Greely Rural Subdivision 1240 Old Prescott Road Stormwater Management Report

Size: px
Start display at page:

Download "Greely Rural Subdivision 1240 Old Prescott Road Stormwater Management Report"

Transcription

1 Greely Rural Subdivision 1240 Old Prescott Road Stormwater Management Report Project # June 1, 2018 Prepared for: Ontario Inc. Prepared by: Stantec Consulting Ltd.

2 Sign-off Sheet This document entitled Greely Rural Subdivision 1240 Old Prescott Road Stormwater Management Report was prepared by Stantec Consulting Ltd. ( Stantec ) for the account of Ontario Inc. (the Client ). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec s professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document. Prepared by (signature) Dustin Thiffault, P.Eng. Reviewed by (signature) Kris Kilborn

3 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Table of Contents 1.0 INTRODUCTION BACKGROUND AND REFERENCES STORMWATER MANAGEMENT CRITERIA AND OBJECTIVES SWM CRITERIA EXISTING CONDITIONS IN-SITU INFILTRATION TESTING GROUNDWATER LEVELS RAINFALL ANALYSIS TARGET PEAK OUTFLOWS STORMWATER MANAGEMENT PLAN SWM STRATEGY SITE HYDROLOGY Water Quantity Control SITE WATER BALANCE Methodology Results Maintenance and Monitoring of Infiltration Systems CULVERT SIZING WATER QUALITY CONTROL Dry Swale / Bioswale Design Winter Operation Future Infiltration Considerations CONCLUSIONS AND RECOMMENDATIONS LIST OF TABLES Table 1: Summary of Infiltration Rates Table 2: Target Peak Outflows to Sunset Lakes Mutual Drain Table 3: Post Development Condition Release Rates Table 4: Existing Condition Annual Water Balance Results Table 5: Proposed Condition Annual Water Balance Results Table 6: Characteristics and Estimated Capacity of Existing Culverts Along Drain Table 7: Infiltration Trench Quality Control Design Requirements

4 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT LIST OF APPENDICES : SWMHYMO HYDROLOGIC MODELING PARAMETERS AND RESULTS A.1 A.1 Parameter Summary and Calculations... A.1 A.2 SWMHYMO Input/Output Files... A.2 : XP-SWMM MODELING PARAMETERS AND RESULTS... B.1 : PRELIMINARY WATER BALANCE CALCULATIONS... C.1 : FIELDSTONE ENGINEERING LOW IMPACT DEVELOPMENT DESIGN REPORT... D.1 : CULVERT CAPACITY ANALYSIS AND TOPOGRAPHICAL PLAN... E.1

5 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Introduction 1.0 INTRODUCTION This revised conceptual stormwater management (SWM) report has been prepared to address City of Ottawa and Conservation Partners comments to previous submissions of the Greely Rural Subdivision SWM report and Summary of Infiltration Calculations Letter, as well as to incorporate a draft plan change to limit the proposed first phase of development to a total of 35 units (a copy of the City and Conservation Partner comments has been provided in Appendix F). Specifically, the proposed SWM facility (dry pond) has been modified to provide quantity control for the subject development only, with provision for future modifications to the dry pond facility to permit infiltration measures to ensure adequate nitrate dilution for future phases of development should such an analysis deem necessary. Stantec Consulting Ltd. was retained by Ontario Inc. to complete a conceptual Stormwater Management (SWM) report in support of a development application for a rural subdivision on 1240 Old Prescott Road in Ottawa, Ontario. The site is located on a vacant parcel of land with the legal identity of Part of Lot 4, Concession 4, former Village of Greely, Ontario. The proposed development comprises approximately 19.3 ha of land and consists of a rural residential subdivision and associated accessing infrastructure as shown on Drawing SD-1. The site is delimited by residential subdivisions to the north and west, industrial properties to the south, and by Old Prescott Road to the east. 1.1 BACKGROUND AND REFERENCES The following documents/ reports were referenced in the preparation of this conceptual SWM Report: Low Impact Development Design: Dry Swales & Bioretention Swales, Fieldstone Engineering Inc., November 3, 2014 Hydrogeological Assessment and Terrain Analysis, Proposed Residential Subdivision 1240 Old Prescott Road, Paterson Group, May, 2018 Geotechnical Investigation, Proposed Residential Subdivision 1240 Old Prescott Road, Paterson Group, October 7, 2013 City of Ottawa Sewer Design Guidelines and Technical Bulletin Amendment, 1st Ed., City of Ottawa, November 2004 amended January 31st, 2012 Supplementary Stormwater Site Management Plan, Sunset Lake SouthVillage Subdivision, McIntosh Perry Consulting Engineers Ltd., Revised April 7, 2005 Shields Creek Subwatershed Study, City of Ottawa, June 2004 Stormwater Management Planning and Design Manual, MOE (Ontario), March 2003 Greely Shields Creek Stormwater and Drainage Study, Stantec Consulting Ltd., October 2002 td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 1.1

6 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Criteria and Objectives 2.0 STORMWATER MANAGEMENT CRITERIA AND OBJECTIVES The objective of this stormwater management (SWM) plan is to support the detailed design of the proposed subdivision. This SWM plan identifies the measures that will be implemented to meet the SWM criteria for the site. 2.1 SWM CRITERIA The stormwater management criteria for the site are based on the recommendations outlined in the Shields Creek Subwatershed Study (City of Ottawa, June 2004) and on Conservation Partners requirements in combination with City of Ottawa Sewer Design Guidelines and Ministry of the Environment Stormwater Management Planning and Design Manual. The SWM criteria are summarized as follows: Post to pre-development (site in its current form) quantity control for the 2, 5 and 100 year design storms Best management practices be used to replicate existing condition infiltration Provide adequate emergency overflow conveyance off-site Provide Enhanced water quality protection (80% TSS removal), as per MOE guidelines (2003) Proposed under side of footing (USF) elevations be set above road side ditch inverts with foundation drains connected to the road side ditches and equipped with sump pumps and backwater valves A nitrate impact assessment is required to suit the requirements of MOECC Procedure This process determines if there will be sufficient post development dilution from precipitation to ensure that nitrates remain below 10 mg/l at the site boundaries. The nitrate impact assessment has been prepared by others, and is detailed within the Hydrogeological Assessment and Terrain Analysis report (May, 2018). td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 2.1

7 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Existing Conditions 3.0 EXISTING CONDITIONS The 19.3 ha site is relatively flat, slightly sloping in a south-west direction towards the Sunset Lakes Mutual Drain ( the drain ) that crosses the site from north to south and which conveys storm runoff from the existing subdivisions to the north (Sunset Lakes and South Village Subdivisions) towards Shields Creek. The site is primarily treed, except for a drainage and hydro easement located on the western portion of the site, and a cleared area with small crop plantings located immediately to the west of Old Prescott Road (See Figure 1 for Existing Land Use). The Geotechnical Investigation prepared for the development (Paterson Group, October 2013) found that the soil conditions encountered at the test hole locations consist of a topsoil layer underlain by silty sand followed by a layer of medium to coarse sand (USCS classification of an SP). Underlying the medium to coarse sand is a coarse sand with some fine gravel layer which overlays a layer of silty clay, followed by silt and till. 3.1 IN-SITU INFILTRATION TESTING Field testing was completed by Paterson Group to establish in-situ saturated hydraulic conductivity rates using a Pask Permeameter. These results were previously reviewed by the City and are included in the attached Paterson letter for reference. The methodology outlined in the Credit Valley Conservation LID Design Guidelines Appendix C (CVC, 2012) was then used to calculate the infiltration rate and safety factor for each test location. Test results and calculations results are attached for reference and a summary is included in Table 1 below: td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 3.1

8 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Existing Conditions Table 1: Summary of Infiltration Rates Auger hole ID Test interval depth (m) Calculated Kfs (m/s) Converted Kfs (cm/s) Infiltration rate (i) (mm/hr) Average infiltration (mm/hr) Safety factor Corrected infiltration (mm/hr) AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E GROUNDWATER LEVELS Groundwater level measurements were obtained from the on-site piezometers in November 2012, March 2013 and October 2016 by Paterson Group, the results of which are provided under separate cover. It is noted that a new groundwater monitoring well was installed within the proposed pond footprint area on March 29, 2017 and equipped with a continuous water level data logger. The measured groundwater level data will be used at detailed design to evaluate the performance of infiltration based LID measures, as well as the potential for infiltration at the dry pond based on monitored groundwater levels. As the dry pond currently does not incorporate an infiltration component, groundwater monitoring within the area of the proposed pond footprint will not impact the current design. 3.3 RAINFALL ANALYSIS The proposed infiltration measures for water balance and quality control purposes are designed to infiltrate runoff from up to the 15mm event for their contributing drainage area. Typically, such measures are designed to infiltrate up to as much as 25mm event runoff, where site conditions permit, however, due to area restrictions and shallow ground water depths the proposed site is designed for the 15mm event. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 3.2

