduling, monitoring and controlling and reporting upon the development of an information system.

More information

Information Technology Audit & Cyber Security

Information Technology Audit & Cyber Security Information Technology Audit & Cyber Security Managing Information System Projects Systems & Infrastructure Lifecycle Management Introduction Definitions INTRODUCTION Governance Roles and Responsibilities

More information

Chapter 3 Managing the Information Systems Project

Chapter 3 Managing the Information Systems Project Princess Noura University Computer Science and Information Faculty Information Systems Department IS321 Chapter 3 Managing the Information Systems Project Learning Objectives Discuss skills required to

More information

Managing Systems Projects

Managing Systems Projects Chapter 3 Managing Systems Projects Chapter 3 Managing Systems Projects Chapter 3 is the final chapter in the systems planning phase of the SDLC. This chapter describes project management and explains

More information

Estimating and Scheduling

Estimating and Scheduling Estimating and Scheduling Practical Tips and Techniques for Construction Scott Feeney, CPE, LEED AP Q1stCM Ram Ramdass, PMP, PSP Turner Construction April 2018 Today s Discussion: Scheduling techniques

More information

The Project Planning Process Group

The Project Planning Process Group 3 The Project Planning Process Group............................................... Terms you ll need to understand: Activity Activity attributes Activity list Activity on arrow diagram (AOA) Activity

More information

Scheduling. Why Schedule? Scheduling will: Delivering On Your Promises

Scheduling. Why Schedule? Scheduling will: Delivering On Your Promises Scheduling Delivering On Your Promises Why Schedule? Don t need to, I ve done this before. I have the schedule in my head. Nobody will pay attention to it. Why bother, it just changes. I m on the line

More information

Implementing Resource Scheduling Techniques

Implementing Resource Scheduling Techniques Implementing Resource Scheduling Techniques A Guide for Planners and Scheduler s Presented 26 th November 2009 at Park Regis Hotel, Brisbane for Tonkin Corporation Micro Planning International Asia Pacific

More information

Project Time Management

Project Time Management Project Time Management Prof. Dr. Daning Hu Department of Informatics University of Zurich Adapted from Managing Information Technology Projects, Schwalbe Learning Objectives Define activities as the basis

More information

EXHIBIT 2-2-C SCHEDULES

EXHIBIT 2-2-C SCHEDULES EXHIBIT 2-2-C SCHEDULES PART 1 GENERAL 1.01 SUMMARY A. The Work specified in this section consists of furnishing transportation, labor, materials, equipment, and incidentals necessary for preparation,

More information

IMPLEMENTATION, EVALUATION & MAINTENANCE OF MIS:

IMPLEMENTATION, EVALUATION & MAINTENANCE OF MIS: IMPLEMENTATION, EVALUATION & MAINTENANCE OF MIS: The design of a management information system may seem to management to be an expensive project, the cost of getting the MIS on line satisfactorily may

More information

L & L Mitigation Aid for Effective Project Management System

L & L Mitigation Aid for Effective Project Management System www.cafetinnova.org Indexed in Scopus Compendex and Geobase Elsevier, Geo-Ref Information Services-USA, List B of Scientific Journals, Poland, Directory of Research Journals ISSN 0974-5904, Volume 09,

More information

Identification of Bottleneck and Reducing Cycle Time of an Industrial Oven by Using Project Management Techniques

Identification of Bottleneck and Reducing Cycle Time of an Industrial Oven by Using Project Management Techniques Identification of Bottleneck and Reducing Cycle Time of an Industrial Oven by Using Project Management Techniques Vikas S. Jadhav [1], V. Vivekanand [2] 1 P G Student, Industrial Engineering Department,

More information

Time Management PLANNING

Time Management PLANNING Time Management 6.1 Plan Schedule Management: The process of establishing policies, procedures and documentation for planning, developing, managing, executing and controlling the project schedule # Schedule

More information

BA /14/2010. PSU Problem Solving Process. The Last Step 5. The Last Step 8. Project Management Questions PLAN IMPLEMENT EVALUATE

BA /14/2010. PSU Problem Solving Process. The Last Step 5. The Last Step 8. Project Management Questions PLAN IMPLEMENT EVALUATE 1 3 BA 301 Fall 2010 Chapter 6 Achieve BA 301 Research & Analysis of Business Problems 4 The Last Step 5 PLAN IMPLEMENT EVALUATE 6 The Last Step 8 Project Management Questions PLAN IMPLEMENT EVALUATE Project

More information

COST LOADED CONSTRUCTION SCHEDULES PART 1 - GENERAL

COST LOADED CONSTRUCTION SCHEDULES PART 1 - GENERAL SECTION 01310 COST LOADED CONSTRUCTION SCHEDULES PART 1 - GENERAL 1.01 SCOPE: A. COST LOADED CONSTRUCTION SCHEDULE (Construction Schedule): The WORK under this Contract shall be planned, scheduled, executed,

More information

Topic # 12. CIS Project Management: an overview

Topic # 12. CIS Project Management: an overview Topic # 12 CIS Project Management: an overview Project Planning Major Activities during Project Planning: 1) describing project scope, alternatives, and feasibility; 2) dividing the project into manageable

More information

For the PMP Exam using PMBOK Guide 5 th Edition. PMI, PMP, PMBOK Guide are registered trade marks of Project Management Institute, Inc.