9 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Existing Conditions To assess the percentage of average annual rainfall that could be captured and infiltrated during a 15mm event, an analysis was completed using historical rainfall data from the Ottawa MacDonald Cartier International Airport. The historical data was imported into the PCSWMM stormwater management model to utilize the event extraction tools within the model. The tool allows the user to specify a minimum inter-event time (time of no rainfall between two rainfall events) and searches the data set and extracts all events. A summary of the duration and total rainfall for each event is provided as an output from this tool. This summary was then used to assess the number of events with total precipitation less than or equal to 15mm as well as the number of events greater than 15mm for which the first 15mm could be captured and infiltrated. Since the recommended infiltration time per the Credit Valley Conservation LID Design Guidelines is 24 to 48 hours, inter-event times of 24 and 48 hours were used to complete this analysis. The results of the historical rainfall analysis indicate that approximately 65% of annual rainfall can be captured and infiltrated by capturing the 15mm event. Summary charts for the 24 and 48 hour inter-event times are attached as figures for reference. 3.4 TARGET PEAK OUTFLOWS Figure 1 shows the existing land use across the site. A comprehensive hydrologic modeling exercise was completed with SWMHYMO to generate pre-development and post development runoff response from the site area during the 100-year storm. The NASHYD command was used to generate hydrographs from the total site area under existing conditions. Runoff from a portion of Old Prescott Road right of way (ROW) sheet drains towards the site under existing conditions (see areas A12, A13, and A14 in Drawing SD-1). As a result, these areas have been included in the hydrologic model to estimate the target peak outflows into the drain and to design the proposed SWM measures across the site. The 3 hr Chicago and 12 hr SCS Type II distributions were used to generate runoff from the site area. The following assumptions were applied to the hydrologic model: Hydrologic parameters as per Shields Creek Subwatershed Study (City of Ottawa, June 2004), including Manning s n, initial abstraction and depression storage values (see SWMHYMO Output Files in Appendix A2) The SCS Method was used to calculate CN values for the site area based on existing land use and available soil information (see Appendix A1) Land use across the site was obtained from aerial photographs as shown in Figure 1 Time to peak (Tp) was calculated based on the relationship of Tp = 0.67 x Tc where Tc is the time of concentration. The time of concentration of each catchment was calculated using the Uplands Method (see Appendix A1) Table 3 (reflecting output from the SWMHYMO model) shows the 100-year target peak outflows from the proposed site and external areas along Old Prescott Road into the drain. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 3.3

10 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Existing Conditions Table 2: Target Peak Outflows to Sunset Lakes Mutual Drain Design Storm (derived from City of Ottawa IDF Curves) Existing Site Peak Flows (m 3 /s) External Area Peak Flows (m 3 /s) A12 A13 A14 Target Peak Outflow into the Drain (m 3 /s) 5yr 3hr Chicago yr 3hr Chicago yr+20% 3hr Chicago yr 12hr SCS yr 12hr SCS yr+20% 12hr SCS td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 3.4

11 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan 4.0 STORMWATER MANAGEMENT PLAN The proposed Greely Rural Subdivision is demonstrated on Drawings SD-1 & GR-1. The stormwater management (SWM) plan has been developed to provide enhanced quality treatment of runoff from the proposed site (80% TSS removal), to maximize post development infiltration, and to restrict post development peak flows to pre-development levels up to the 100-year storm as identified in Table SWM STRATEGY The following SWM best management practices (BMPs) were selected to be used in the SWM plan of the Greely Rural Subdivision: bioswales along the rear yards and dry swales along the road side ditches sized to provide 80% TSS removal during a 25 mm storm and promote infiltration, and a dry pond that will store runoff from most of the front yard areas and will discharge into the drain crossing the site. The streets and front yards will be drained by road side ditches and directed either directly into the drain as in the case of areas A4 and A11 or to the SWM dry pond as in the case of areas A2, A6, and external areas A13 and A14 (see Drawing SD-1). Road side ditch storage will be maximized by introducing storm outlets to the drain from areas A4 and A11, and in areas A2 and A6 through undersized culverts located at specific locations along the road side ditches (see Drawing SD-1). 4.2 SITE HYDROLOGY Rain runoff response from the proposed site and external areas was generated using the SWMHYMO hydrologic modeling software. The proposed site was subdivided in several sub-catchments based on whether they sheet drain towards the proposed dry swales along the road side ditches, towards the proposed bioswales in the rear yards, or they sheet drain off site uncontrolled (see Drawing SD-1). The NASHYD and STANDHYD commands were used to generate hydrographs from the different subcatchments depending on their total imperviousness values. The proposed dry swales and bio swales will promote infiltration and provide some peak flow attenuation and runoff volume reduction. However, a conservative analysis was completed for which, infiltration losses through the proposed SWM measures have been neglected. SWMHYMO input and output files have been provided in Appendix A Water Quantity Control In order to evaluate the hydraulic response of the proposed road side ditches and SWM dry pond, and to establish the volume requirements to meet the 100 year target peak outflows from the overall site and external areas, an XP- SWMM model was created, which incorporated the following: the trapezoidal road side ditches (2.5:1 side slopes, 0.8 m maximum depth and 0.3% longitudinal slope), proposed road culvert crossings, proposed undersized culverts along the road side ditches, and detailed SWMHYMO hydrology for tributary areas (see Appendix B for XP-SWMM output files). The stormwater management dry pond was sized using an iterative approach between pond grading and modeling results to provide enough storage to restrict runoff from the 100 year, 3 hr Chicago and 12 hr SCS storms and meet the target release rates from the overall site and external areas. McIntosh Perry s Engineering Drawings for the South td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.1

12 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Village Sunset Lakes Subdivision (April 2005) immediately north of the site, showed the 5 and 100-year water depths within the drain as 0.69 m and 0.90 m respectively. As a result a 100 year water level of m was initially used as a fixed water level for the different outlets to the drain based on an invert elevation at the drain equal to 99.6 m plus a 100 year water depth equal to 0.9 m. Following an initial simulation of the site hydraulics the discharge flow was combined with the estimated flow through the upstream culvert to size a new proposed culvert for the site road crossing. Culvert sizing calculations were then used to set new 5-year and 100-yr drain elevations of m and m respectively. An outlet structure at the dry pond consisting of an outlet 250 mm diameter pipe and a 5m wide overflow weir, as well as 200 mm diameter storm outlets from the road side ditches in areas A4 and A11 into the drain were used for the hydraulic analysis. Table 3 shows the results of the hydraulic analysis for the proposed storm drainage system. Table 3: Post Development Condition Release Rates Storm SWM Pond Volume Required (m 3 ) SWM Pond Water Level (m) Uncontrolled Runoff to Drain (m 3 /s) Controlled Ditch Runoff to Drain (m 3 /s) SWM Pond to Drain (m 3 /s) Total Discharge to the Drain (m 3 /s) Allowable Release Rate (m 3 /s) 5yr 3hr CHI yr 3hr CHI yr+20% 3hr CHI yr 12hr SCS yr 12hr SCS 100yr+20% 12hr SCS The above table shows that quantity control can be provided through a combination of surface storage in the road side ditches and the proposed dry pond to meet the 100-year allowable release rates. While the 5-year discharge rate slightly exceeds predevelopment it is noted that storage and infiltration in the granular trenches below the roadside ditches and bioswales has not been included in the SWM analysis, which may provide additional volume attenuation to reduce water levels in the pond and peak outflows from the pond outlet pipe. 4.3 SITE WATER BALANCE As part of this stormwater management (SWM) report, a water budget analysis was completed. Soils information for the area obtained from the Geotechnical Investigation, Proposed Residential Subdivision 1240 Old Prescott Road (Paterson Group, October 7, 2013) was used in conjunction with annual rainfall depth and evapotranspiration values obtained from the Shields Creek Subwatershed Study (City of Ottawa, June 2004), Environment Canada Climate Normals Data, and with Ministry of the Environment (MOE) surplus water (i.e. infiltration factor) data to generate water budget results for both the existing and proposed conditions. The study area is composed of sandy soils as detailed in Section 3.0 of this report. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.2

13 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Methodology The average total precipitation and average rainfall were obtained from Environment Canada Climate Normals Data as 943mm/yr and 758mm/yr, respectively. Average evapotranspiration for the study area was obtained from the Shields Creek Subwatershed Study (City of Ottawa, June 2004) as 405 mm/yr respectively. MOE infiltration factors were calculated based on soil type, cover, and topography and were subsequently used to determine the fraction of water surplus that infiltrates into the ground and the fraction that runs off to nearby streams. In addition, the estimated percent imperviousness of the proposed site was applied to reallocate the infiltration and evapotranspiration components from the impervious surfaces directly to runoff (conservative simplification) Results Under existing conditions, the area was assumed to be completely pervious with an annual rainfall depth equal to 943 mm. The land cover consists of moderately rooted crops, pasture, and mature forest (see Figure 1). Results of the existing annual water budget analysis are presented in Table 4. Detailed calculations are provided in Appendix C. Table 4: Existing Condition Annual Water Balance Results Evapotranspiration Infiltration Runoff 78,165 m mm 84,618 m mm 19,216 m mm The proposed site will consist of residential lots, a park, a SWM dry pond, a drainage easement, future residential development blocks, and an access road with rural cross section. The overall imperviousness for the proposed site is estimated to be approximately 17%. Table 5 shows the results from the proposed condition annual water budget analysis. Table 5: Proposed Condition Annual Water Balance Results Evapotranspiration Infiltration Runoff 65,145 m mm 60,009 m mm 56,845 m mm From the above tables, it can be concluded that due to development of the area, there will be an annual infiltration reduction equal to 24,609 m3 or 128 mm. In order to accomplish a post-development to pre-development water balance, the proposed development will include best management practices (BMP s) such as bioswales along rear yards and dry swales along the proposed road side ditches which will provide enough storage to achieve 80% TSS removal and promote infiltration into the ground. The filter media layer in the bioswales is sized to treat up to the 25mm event, whereas the granular trench layer within the proposed roadside ditches is sized only to store and infiltrate the 15mm event. Analysis of historical rainfall indicates that approximately 65% of annual rainfall events are 15mm or less, and that approximately 80% of annual rainfall events are 25mm or less. Infiltration was assumed only for the area below the proposed roadside ditches on the east side of the drain. Ditches on the west side of the drain were not included for infiltration calculations due to higher groundwater elevations relative to the bottom of the dry swales. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.3

14 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan It is noted that measured infiltration rates are higher than required and so additional infiltration may occur during larger and longer duration rainfall events. Detailed water balance and infiltration calculations are included in Appendix C. Design details on the proposed bioswales and dry swales have been provided by Fieldstone Engineering Inc. (see Low Impact Development Design Report in Appendix D) Maintenance and Monitoring of Infiltration Systems As with any infiltration facility the roadside ditches and bioswales will require routine monitoring and regular maintenance. The figures below are the recommended maintenance and corrective procedures identified by the Credit Valley Conservation LID manual. A detailed monitoring plan will be submitted under separate cover at the detailed design stage. Figure 1: Suggested Routing Inspection and Maintenance Activities for Dry Swales Table of Low Impact Development Stormwater Management Planning and Design Guide, Credit Valley Conservation, 2012 td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.4

15 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Figure 2: Suggested Inspection Items and Correcitve Actions for Dry Swales Table of Low Impact Development Stormwater Management Planning and Design Guide, Credit Valley Conservation, CULVERT SIZING Culvert sizing for the proposed roadway culvert connecting the roadside ditches in area A2 to the road side ditches in area A6 has been looked at in the hydraulic analysis of the proposed storm drainage system. The driveway crossing culverts were sized in the XPSWMM hydraulic model to use road side ditch storage without overtopping the road during the 100 year event. Undersized driveway culvert sizes and locations are included in the culvert schedule on Drawing DS-1. The proposed Greely Rural Subdivision includes the installation of one (1) roadway culvert along the existing drain crossing the site. There are two existing crossings along the drain in the vicinity of the proposed site; one immediately upstream at a walkway for the South Village Sunset Lakes Subdivision, and one downstream of the site crossing Hiram Drive. Table 6 shows the characteristics of the existing culverts in the vicinity of the site, as per the Topographical Plan obtained from Annis O Sullivan Vollebekk Ltd. dated September 27, 2013, as well as the estimated culvert capacity obtained using the software HY-8. Preliminary culvert capacity calculations and the Topographical Plan have been included in Appendix E. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.5

16 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Table 6: Characteristics and Estimated Capacity of Existing Culverts Along Drain Culvert Location Culvert Diameter (mm) Estimated Length (m) Culvert Slope (%) Ground Invert at Culverts Ground Inlet Invert. (m) Ground Outlet Invert. (m) Assumed Embedment Depth (m) Estimated Culvert Capacity (m 3 /s) 1 Walkway Hiram Drive The estimated culvert capacity shown is based on maximum capacity without overtopping the walkway or the road Based on the existing drain cross-section and 100-year water levels, the existing culvert at Hiram Road will either overtop or back up into connected ditches in the 100-year event. As the site is controlled to pre-development rates the frequency of overtopping or flow backup should not increase. A 1500mm diameter culvert is proposed for the site access road crossing at the existing Mutual Drain. The culvert was sized by estimating the discharge rate through the upstream 1200mm culvert assuming that the headwater levels were 0.69m and 0.90m in the 5-year and 100-year events as indicated on the Sunset Lakes Subdivision drainage plan. This discharge rate was then added to the modeled site discharge flows and used to size the proposed culvert. The culvert was sized to minimize the water level increase in the drain but still resulted in approximately 0.2m increase in the 100-year event. The XPSWMM analysis for the site was then updated with the revised boundary conditions. Culvert calculations for this proposed culvert are included in Appendix E. 4.5 WATER QUALITY CONTROL Fieldstone Engineering Inc. was retained by the client to provide geotechnical and hydrogeological support services related to the design of low impact stormwater management measures to achieve 80% TSS removal as required by the Conservation Partners and to promote infiltration. A copy of the Low Impact development Design report prepared by Fieldstone Engineering Inc. has been included in Appendix D. In order to achieve the required level of water quality control, a combination of dry swales along the road side ditches and bioretention swales (bioswales) in the rear yards has been proposed. The swales are proposed to be constructed at a grade of 0.3% along the roadway and rear yards. Ground cover over the dry swales is expected to consist of grass (allowed to achieve a height of at least 75 mm for enhanced TSS removal) and the bioswales are expected to either be grassed, or consist of a combination of grass and deep rooting shrubbery. The proposed dry swales and bioswales are designed with a filter media layer that will provide filtration for stormwater flows prior to percolation through the trench. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.6

17 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Dry Swale / Bioswale Design The proposed dry swales will incorporate a sand filter with organic content at the topsoil and a 150 mm diameter subdrain entrenched in clear stone with a geotextile filter fabric between the sand and clear stone layers. The proposed bioswales will have a similar configuration with the exception that no subdrain will be provided. Further design details including calculations and cross sections are included in Fieldstone s Engineering report included in Appendix D. The results of Filedstone s Engineering report are summarized below. Based on Table 3.2 of the Ministry of the Environment Stormwater Management Planning and Design Guidelines (MOE SMPDM), the quality control volume requirements for the proposed site have been obtained as shown below. Level of Protection Required = Enhanced TSS Removal Efficiency Required = 80% % Imperviousness = 17% Storage Requirement = 19.8 m3/ha (interpolated graph fit) For the 19.3 ha site, the quality volume requirement is 19.8 m3/ha x 19.3 ha = m3 In order to determine the physical trench requirements, an estimate of the filter media bed depth of the dry swale was completed using LIDSMPDG equation (page 4-160) as shown below. A depth of 100 mm was used for the depth of water over the trench as the conveyance design consists of raising each driveway culvert by 100 mm above the centerline of the roadside ditch. Rear yard conveyance is similarly set, based on a rear yard check dam of 100 mm at each lot line along the flow path. where; db = i * (ts dp / i) / Vr db = maximum filter media bed depth (mm) i = infiltration rate for native soils (mm/hr) [10 mm/hr used] Vr = Void space ratio for filter bed and gravel layer [assume 0.40] dp = maximum surface ponding depth (mm) [100 mm used] ts = Time to drain (drawdown time) (24 hours 48 hours) Substituting the appropriate values into the above equation yields: db = 10 mm/hr * (24 100mm/10mm/hr) / 0.40 db = 350 mm A filter depth of 500 mm was selected for all areas, except for the area closer to the existing drain where the filter depth will be reduced to 300 mm (bottom width increased to 1.75m) in order to keep the bottom of the trench above the groundwater table. An estimate of the required swale bottom area for 24 hour retention was calculated using Equation 4.3 of the MOE SMPDM as follows: A=(1000 V)/(P N t) td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.7

18 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Where; A = bottom area of trench (m2) V = runoff volume to be infiltrated at 19.8 m3/ha (from MOE Table 3.2) P = percolation rate of surrounding soil [10 mm/hr average used] N = porosity of the storage media [0.40 for clear stone] t = retention time in hours [24 hours] A = (1000 x 19.8 x 19.3) / (8.5 x 0.40 x 24) Therefore A = 3,980 m2 The calculated bottom surface area required as per MOE SMPDM is 3,980 m2 while the bottom width requirement as noted in the LIDSMPDG (page 4-155) is a minimum of 0.75 m. As a result, the dry swales and bioswales will be designed as: Dry Swales (Roadside Ditches) Width= 1.0 m Total Length = +/ m Filter Media Depth = 500 mm Total Filtration Area = +/ m2 Bioswales (Rear Yard) Width= 1. 5 m Total Length = +/ m Filter Media Depth = 500 mm Total Filtration Area = +/- 2,462 m2 The proposed combined total area of filtration surface from the dry swale and bioswale areas is of the order of 4,290 m2. This is approximately 8% above the minimum requirements which, in turn, will compensate for approximately 750 m2 of area where the vertical filtration thickness will be reduced as the swales approach the existing drain area. Table 7 summarizes the required and provided design elements for the proposed quality control stormwater management measures as obtained from the Low Impact Development Stormwater Management Planning and design Manual (LIDSMPDM). Table 7: Dry Swale Quality Control Design Requirements Parameter Requirement (as per LIDSMPDM) Provided Pre-treatment Grass filter strip along filter beds and gravel diaphragm along hard surfaces to promote settling 1.5 m gravel shoulder acting as diaphragm along roadway swale shape Parabolic shape preferred Trapezoidal shape w/ width Trapezoidal shape acceptable for width within acceptable parameters between 0.75m and 3.0m swale bottom width 0.75 m to 3.0 m 1.0 m wide dry swale td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.8

19 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Parameter Requirement (as per LIDSMPDM) Provided 1.5 m bioswale swale side slopes Preferred 3H:1V for ease of maintenance 2:1 dry swale side slopes Additional mulch / permanent erosion control blanket to be specified at detailed design to limit erosion. 3:1 bioswale side slopes swale longitudinal slope < 4.0% Slopes > 3% use check dams 0.3% used for consistency with road longitudinal slope Raised culverts (100 mm) as check dams within dry swales Velocity requirements Max 0.5 m/sec during 4 hour 25mm storm <0.5 m/sec Filter media composition 85% 88% sand 8%-12% soil fines 3 5% organic material 500mm deep sand filter media assumed at draft plan stage Final filter media composition to be identified at detailed design stage Filter media depth 500 mm minimum depth 75mm mulch for top layer or 150 mm topsoil and grass Depth computed based on native soil infiltration rates, drawdown, ponding depth Area requirements computed based on quality volume and depth Gravel storage area 50 mm diameter clear stone Volume based on void ratio of mm filter media Mulch / Top layer to be identified at detailed design stage 50mm dia. clear stone with void ratio of 0.40 Thickness 350 mm Underdrain Perforated HDPE 100 mm diameter minimum. 200 mm diameter recommended when native soil infiltration rate is less than 15mm/hr No underdrain required - Native soil infiltration rate > 15mm/hr 150mm underdrain provided for dry swales for winter operation geotextile Meet OPSS 1860 Class II Sized based on soil apparent opening size, percent open area, hydraulic conductivity, permeability Terrafix 270R proposed (meets OPSS 1860 Class II) td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.9