For the PMP Exam using PMBOK Guide 5 th Edition. PMI, PMP, PMBOK Guide are registered trade marks of Project Management Institute, Inc. For the PMP Exam using PMBOK Guide 5 th Edition PMI, PMP, PMBOK Guide are registered trade marks of Project Management Institute, Inc. 1 Contacts Name: Khaled El-Nakib, MSc, PMP, PMI-RMP URL: http://www.khaledelnakib.com

More information

ENGINEERING MANAGEMENT (GE

ENGINEERING MANAGEMENT (GE بسم هللا الرحمن الرحيم ENGINEERING MANAGEMENT (GE 404) 1 L E C T U R E # 4 Scheduling and Bar Chart Contents Objectives of the present lecture Planning and Scheduling Activity and Event Scheduling Techniques

More information

ANS: Q2 and Q6: VORA, Chapter 9, Inventory Management:

ANS: Q2 and Q6: VORA, Chapter 9, Inventory Management: OPERATIONS RESEARCH Q1. What is Operations Research? Explain how Operations Research helps in decision making. Or Explain how Operations Research helps in managerial decision making process. Q2.What are

More information

CHAPTER 7 RESOURCES MANAGEMENT

CHAPTER 7 RESOURCES MANAGEMENT PTR RSOURS MNMNT s we have seen in network scheduling, the basic inputs to criticalpath analysis are the individual project activities, their durations, and their dependency relationships. ccordingly,

More information

Adapting the Approach of Management by Projects in the Manufacturing Industry: A Conceptual Framework

Adapting the Approach of Management by Projects in the Manufacturing Industry: A Conceptual Framework Adapting the Approach of Management by Projects in the Manufacturing Industry: A Conceptual Framework Dr. Romil S. Al-Adwan Assistant Professor Department of Mechanical & Industrial Engineering, Applied

More information

Project Planning & CPM Scheduling using MS Project. APWA NorCal 2018 Annual Conference

Project Planning & CPM Scheduling using MS Project. APWA NorCal 2018 Annual Conference Project Planning & CPM Scheduling using MS Project APWA NorCal 2018 Annual Conference What is Planning? Planning: A determination of the what, how, where and by whom ; the tasks that need to be completed

More information

MBH1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar. Lecture 8 Project Time Management - IV

MBH1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar. Lecture 8 Project Time Management - IV MBH1123 Project Scope, Time and Cost Management Prepared by Dr Khairul Anuar Lecture 8 Project Time Management - IV MBP1123 Scope, Time & Cost Management Prepared by Dr. Zohreh Content 1. Alternative PERT/time

More information

OPERATIONS RESEARCH Code: MB0048. Section-A

OPERATIONS RESEARCH Code: MB0048. Section-A Time: 2 hours OPERATIONS RESEARCH Code: MB0048 Max.Marks:140 Section-A Answer the following 1. Which of the following is an example of a mathematical model? a. Iconic model b. Replacement model c. Analogue

More information

Scheduling for Success with Critical Chain. Abstract

Scheduling for Success with Critical Chain. Abstract by Rob Newbold, September 2010 Abstract The Critical Chain scheduling approach described in this paper can be used to create good schedules that have provided substantial benefits in speed, predictability,

More information

Analysis of Common Project Schedule Management Methods Wei-guo LIU *, Xue SHEN and Tian-qi WU

Analysis of Common Project Schedule Management Methods Wei-guo LIU *, Xue SHEN and Tian-qi WU 2018 2nd International Conference on Education, Management and Applied Social Science (EMASS 2018) ISBN: 978-1-60595-543-8 Analysis of Common Project Schedule Management Methods Wei-guo LIU *, Xue SHEN

More information

MGT/437. Project Management. Session #2 University of Phoenix 02/12/2004 Brian Smithson. 02/12/2004 MGT/437 #2 -- Brian Smithson 1

MGT/437. Project Management. Session #2 University of Phoenix 02/12/2004 Brian Smithson. 02/12/2004 MGT/437 #2 -- Brian Smithson 1 MGT/437 Project Management Session #2 University of Phoenix 02/12/2004 Brian Smithson 02/12/2004 MGT/437 #2 -- Brian Smithson 1 Agenda Review/Questions Session content PMI project framework Project Knowledge