20 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Stormwater Management Plan Winter Operation It is expected that the filtration/infiltration capabilities of the proposed dry swales and bioswales will be reduced but not eliminated during the colder winter months due to frozen ground conditions. While most of the precipitation received during the winter months is in the form of snow accumulation, it is recognized that rain is increasingly common during winter months in the region. The LIDSMPDG outlines (see Page 4-65 Bioretention) cold climate adaptations for bioretention designs including extending the filter bed and underdrain pipe below the frost line; however, that option would not be feasible for the subject site. Nevertheless, the provision of an underdrain for the dry swales will improve the drainage of the filter media in the swales and reduce the amount of ice formed in void spaces which will help retain the permeability of the filter media during freezing weather. Additionally, the underdrain will encourage drainage of the trenches even if the native soil is frozen and unable to infiltrate. No underdrain is provided for the rear-yard bioswales however most impervious surfaces likely to generate runoff during rainfall events in winter months are directed to the roadside ditches/dry swales Future Infiltration Considerations As stated in the Hydrogeological Assessment and Terrain Analysis report, the subject site at 35 developable units will meet the requirements for long term nitrate concentration below 10 mg/l. Should future development occur, it is understood that there is potential for this criteria to be exceeded under the proposed SWM regime. There is potential for additional nitrate dilution via precipitation should the SWM dry pond bottom be modified to promote infiltration at a later date. Such modifications will be subject to monitored groundwater level data within the pond block area to evaluate the performance of infiltration based measures, as well as additional maintenance and monitoring requirements to be assessed at detailed design. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 4.10

21 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Conclusions and Recommendations 5.0 CONCLUSIONS AND RECOMMENDATIONS Based on the preceding report, the following conclusions can be drawn: The hydrologic and hydraulic analyses show that through a combination of surface storage in the road side ditches and a SWM dry pond, sufficient storage will be provided to restrict 100 year post development peak flows from the entire site to pre-development levels In order to accomplish a post-development to pre-development water balance, the proposed development will include best management practices (BMP s) such as bioswales along rear yards and dry swales along the proposed road side ditches The proposed road crossing culvert along the Sunset Lakes Mutual Drain was sized to provide sufficient capacity to covey flow from the upstream culvert and the proposed development discharge without overtopping the road during the 100 year event Enhanced water quality treatment will be provided through bioswales along the rear yards and dry swales along the proposed roadside ditches Based on the findings of the report, the following recommendations are provided: Proposed under side of footing (USF) elevations be set above road side ditch inverts with foundation drains connected to the road side ditches and equipped with sump pumps and backwater valves An erosion and sediment control plan be implemented for the development prior to earthworks operations (see Drawing EC-1) This report form the basis of the technical review in support of detailed designs for the development. td w:\active\ _greely subdivision_cavanagh\design\report\swm\january 2018\rpt_ _servicing.docx 5.1

22 APPENDICES

23 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix A : SWMHYMO Hydrologic Modeling Parameters and Results : SWMHYMO HYDROLOGIC MODELING PARAMETERS AND RESULTS A.1 PARAMETER SUMMARY AND CALCULATIONS A.1

24 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix A : SWMHYMO Hydrologic Modeling Parameters and Results A.2 SWMHYMO INPUT/OUTPUT FILES A.2

25 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix B : XP-SWMM Modeling Parameters and Results : XP-SWMM MODELING PARAMETERS AND RESULTS B.1

26 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix C : Preliminary Water Balance Calculations : PRELIMINARY WATER BALANCE CALCULATIONS C.1

27 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix D : Fieldstone Engineering Low Impact Development Design Report : FIELDSTONE ENGINEERING LOW IMPACT DEVELOPMENT DESIGN REPORT D.1

28 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix E : Culvert Capacity Analysis and Topographical Plan : CULVERT CAPACITY ANALYSIS AND TOPOGRAPHICAL PLAN E.1

29 APPENDICES

30 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix A : SWMHYMO Hydrologic Modeling Parameters and Results : SWMHYMO HYDROLOGIC MODELING PARAMETERS AND RESULTS A.1 PARAMETER SUMMARY AND CALCULATIONS A.1

31 : Greely Rural Subdivision Model Input SWMHYMO Parameter Summary - Existing Conditions Existing Conditions Model Catchment ID Gradient Description Area (ha) XIMP (%) TIMP (%) (%) Length (m) Velocity (m/s) Tc (hrs) Tp (hrs) Infiltration Method CN CN* Ia Perv. (mm) Ia Imp. (mm) HYD Method SITE Site Area (Dense Woodland and Agricultural Land) % 0.0% 0.0% SCS NASHYD Total Area 1) Shields Valley Data for Initial Abstraction Parameters as per the Hydrologic Assessment - Greely / Shields Creek Stormwater and Drainage Study (Stantec, October 2002) 2) Uplands Method Used for Time of Concentration Estimate, Tp=0.67Tc 3) Soils Type 'A' used across the site as per soil mapping information provided in Hydrologic Assessment - Greely / Shields Creek Stormwater and Drainage Study (Stantec, October 2002) Uplands Method Velocity Determination Source: Date: November 2014 Stantec Consulting Ltd. swmhymo_summary_concep_ _aml (version 1).xls, SWMHYMO Parameters (exist)

32 : Greely Rural Subdivision NRCS (SCS) Curve Number Determination Existing Site Area Site Soils: (Hydrological Assessment and Terrain Analysis - Proposed Residential Subdivision 1240 Old Prescott Road, Paterson Group, October 2013) Soil Type Hydrologic Soil Group Sandy Soils AB TABLE OF CURVE NUMBERS (CN's) Land Use Hydrologic Soil Type Manning's Source A AB B BC C CD D 'n' Meadow "Good" MTO Woodlot "Fair" MTO Gravel City Lawns "Good" City Pasture/Range MTO Crop MTO Fallow (Bare) MTO Low Density Residences Chin Streets, paved City 1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers 2. Chin (2000), Water-Resources Engineering, Table 6.13-Curve Numbers for Various Urban Land Uses 3. City of Ottawa Sewer Design Guidelines (2004), Table 5.9 CN Values for Various Soil Groups HYDROLOGIC SOIL TYPE (%) Hydrologic Soil Type Catchment A AB B BC C CD D TOTAL SITE LAND USE (%) - External Areas Catchment Meadow Woodlot Gravel Lawns Pasture Crop Fallow Low Density Impervious Total Range (Bare) Residences SITE CURVE NUMBER (CN) - External Areas Catchment Meadow Woodlot Gravel Lawns Pasture Crop Fallow Low Density Impervious Weighted Range (Bare) Residences CN SITE ** AMC II assumed ** Hydrological Soil Group taken from MTO Drainage Manual for each soil type Date: November 2014 Stantec Consulting Ltd. swmhymo_summary_concep_ _aml (version 1).xls, CN Calculations (exist)

33 : Greely Rural Subdivision NRSC (SCS) Modified Curve Number Calculation: Existing Condition Areas Input Values Step Subcatchment: SITE 1 CN (AMC II): 51 2 CN (AMC III) = Year Precipitation, P = 93.9 Q = (P - Ia) 2 (P - Ia) + S Q = rainfall excess or runoff, mm S = potential maximum retention or available storage, mm CN = S CN* = modified SCS curve # that better reflects Ia conditions in Ontario Output Values Subcatchment: SITE S III = SCS Assumption of 0.2 S = Ia = Q III = Preferred Initial Abstraction, Ia = S* III = CN* III = CN* III = 55 7 CN* II = 34 CN* II = 49.5 Explanation of Procedure 1 Determine CN based on typical AMC II conditions (from our normal spreadsheet). 2 Convert CN from AMC II to AMC III conditions (standard SCS tables, as shown at side) 3 Get precipitation depth P for 100 year storm 4 Using CN III with Ia = 0.2S, compute Q III for 100 year precipitation 5 For the same Q III, compute S* III using Ia=1.5mm (or otherwise determined from studies) 6 Compute CN* III using S* III 7 Calculate CN* II using standard SCS conversion table or assume 0.9CN* III Date: November 2014 Stantec Consulting Ltd. swmhymo_summary_concep_ _aml (version 1).xls, CNstar (exist)