More information

Geog 469 GIS Workshop. Project Management

Geog 469 GIS Workshop. Project Management Geog 469 GIS Workshop Project Management Outline Basic principles of project management 6.1 What is a project versus an application? 6.2 What is a scoping statement for your project? 6.3 Why are critical

More information

Application of Network Period Cost Optimization in Engineering Management

Application of Network Period Cost Optimization in Engineering Management Journal of Computing and Electronic Information Management ISSN: 2413-1660 Application of Net Period Cost Optimization in Engineering Management Yifei Zhang a School of Economics and Management, Xidian

More information

Network Diagram 11/10/2016 WORK BREAKDOWN STRUCTURE (WBS)

Network Diagram 11/10/2016 WORK BREAKDOWN STRUCTURE (WBS) /11/16 Network Diagram 11//16 1 WORK BREAKDOWN STRUCTURE (WBS) A work breakdown structure is a key project deliverable that organizes the team's work into manageable sections. The Project Management Body

More information

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING SOFTWARE ENGINEERING Project planning Once a project is found to be feasible, software project managers undertake project planning. Project planning is undertaken and completed even before any development

More information

PROJECT SCHEDULING & CONTROL

PROJECT SCHEDULING & CONTROL PROJECT SCHEDULING & CONTROL Project Project Management PM Knowledge Areas Time Management 1 Project What is a PROJECT? Definition used by PMI: A temporary endeavor undertaken to create a unique product,

More information

Imagine this: If you create a hundred tasks and leave their default constraints

Imagine this: If you create a hundred tasks and leave their default constraints Chapter 6 Timing Is Everything In This Chapter Discovering how dependency links affect timing Reviewing the different kinds of dependency relationships Allowing for lag and lead time Creating dependency

More information

PROJECT TIME PLANNING. Process and Bar Chart Technique

PROJECT TIME PLANNING. Process and Bar Chart Technique PROJECT TIME PLANNING Process and Bar Chart Technique Definition of Planning Planning is the process of thinking systematically about the future in order to decide what our goals are, and how we are going

More information

EFFICIENCY OF CRITICAL PATH METHOD (CPM) AND PERT TECHNIQUE FOR YACHT CONSTRUCTION

EFFICIENCY OF CRITICAL PATH METHOD (CPM) AND PERT TECHNIQUE FOR YACHT CONSTRUCTION International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 48 54, Article ID: IJMET_09_11_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

CHAPTER 1. Basic Concepts on Planning and Scheduling

CHAPTER 1. Basic Concepts on Planning and Scheduling CHAPTER 1 Basic Concepts on Planning and Scheduling Eugénio Oliveira Scheduling, FEUP/PRODEI /MIEIC 1 Planning and Scheduling: Processes of Decision Making regarding the and ordering of activities as well

More information

An Oracle White Paper June Using Relationship Diagrams to Enhance the Critical Path Method of Project Scheduling

An Oracle White Paper June Using Relationship Diagrams to Enhance the Critical Path Method of Project Scheduling An Oracle White Paper June 2009 Using Relationship Diagrams to Enhance the Critical Path Method of Project Scheduling Executive Overview This white paper provides an overview of the Critical Path Method

More information

Project Time Management

Project Time Management Project Time Management Project Time Management Project Time Management includes the processes required to manage timely completion of the project. Plan schedule management The process of establishing

More information

THE CONTRACTORS' GUIDE TO OPERATIONS AND PROCEDURES

THE CONTRACTORS' GUIDE TO OPERATIONS AND PROCEDURES THE CONTRACTORS' GUIDE TO OPERATIONS AND PROCEDURES INTRODUCTION The purpose of this guide is to document general procedures a contractor might implement for the (1) Bidding, Planning and Scheduling Functions,

More information

Planning Tools and Techniques Part 2

Planning Tools and Techniques Part 2 Planning Tools and Techniques Part 2 1 Planning Tools and Techniques Planning tools Network diagrams Critical path method PERT analysis Gantt charts Resource histogram Containment of risk 2 PERT analysis

More information

Document No: SB002-P3 Revision No: Last Updated: April

Document No: SB002-P3 Revision No: Last Updated: April BRIEF People often are confused with the term - Out-of-Sequence, and use them in inappropriate ways. While we talk about Out-of-Sequence, we also need to discuss the difference between Retained Logic and

More information

Projects can be of any size and duration. They can be simple, like planning a party, or complex like launching a space shuttle.