34 : Greely Rural Subdivision Model Input SWMHYMO Parameter Summary - Proposed Conditions Proposed Conditions Model Catchment ID Description Area (ha) Gradient (%) Velocity XIMP (%) TIMP (%) Length (m) Tc (hrs) (m/s) Tp (hrs) Infiltration Method CN CN* Ia Perv. (mm) Ia Imp. (mm) HYD Method A1 Rear Yard Area to Infliltration Trench % 1% 1% SCS NASHYD A2a Front Yard and Road Area % 23% 45% N/A N/A N/A Hortons N/A N/A STANDHYD A2b Front Yard and Road Area % 23% 45% N/A N/A N/A Hortons N/A N/A STANDHYD A2c Front Yard and Road Area % 23% 45% N/A N/A N/A Hortons N/A N/A STANDHYD A3 Rear Yard Area to Infliltration Trench % 0% 0% SCS NASHYD A4 Front Yard and Road Area % 18% 36% N/A N/A N/A Hortons N/A N/A STANDHYD A5 Rear Yard Area to Infliltration Trench % 0% 0% SCS NASHYD A6a Front Yard and Road Area % 23% 45% N/A N/A N/A Hortons N/A N/A STANDHYD A6b Front Yard and Road Area % 23% 45% N/A N/A N/A Hortons N/A N/A STANDHYD A6c Front Yard and Road Area % 19% 37% N/A N/A N/A Hortons N/A N/A STANDHYD A7 Park Area to Drain % 0% 0% SCS NASHYD A8 Drain Area % 0% 0% SCS NASHYD A9 Rear Yard Area Uncontrolled % 0% 0% SCS NASHYD A10 Rear Yard Area Uncontrolled % 0% 0% SCS NASHYD A11 Front Yard and Road Area % 20% 40% N/A N/A N/A Hortons N/A N/A STANDHYD PND Pond Area % 90% 90% N/A N/A Hortons N/A N/A STANDHYD A12 Old Prescott Road % 23% 23% N/A N/A N/A Hortons N/A N/A STANDHYD A13 Old Prescott Road % 39% 39% 69.2 N/A N/A N/A Hortons N/A N/A STANDHYD A14 Old Prescott Road % 44% 44% 87.7 N/A N/A N/A Hortons N/A N/A STANDHYD Total Area % 21.4% 1) Shields Valley Data for Initial Abstraction Parameters as per the Hydrologic Assessment - Greely / Shields Creek Stormwater and Drainage Study (Stantec, October 2002) 2) Uplands Method Used for Time of Concentration Estimate, Tp=0.67Tc 3) Soils Type 'A' used across the site as per soil mapping information provided in Hydrologic Assessment - Greely / Shields Creek Stormwater and Drainage Study (Stantec, October 2002) Uplands Method Velocity Determination Source: Date: November 2014 Stantec Consulting Ltd. swmhymo_summary_concep_ _aml (version 1).xls, SWMHYMO Parameters (prop)

35 : Greely Rural Subdivision NRCS (SCS) Curve Number Determination Proposed Drainage Areas Site Soils: (Hydrological Assessment and Terrain Analysis - Proposed Residential Subdivision 1240 Old Prescott Road, Paterson Group, October 2013) Soil Type Sandy Soils Hydrologic Soil Group AB TABLE OF CURVE NUMBERS (CN's) Land Use Hydrologic Soil Type Manning's Source A AB B BC C CD D 'n' Meadow "Good" MTO Woodlot "Fair" MTO Gravel City Lawns "Good" City Pasture/Range MTO Crop MTO Fallow (Bare) MTO Low Density Residences Chin Streets, paved City 1. MTO Drainage Manual (1997), Design Chart 1.09-Soil/Land Use Curve Numbers 2. Chin (2000), Water-Resources Engineering, Table 6.13-Curve Numbers for Various Urban Land Uses 3. City of Ottawa Sewer Design Guidelines (2004), Table 5.9 CN Values for Various Soil Groups HYDROLOGIC SOIL TYPE (%) Hydrologic Soil Type Catchment A AB B BC C CD D TOTAL A A A A A A A PND LAND USE (%) Catchment Meadow Woodlot Gravel Lawns Pasture Crop Fallow Low Density Impervious Total Range (Bare) Residences A A A A A A A PND CURVE NUMBER (CN) Catchment Meadow Woodlot Gravel Lawns Pasture Crop Fallow Low Density Impervious Weighted Range (Bare) Residences CN A A A A A A A PND ** AMC II assumed ** Hydrological Soil Group taken from MTO Drainage Manual for each soil type Date: November 2014 Stantec Consulting Ltd. swmhymo_summary_concep_ _aml (version 1).xls, CN Calculations (prop)

36 : Greely Rural Subdivision NRSC (SCS) Modified Curve Number Calculation: Proposed Condition Areas Input Values Step Subcatchment: A1 A3 A5 A7 A8 A9 A10 PND 1 CN (AMC II): CN (AMC III) = Year Precipitation, P = 93.9 mm Q = (P - Ia) 2 S = (P - Ia) 2 - (P - Ia) (P - Ia) + S Q Q = rainfall excess or runoff, mm S = potential maximum retention or available storage, mm CN = S = S CN CN* = modified SCS curve # that better reflects Ia conditions in Ontario Output Values Subcatchment: A1 A3 A5 A7 A8 A9 A10 PND S III = mm SCS Assumption of 0.2 S = Ia = mm Q III = mm Preferred Initial Abstraction, Ia = 1.5 mm S* III = mm CN* III = mm CN* III = 55 Rounded CN* II = 34 converted CN* II = CN* III CN* II (avg) = 42 Average Explanation of Procedure 1 Determine CN based on typical AMC II conditions (from our normal spreadsheet). 2 Convert CN from AMC II to AMC III conditions (standard SCS tables, as shown at side) 3 Get precipitation depth P for 100 year storm 4 Using CN III with Ia = 0.2S, compute Q III for 100 year precipitation 5 For the same Q III, compute S* III using Ia=1.5mm (or otherwise determined from studies) 6 Compute CN* III using S* III 7 Calculate CN* II using standard SCS conversion table or assume 0.9CN* III Date: November 2014 Stantec Consulting Ltd. swmhymo_summary_concep_ _aml (version 1).xls, CNstar (prop)

37 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix A : SWMHYMO Hydrologic Modeling Parameters and Results A.2 SWMHYMO INPUT/OUTPUT FILES A.2