Projects can be of any size and duration. They can be simple, like planning a party, or complex like launching a space shuttle. Project Management 1 1 WHAT IS A PROJECT? 1.1 A project is any sort of planned undertaking All of us have been involved in projects, whether they be our personal projects or in business and industry. Examples

More information

PMI-001 Questions & Answers

PMI-001 Questions & Answers PMI-001 Questions & Answers Number: PMI-001 Passing Score: 700 Time Limit: 137 min File Version: 21.2 http://www.gratisexam.com/ PMI-001 Questions & Answers Exam Name: Project Management Professional v5

More information

Definition. Name of the tool or technique Project mission statement

Definition. Name of the tool or technique Project mission statement Tools and Techniques Definitions (or by alphabetic order ; see below) A definition of each of the tools and techniques is provided below. The primary sources of definitions were the PMBOK Guide and Max

More information

PMP EXAMINATION PREP CHAPTER 6 SCHEDULE MANAGEMENT. PMP Exam Prep

PMP EXAMINATION PREP CHAPTER 6 SCHEDULE MANAGEMENT. PMP Exam Prep PMP EXAMINATION PREP CHAPTER 6 SCHEDULE MANAGEMENT PMP Exam Prep PROJECT SCHEDULE MANAGEMENT Page 223 Schedule Management Process : Contains 6 of the 49 total processes Plan Schedule Management Define

More information

East Central College

East Central College SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other

More information

// How Traditional Risk Reporting Has Let Us Down

// How Traditional Risk Reporting Has Let Us Down // How Traditional Risk Reporting Has Let Us Down Dr. Dan Patterson, PMP CEO & President, Acumen November 2012 www.projectacumen.com Table of Contents Introduction... 3 What is Project Risk Analysis?...

More information

After solving all the case studies, please forward your answers to for an extra credit.

After solving all the case studies, please forward your answers to for an extra credit. CASE STUDIES Course Case Studies The case studies are designed to give you a glimpse of real life projects. Please give yourself enough time to solve each case study. After solving all the case studies,

More information

1. are generally independent of the volume of units produced and sold. a. Fixed costs b. Variable costs c. Profits d.

1. are generally independent of the volume of units produced and sold. a. Fixed costs b. Variable costs c. Profits d. Final Exam 61.252 Introduction to Management Sciences Instructor: G. V. Johnson December 17, 2002 1:30 p.m. to 3:30 p.m. Room 210-224 University Centre Seats 307-328 Paper No. 492 Model Building: Break-Even

More information

Information Systems. Rationale Aims & Objectives. Rationale Aims & Objectives. Introduction to Project management. Ruel Ellis

Information Systems. Rationale Aims & Objectives. Rationale Aims & Objectives. Introduction to Project management. Ruel Ellis Information Systems Introduction to Project management Ruel Ellis rellis@eng.uwi.tt http://www.eng.uwi.tt/depts/mech/staff/rellis/rellis.htm Rationale Aims & Objectives Rationale Even when most modern

More information

A New Networking Technique The Beeline Diagramming Method Seon-Gyoo Kim

A New Networking Technique The Beeline Diagramming Method Seon-Gyoo Kim 2018 International Conference on Mechanical, Electronic and Information Technology (ICMEIT 2018) ISBN: 978-1-60595-548-3 A New Networking Technique The Beeline Diagramming Method Seon-Gyoo Kim Department

More information

Procedures for Reviewing EIA Reports

Procedures for Reviewing EIA Reports These procedures are based on the work of Lee, N. and Colley, R. (1990) Reviewing the Quality of Environmental Statements. Occasional Paper Number 24. EIA Centre. University of Manchester and Boyle, J.

More information

DIVISION 1 GENERAL REQUIREMENTS SECTION PROJECT SCHEDULE

DIVISION 1 GENERAL REQUIREMENTS SECTION PROJECT SCHEDULE DIVISION 1 GENERAL REQUIREMENTS SECTION 01 32 16 PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. All drawings and technical specifications, Notice to Bidders, Instructions and Information to Bidders, Bid Proposal

More information

2.1 Project Management tools which project management software packages should be equipped with

2.1 Project Management tools which project management software packages should be equipped with 02 Literature Review 2.1 Project Management tools which project management software packages should be equipped with Before discussing the project management tools, it is worthy to understand how the project

More information

Software Project Management

Software Project Management Software Project Management Dr. M.E. Fayad, Professor Computer Engineering Department College of Engineering, San José State University One Washington Square, San José, CA 95192-0180 E-mail: m.fayad@sjsu.edu

More information

Feasibility and Managing Analysis and Design Activities

Feasibility and Managing Analysis and Design Activities Feasibility and Managing Analysis and Design Activities Major Topics Project initiation Determining project feasibility Project scheduling Managing project activities Manage systems analysis team members

More information

Short-Run Costs and Output Decisions

Short-Run Costs and Output Decisions Semester-I Course: 01 (Introductory Microeconomics) Unit IV - The Firm and Perfect Market Structure Lesson: Short-Run Costs and Output Decisions Lesson Developer: Jasmin Jawaharlal Nehru University Institute

More information