38 (C:\...14f16.DAT) Stantec Consulting Ltd > 2 Metric units 00002> *#****************************************************************************** 00003> *# Project Name: [Greely Rural Subdivision] Project Number: [ ] 00004> *# Date : > *# Modeller : [AMP] 00006> *# Company : Stantec Consulting Ltd > *# License # : > *#****************************************************************************** 00009> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[100] 00010> ["OT6SChyr.STM"] <--storm filename, one per line for NSTORM 00011> *% > READ STORM STORM_FILENAME=["storm.001"] 00013> *% > *#****************************************************************************** 00015> *# 00016> *# GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 00017> *#****************************************************************************** 00018> *# STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 00019> *# - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 00020> *# - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > *# water and Drainage Study (Stantec, October 2002) 00022> *# - 12 hr SCS Storm as per City Guidelines 00023> *# > *# ASSUMPTIONS 00025> *# > *# - CN values estimated based on land use and soils information provided in 00027> *# Paterson's Geotechnical Investigation (October 2013) 00028> *# - SCS Curve Number converted to a modified CN* to account for a more represe 00029> *# tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 00030> *# - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > *# tial abstraction and number of linear reservoir used in the nashyd sub-rou 00032> *# tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 00033> *# Stormwater and Drainage Study (Stantec, October 2002) 00034> *# - Rearyard surface storage has not been accounted for 00035> *# - Infiltrated runoff along road side ditches and rear yard swales as well as 00036> *# underground storage provided in the proposed bioswales designed for infil > *# tration and quality control purposes has not been accounted for 00038> *# - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 00039> *# that will assess the storage capacity of the road side ditches as well as 00040> *# ditch, SWM dry pond and culvert hydraulics 00041> *% > DEFAULT VALUES ICASEdef=[1], read and print values 00043> DEFVAL_FILENAME=["SHIELDS.VAL"] 00044> *% > *#****************************************************************************** 00046> *# 00047> *# EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 00048> *# 00049> *#****************************************************************************** 00050> DESIGN NASHYD ID=[1], NHYD=["SITE"], DT=[1]min, AREA=[18.98](ha), 00051> DWF=[0](cms), CN/C=[49.5], TP=[0.84]hrs, 00052> RAINFALL=[,,,, ](mm/hr), END= > *% > *#****************************************************************************** 00055> * 00056> * PRELIMINARY POST-DEVELOPMENT CONDITIONS 00057> * 00058> *#****************************************************************************** 00059> *% > *% Old Prescott Catchment "A12" sheet flows to A > *% > DESIGN STANDHYD ID=[4], NHYD=["A12"], DT=[1]min, AREA=[0.34](ha), 00063> XIMP=[0.23], TIMP=[0.23], DWF=[0](cms), LOSS=[1], 00064> SLOPE=[1.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > *% Catchment "A7" 00067> *% > DESIGN NASHYD ID=[1], NHYD=["A1"], DT=[1]min, AREA=[2.64](ha), 00069> DWF=[0](cms), CN/C=[41.8], TP=[0.38]hrs, 00070> RAINFALL=[,,,, ](mm/hr), END= > *% > ADD HYD IDsum=[10], NHYD=["A1-OV"], IDs to add=[1,4] 00073> *% > *% > *% Road Side Ditch Catchment "A2a" 00076> *% > DESIGN STANDHYD ID=[9], NHYD=["A2a"], DT=[1]min, AREA=[1.03](ha), 00078> XIMP=[0.23], TIMP=[0.45], DWF=[0](cms), LOSS=[1], 00079> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[9], # OF PCYCLES=[-1], ICASEsh=[1] 00082> HYD_COMMENT=["Runoff from area A2a into road side ditch"] 00083> *% > *% Road Side Ditch Catchment "A2b" 00085> *% > DESIGN STANDHYD ID=[9], NHYD=["A2b"], DT=[1]min, AREA=[1.42](ha), 00087> XIMP=[0.23], TIMP=[0.45], DWF=[0](cms), LOSS=[1], 00088> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[9], # OF PCYCLES=[-1], ICASEsh=[1] 00091> HYD_COMMENT=["Runoff from area A2b into road side ditch"] 00092> *% > *% Road Side Ditch Catchment "A2c" 00094> *% > DESIGN STANDHYD ID=[9], NHYD=["A2c"], DT=[1]min, AREA=[1.27](ha), 00096> XIMP=[0.23], TIMP=[0.45], DWF=[0](cms), LOSS=[1], 00097> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[9], # OF PCYCLES=[-1], ICASEsh=[1] 00100> HYD_COMMENT=["Runoff from area A2c into road side ditch"] 00101> *% > *% Rear Yard Catchment "A3" Uncontrolled to Drain 00103> *% > DESIGN NASHYD ID=[8], NHYD=["A3"], DT=[1]min, AREA=[2.08](ha), 00105> DWF=[0](cms), CN/C=[41.8], TP=[0.31]hrs, 00106> RAINFALL=[,,,, ](mm/hr), END= > *% > *% Road Side Ditch Catchment "A4" 00109> *% > DESIGN STANDHYD ID=[7], NHYD=["A4"], DT=[1]min, AREA=[1.16](ha), 00111> XIMP=[0.18], TIMP=[0.36], DWF=[0](cms), LOSS=[1], 00112> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[7], # OF PCYCLES=[-1], ICASEsh=[1] 00115> HYD_COMMENT=["Runoff from area A4 into road side ditch"] 00116> *% > *% Rear Yard Catchment "A5" Uncontrolled to Drain 00118> *% > DESIGN NASHYD ID=[6], NHYD=["A5"], DT=[1]min, AREA=[1.85](ha), 00120> DWF=[0](cms), CN/C=[39.4], TP=[0.21]hrs, 00121> RAINFALL=[,,,, ](mm/hr), END= > *% > *% Road Side Ditch Catchment "A6a" 00124> *% > DESIGN STANDHYD ID=[5], NHYD=["A6a"], DT=[1]min, AREA=[0.99](ha), 00126> XIMP=[0.23], TIMP=[0.45], DWF=[0](cms), LOSS=[1], 00127> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[5], # OF PCYCLES=[-1], ICASEsh=[1] 00130> HYD_COMMENT=["Runoff from area A6a into road side ditch"] 00131> *% > *% Road Side Ditch Catchment "A6b" 00133> *% > DESIGN STANDHYD ID=[5], NHYD=["A6b"], DT=[1]min, AREA=[1.26](ha), 00135> XIMP=[0.23], TIMP=[0.45], DWF=[0](cms), LOSS=[1], 00136> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[5], # OF PCYCLES=[-1], ICASEsh=[1] 00139> HYD_COMMENT=["Runoff from area A6b into road side ditch"] 00140> *% > *% Road Side Ditch Catchment "A6c" 00142> *% > DESIGN STANDHYD ID=[5], NHYD=["A6c"], DT=[1]min, AREA=[1.18](ha), 00144> XIMP=[0.19], TIMP=[0.37], DWF=[0](cms), LOSS=[1], 00145> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[5], # OF PCYCLES=[-1], ICASEsh=[1] 00148> HYD_COMMENT=["Runoff from area A6c into road side ditch"] 00149> *% > *% Park Catchment "A7" Uncontrolled to Drain 00151> *% > DESIGN NASHYD ID=[4], NHYD=["A7"], DT=[1]min, AREA=[0.46](ha), 00153> DWF=[0](cms), CN/C=[41.8], TP=[0.07]hrs, 00154> RAINFALL=[,,,, ](mm/hr), END= > *% > *% Drain Catchment "A8" 00157> *% > DESIGN NASHYD ID=[3], NHYD=["A8"], DT=[1]min, AREA=[0.4](ha), 00159> DWF=[0](cms), CN/C=[41.8], TP=[0.15]hrs, 00160> RAINFALL=[,,,, ](mm/hr), END= > *% > *% Grassed Catchment "A9" Uncontroled to Drain 00163> *% > DESIGN NASHYD ID=[9], NHYD=["A9"], DT=[1]min, AREA=[1.6](ha), 00165> DWF=[0](cms), CN/C=[39.4], TP=[0.75]hrs, 00166> RAINFALL=[,,,, ](mm/hr), END= > *% > *% Grassed Catchment Catchment "A10" Uncontroled to Drain 00169> *% > DESIGN NASHYD ID=[7], NHYD=["A10"], DT=[1]min, AREA=[1.05](ha), 00171> DWF=[0](cms), CN/C=[39.4], TP=[0.24]hrs, 00172> RAINFALL=[,,,, ](mm/hr), END= > *% > ADD HYD IDsum=[2], NHYD=["UNC"], IDs to add=[9,8,7,6,4,3] 00175> *% > SAVE HYD ID=[2], # OF PCYCLES=[-1], ICASEsh=[1] 00177> HYD_COMMENT=["Uncontrolled runoff"] 00178> *% > *% > *% Road Side Catchment "A11" 00181> *% > DESIGN STANDHYD ID=[9], NHYD=["A11"], DT=[1]min, AREA=[0.14](ha), 00183> XIMP=[0.518], TIMP=[0.518], DWF=[0](cms), LOSS=[1], 00184> SLOPE=[0.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[9], # OF PCYCLES=[-1], ICASEsh=[1] 00187> HYD_COMMENT=["Runoff from area A11 into road side ditch"] 00188> *% > *% Catchment "PND" 00190> *% > DESIGN STANDHYD ID=[8], NHYD=["PND"], DT=[1]min, AREA=[0.5](ha), 00192> XIMP=[0.90], TIMP=[0.90], DWF=[0](cms), LOSS=[1], 00193> SLOPE=[33.3](%), RAINFALL=[,,,, ](mm/hr), END= > *% > ADD HYD IDsum=[9], NHYD=["POND"], IDs to add=[10,8] 00196> *% > SAVE HYD ID=[9], # OF PCYCLES=[-1], ICASEsh=[1] 00198> HYD_COMMENT=["Runoff to Pond"] 00199> *% > *% Old Prescott Catchment "A13" 00201> *% > DESIGN STANDHYD ID=[7], NHYD=["A13"], DT=[1]min, AREA=[0.08](ha), 00203> XIMP=[0.389], TIMP=[0.389], DWF=[0](cms), LOSS=[1], 00204> SLOPE=[6](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[7], # OF PCYCLES=[-1], ICASEsh=[1] 00207> HYD_COMMENT=["Runoff from Old Prescott Road to road side dit 00208> *% > *% > *% Old Prescott Catchment "A14" 00211> *% > DESIGN STANDHYD ID=[6], NHYD=["A14"], DT=[1]min, AREA=[0.09](ha), 00213> XIMP=[0.439], TIMP=[0.439], DWF=[0](cms), LOSS=[1], 00214> SLOPE=[0.56](%), RAINFALL=[,,,, ](mm/hr), END= > *% > SAVE HYD ID=[6], # OF PCYCLES=[-1], ICASEsh=[1] 00217> HYD_COMMENT=["Runoff from Old Prescott Road to road side dit 00218> *% > *%****************************************************************************** 00220> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[200] 00221> ["OT3CH5yr.STM"] <--storm filename, one per line for NSTORM 00222> *%****************************************************************************** 00223> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[300] 00224> ["OT3CHhyr.STM"] <--storm filename, one per line for NSTORM 00225> *%****************************************************************************** 00226> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[400] 00227> ["3hCH20%.STM"] <--storm filename, one per line for NSTORM t 00228> *%****************************************************************************** 00229> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[500] 00230> ["OT12SC5y.STM"] <--storm filename, one per line for NSTORM 00231> *%****************************************************************************** 00232> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[600] 00233> ["OT12SChy.STM"] <--storm filename, one per line for NSTORM 00234> *%****************************************************************************** 00235> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[700] 00236> ["12hSC20%.STM"] <--storm filename, one per line for NSTORM 00237> *%****************************************************************************** 00238> START TZERO=[0.0], METOUT=[2], NSTORM=[1], NRUN=[800] 00239> ["O12SC25y.STM"] <--storm filename, one per line for NSTORM 00240> *% > *% > FINISH 00243> 00244> 00245> 00246> 00247> 00248> 00249> 00250> 00251> 00252> 00253> 00254> Stantec Consulting Ltd 604 Page 0

39 (C:\...14f16.sum) Stantec Consulting Ltd > ================================================================================ 00002> 00003> SSSSS W W M M H H Y Y M M OOO ========= 00004> S W W W MM MM H H Y Y MM MM O O > SSSSS W W W M M M HHHHH Y M M M O O ## Ver > S W W M M H H Y M M O O Sept > SSSSS W W M M H H Y M M OOO 9 9 ========= 00008> # > StormWater Management HYdrologic Model ========= 00010> 00011> ******************************************************************************* 00012> ***************************** SWMHYMO Ver/4.05 ****************************** 00013> ********* A single event and continuous hydrologic simulation model ********* 00014> ********* based on the principles of HYMO and its successors ********* 00015> ********* OTTHYMO-83 and OTTHYMO-89. ********* 00016> ******************************************************************************* 00017> ********* Distributed by: J.F. Sabourin and Associates Inc. ********* 00018> ********* Ottawa, Ontario: (613) ********* 00019> ********* Gatineau, Quebec: (819) ********* 00020> ********* swmhymo@jfsa.com ********* 00021> ******************************************************************************* 00022> 00023> > Licensed user: Stantec Consulting Ltd > Ottawa SERIAL#: > > 00028> ******************************************************************************* 00029> ********* PROGRAM ARRAY DIMENSIONS ********* 00030> ********* Maximum value for ID numbers : 10 ********* 00031> ********* Max. number of rainfall points: ********* 00032> ********* Max. number of flow points : ********* 00033> ******************************************************************************* 00034> 00035> ***** DESCRIPTION SUMMARY TABLE HEADERS (units depend on METOUT in START) ***** 00036> ***** ***** 00037> ***** ID: Hydrograph IDentification numbers, (1-10). ***** 00038> ***** NHYD: Hydrograph reference numbers, (6 digits or characters). ***** 00039> ***** AREA: Drainage area associated with hydrograph, (ac.) or (ha.). ***** 00040> ***** QPEAK: Peak flow of simulated hydrograph, (ft^3/s) or (m^3/s). ***** 00041> ***** TpeakDate_hh:mm is the date and time of the peak flow. ***** 00042> ***** R.V.: Runoff Volume of simulated hydrograph, (in) or (mm). ***** 00043> ***** R.C.: Runoff Coefficient of simulated hydrograph, (ratio). ***** 00044> ***** *: see WARNING or NOTE message printed at end of run. ***** 00045> ***** **: see ERROR message printed at end of run. ***** 00046> ******************************************************************************* 00047> ******************************************************************************* 00048> 00049> :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 00050> 00051> ******************************************************************************* 00052> 00053> *********************** S U M M A R Y O U T P U T *********************** 00054> ******************************************************************************* 00055> * DATE: TIME: 16:25:50 RUN COUNTER: * 00056> ******************************************************************************* 00057> * Input filename: C:\TEMP\1012\14f16.DAT * 00058> * Output filename: C:\TEMP\1012\14f16.out * 00059> * Summary filename: C:\TEMP\1012\14f16.sum * 00060> * User comments: * 00061> * 1: * 00062> * 2: * 00063> * 3: * 00064> ******************************************************************************* 00065> 00066> 00067> #****************************************************************************** 00068> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 00069> # Date : > # Modeller : [AMP] 00071> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 00074> ** END OF RUN : > 00076> ******************************************************************************* 00077> 00078> 00079> 00080> 00081> 00082> RUN:COMMAND# 00083> 100: > START 00085> [TZERO =.00 hrs on 0] 00086> [METOUT= 2 (1=imperial, 2=metric output)] 00087> [NSTORM= 1 ] 00088> [NRUN = 100 ] 00089> #****************************************************************************** 00090> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 00091> # Date : > # Modeller : [AMP] 00093> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 00096> 100: > READ STORM 00098> Filename = storm > Comment = 00100> [SDT=15.00:SDUR= 6.00:PTOT= 74.30] 00101> #****************************************************************************** 00102> # 00103> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 00104> #****************************************************************************** 00105> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 00106> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 00107> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 00109> # - 12 hr SCS Storm as per City Guidelines 00110> # > # ASSUMPTIONS 00112> # > # - CN values estimated based on land use and soils information provided in 00114> # Paterson's Geotechnical Investigation (October 2013) 00115> # - SCS Curve Number converted to a modified CN* to account for a more represe 00116> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 00117> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 00119> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 00120> # Stormwater and Drainage Study (Stantec, October 2002) 00121> # - Rearyard surface storage has not been accounted for 00122> # - Infiltrated runoff along road side ditches and rear yard swales as well as 00123> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 00125> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 00126> # that will assess the storage capacity of the road side ditches as well as 00127> # ditch, SWM dry pond and culvert hydraulics 00128> 100: > DEFAULT VALUES 00130> Filename = C:\TEMP\1012\SHIELDS.VAL 00131> ICASEdv = 1 (read and print data) 00132> FileTitle= File comment: [ ] 00133> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 00134> Horton's infiltration equation parameters: 00135> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 00136> Parameters for PERVIOUS surfaces in STANDHYD: 00137> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 00138> Parameters for IMPERVIOUS surfaces in STANDHYD: 00139> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 00140> Parameters used in NASHYD: 00141> [Ia= 1.50 mm] [N= 3.00] 00142> #****************************************************************************** 00143> # 00144> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 00145> # 00146> #****************************************************************************** 00147> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 3: > [CN= 49.5: N= 3.00] 00150> [Tp=.84:DT= 1.00] 00151> #****************************************************************************** 00152> #****************************************************************************** 00153> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 3: > [XIMP=.23:TIMP=.23] 00156> [SLP=1.30:DT= 1.00] 00157> [LOSS= 1 : HORTONS] 00158> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 3: > [CN= 41.8: N= 3.00] 00161> [Tp=.38:DT= 1.00] 00162> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 3: > + 04:A No_date 3: > [DT= 1.00] SUM= 10:A1-OV No_date 3: > 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 3: > [XIMP=.23:TIMP=.45] 00169> [SLP=.30:DT= 1.00] 00170> [LOSS= 1 : HORTONS] 00171> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 3: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 00175> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 3: > [XIMP=.23:TIMP=.45] 00178> [SLP=.30:DT= 1.00] 00179> [LOSS= 1 : HORTONS] 00180> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 3: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 00184> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 3: > [XIMP=.23:TIMP=.45] 00187> [SLP=.30:DT= 1.00] 00188> [LOSS= 1 : HORTONS] 00189> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 3: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 00193> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 3: > [CN= 41.8: N= 3.00] 00196> [Tp=.31:DT= 1.00] 00197> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 3: > [XIMP=.18:TIMP=.36] 00200> [SLP=.30:DT= 1.00] 00201> [LOSS= 1 : HORTONS] 00202> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 3: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 00206> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 3: > [CN= 39.4: N= 3.00] 00209> [Tp=.21:DT= 1.00] 00210> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 3: > [XIMP=.23:TIMP=.45] 00213> [SLP=.30:DT= 1.00] 00214> [LOSS= 1 : HORTONS] 00215> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 3: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 00219> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 3: > [XIMP=.23:TIMP=.45] 00222> [SLP=.30:DT= 1.00] 00223> [LOSS= 1 : HORTONS] 00224> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 3: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 00228> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 3: > [XIMP=.19:TIMP=.37] 00231> [SLP=.30:DT= 1.00] 00232> [LOSS= 1 : HORTONS] 00233> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 3: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 00237> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 3: > [CN= 41.8: N= 3.00] 00240> [Tp=.07:DT= 1.00] 00241> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 3: > [CN= 41.8: N= 3.00] 00244> [Tp=.15:DT= 1.00] 00245> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 3: > [CN= 39.4: N= 3.00] 00248> [Tp=.75:DT= 1.00] 00249> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 3: > [CN= 39.4: N= 3.00] 00252> [Tp=.24:DT= 1.00] 00253> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 3: Stantec Consulting Ltd 604 Page 0

40 (C:\...14f16.sum) Stantec Consulting Ltd > + 08:A No_date 3: > + 07:A No_date 3: > + 06:A No_date 3: > + 04:A No_date 3: > + 03:A No_date 3: > [DT= 1.00] SUM= 02:UNC No_date 3: > 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 3: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 00265> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 3: > [XIMP=.52:TIMP=.52] 00268> [SLP=.30:DT= 1.00] 00269> [LOSS= 1 : HORTONS] 00270> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 3: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 00274> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 3: > [XIMP=.90:TIMP=.90] 00277> [SLP=****:DT= 1.00] 00278> [LOSS= 1 : HORTONS] 00279> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 3: > + 08:PND No_date 3: > [DT= 1.00] SUM= 09:POND No_date 3: > 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 3: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 00287> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 3: > [XIMP=.39:TIMP=.39] 00290> [SLP=6.00:DT= 1.00] 00291> [LOSS= 1 : HORTONS] 00292> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 3: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00296> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 3: > [XIMP=.44:TIMP=.44] 00299> [SLP=.56:DT= 1.00] 00300> [LOSS= 1 : HORTONS] 00301> 100: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 3: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00305> ** END OF RUN : > 00307> ******************************************************************************* 00308> 00309> 00310> 00311> 00312> 00313> RUN:COMMAND# 00314> 200: > START 00316> [TZERO =.00 hrs on 0] 00317> [METOUT= 2 (1=imperial, 2=metric output)] 00318> [NSTORM= 1 ] 00319> [NRUN = 200 ] 00320> #****************************************************************************** 00321> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 00322> # Date : > # Modeller : [AMP] 00324> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 00327> 200: > READ STORM 00329> Filename = storm > Comment = 00331> [SDT=10.00:SDUR= 3.00:PTOT= 42.51] 00332> #****************************************************************************** 00333> # 00334> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 00335> #****************************************************************************** 00336> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 00337> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 00338> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 00340> # - 12 hr SCS Storm as per City Guidelines 00341> # > # ASSUMPTIONS 00343> # > # - CN values estimated based on land use and soils information provided in 00345> # Paterson's Geotechnical Investigation (October 2013) 00346> # - SCS Curve Number converted to a modified CN* to account for a more represe 00347> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 00348> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 00350> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 00351> # Stormwater and Drainage Study (Stantec, October 2002) 00352> # - Rearyard surface storage has not been accounted for 00353> # - Infiltrated runoff along road side ditches and rear yard swales as well as 00354> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 00356> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 00357> # that will assess the storage capacity of the road side ditches as well as 00358> # ditch, SWM dry pond and culvert hydraulics 00359> 200: > DEFAULT VALUES 00361> Filename = C:\TEMP\1012\SHIELDS.VAL 00362> ICASEdv = 1 (read and print data) 00363> FileTitle= File comment: [ ] 00364> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 00365> Horton's infiltration equation parameters: 00366> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 00367> Parameters for PERVIOUS surfaces in STANDHYD: 00368> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 00369> Parameters for IMPERVIOUS surfaces in STANDHYD: 00370> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 00371> Parameters used in NASHYD: 00372> [Ia= 1.50 mm] [N= 3.00] 00373> #****************************************************************************** 00374> # 00375> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 00376> # 00377> #****************************************************************************** 00378> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 2: > [CN= 49.5: N= 3.00] 00381> [Tp=.84:DT= 1.00] 00382> #****************************************************************************** 00383> #****************************************************************************** 00384> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 1: > [XIMP=.23:TIMP=.23] 00387> [SLP=1.30:DT= 1.00] 00388> [LOSS= 1 : HORTONS] 00389> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 1: > [CN= 41.8: N= 3.00] 00392> [Tp=.38:DT= 1.00] 00393> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 1: > + 04:A No_date 1: > [DT= 1.00] SUM= 10:A1-OV No_date 1: > 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 1: > [XIMP=.23:TIMP=.45] 00400> [SLP=.30:DT= 1.00] 00401> [LOSS= 1 : HORTONS] 00402> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 1: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 00406> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 1: > [XIMP=.23:TIMP=.45] 00409> [SLP=.30:DT= 1.00] 00410> [LOSS= 1 : HORTONS] 00411> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 1: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 00415> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 1: > [XIMP=.23:TIMP=.45] 00418> [SLP=.30:DT= 1.00] 00419> [LOSS= 1 : HORTONS] 00420> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 1: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 00424> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 1: > [CN= 41.8: N= 3.00] 00427> [Tp=.31:DT= 1.00] 00428> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 1: > [XIMP=.18:TIMP=.36] 00431> [SLP=.30:DT= 1.00] 00432> [LOSS= 1 : HORTONS] 00433> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 00437> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 1: > [CN= 39.4: N= 3.00] 00440> [Tp=.21:DT= 1.00] 00441> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 1: > [XIMP=.23:TIMP=.45] 00444> [SLP=.30:DT= 1.00] 00445> [LOSS= 1 : HORTONS] 00446> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 1: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 00450> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 1: > [XIMP=.23:TIMP=.45] 00453> [SLP=.30:DT= 1.00] 00454> [LOSS= 1 : HORTONS] 00455> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 1: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 00459> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 1: > [XIMP=.19:TIMP=.37] 00462> [SLP=.30:DT= 1.00] 00463> [LOSS= 1 : HORTONS] 00464> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 1: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 00468> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 1: > [CN= 41.8: N= 3.00] 00471> [Tp=.07:DT= 1.00] 00472> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 1: > [CN= 41.8: N= 3.00] 00475> [Tp=.15:DT= 1.00] 00476> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 1: > [CN= 39.4: N= 3.00] 00479> [Tp=.75:DT= 1.00] 00480> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 1: > [CN= 39.4: N= 3.00] 00483> [Tp=.24:DT= 1.00] 00484> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 1: > + 08:A No_date 1: > + 07:A No_date 1: > + 06:A No_date 1: > + 04:A No_date 1: > + 03:A No_date 1: > [DT= 1.00] SUM= 02:UNC No_date 1: > 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 1: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 00496> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 1: > [XIMP=.52:TIMP=.52] 00499> [SLP=.30:DT= 1.00] 00500> [LOSS= 1 : HORTONS] 00501> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 00505> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 1: > [XIMP=.90:TIMP=.90] 00508> [SLP=****:DT= 1.00] Stantec Consulting Ltd 604 Page 1

41 (C:\...14f16.sum) Stantec Consulting Ltd > [LOSS= 1 : HORTONS] 00510> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 1: > + 08:PND No_date 1: > [DT= 1.00] SUM= 09:POND No_date 1: > 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 1: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 00518> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 1: > [XIMP=.39:TIMP=.39] 00521> [SLP=6.00:DT= 1.00] 00522> [LOSS= 1 : HORTONS] 00523> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00527> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 1: > [XIMP=.44:TIMP=.44] 00530> [SLP=.56:DT= 1.00] 00531> [LOSS= 1 : HORTONS] 00532> 200: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00536> ** END OF RUN : > 00538> ******************************************************************************* 00539> 00540> 00541> 00542> 00543> 00544> RUN:COMMAND# 00545> 300: > START 00547> [TZERO =.00 hrs on 0] 00548> [METOUT= 2 (1=imperial, 2=metric output)] 00549> [NSTORM= 1 ] 00550> [NRUN = 300 ] 00551> #****************************************************************************** 00552> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 00553> # Date : > # Modeller : [AMP] 00555> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 00558> 300: > READ STORM 00560> Filename = storm > Comment = 00562> [SDT=10.00:SDUR= 3.00:PTOT= 71.66] 00563> #****************************************************************************** 00564> # 00565> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 00566> #****************************************************************************** 00567> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 00568> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 00569> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 00571> # - 12 hr SCS Storm as per City Guidelines 00572> # > # ASSUMPTIONS 00574> # > # - CN values estimated based on land use and soils information provided in 00576> # Paterson's Geotechnical Investigation (October 2013) 00577> # - SCS Curve Number converted to a modified CN* to account for a more represe 00578> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 00579> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 00581> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 00582> # Stormwater and Drainage Study (Stantec, October 2002) 00583> # - Rearyard surface storage has not been accounted for 00584> # - Infiltrated runoff along road side ditches and rear yard swales as well as 00585> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 00587> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 00588> # that will assess the storage capacity of the road side ditches as well as 00589> # ditch, SWM dry pond and culvert hydraulics 00590> 300: > DEFAULT VALUES 00592> Filename = C:\TEMP\1012\SHIELDS.VAL 00593> ICASEdv = 1 (read and print data) 00594> FileTitle= File comment: [ ] 00595> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 00596> Horton's infiltration equation parameters: 00597> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 00598> Parameters for PERVIOUS surfaces in STANDHYD: 00599> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 00600> Parameters for IMPERVIOUS surfaces in STANDHYD: 00601> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 00602> Parameters used in NASHYD: 00603> [Ia= 1.50 mm] [N= 3.00] 00604> #****************************************************************************** 00605> # 00606> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 00607> # 00608> #****************************************************************************** 00609> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 2: > [CN= 49.5: N= 3.00] 00612> [Tp=.84:DT= 1.00] 00613> #****************************************************************************** 00614> #****************************************************************************** 00615> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 1: > [XIMP=.23:TIMP=.23] 00618> [SLP=1.30:DT= 1.00] 00619> [LOSS= 1 : HORTONS] 00620> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 1: > [CN= 41.8: N= 3.00] 00623> [Tp=.38:DT= 1.00] 00624> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 1: > + 04:A No_date 1: > [DT= 1.00] SUM= 10:A1-OV No_date 1: > 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 1: > [XIMP=.23:TIMP=.45] 00631> [SLP=.30:DT= 1.00] 00632> [LOSS= 1 : HORTONS] 00633> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 1: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 00637> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 1: > [XIMP=.23:TIMP=.45] 00640> [SLP=.30:DT= 1.00] 00641> [LOSS= 1 : HORTONS] 00642> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 1: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 00646> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 1: > [XIMP=.23:TIMP=.45] 00649> [SLP=.30:DT= 1.00] 00650> [LOSS= 1 : HORTONS] 00651> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 1: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 00655> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 1: > [CN= 41.8: N= 3.00] 00658> [Tp=.31:DT= 1.00] 00659> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 1: > [XIMP=.18:TIMP=.36] 00662> [SLP=.30:DT= 1.00] 00663> [LOSS= 1 : HORTONS] 00664> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 00668> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 1: > [CN= 39.4: N= 3.00] 00671> [Tp=.21:DT= 1.00] 00672> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 1: > [XIMP=.23:TIMP=.45] 00675> [SLP=.30:DT= 1.00] 00676> [LOSS= 1 : HORTONS] 00677> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 1: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 00681> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 1: > [XIMP=.23:TIMP=.45] 00684> [SLP=.30:DT= 1.00] 00685> [LOSS= 1 : HORTONS] 00686> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 1: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 00690> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 1: > [XIMP=.19:TIMP=.37] 00693> [SLP=.30:DT= 1.00] 00694> [LOSS= 1 : HORTONS] 00695> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 1: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 00699> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 1: > [CN= 41.8: N= 3.00] 00702> [Tp=.07:DT= 1.00] 00703> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 1: > [CN= 41.8: N= 3.00] 00706> [Tp=.15:DT= 1.00] 00707> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 1: > [CN= 39.4: N= 3.00] 00710> [Tp=.75:DT= 1.00] 00711> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 1: > [CN= 39.4: N= 3.00] 00714> [Tp=.24:DT= 1.00] 00715> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 1: > + 08:A No_date 1: > + 07:A No_date 1: > + 06:A No_date 1: > + 04:A No_date 1: > + 03:A No_date 1: > [DT= 1.00] SUM= 02:UNC No_date 1: > 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 1: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 00727> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 1: > [XIMP=.52:TIMP=.52] 00730> [SLP=.30:DT= 1.00] 00731> [LOSS= 1 : HORTONS] 00732> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 00736> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 1: > [XIMP=.90:TIMP=.90] 00739> [SLP=****:DT= 1.00] 00740> [LOSS= 1 : HORTONS] 00741> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 1: > + 08:PND No_date 1: > [DT= 1.00] SUM= 09:POND No_date 1: > 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 1: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 00749> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 1: > [XIMP=.39:TIMP=.39] 00752> [SLP=6.00:DT= 1.00] 00753> [LOSS= 1 : HORTONS] 00754> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00758> 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 1: > [XIMP=.44:TIMP=.44] 00761> [SLP=.56:DT= 1.00] 00762> [LOSS= 1 : HORTONS] Stantec Consulting Ltd 604 Page 2

42 (C:\...14f16.sum) Stantec Consulting Ltd > 300: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00767> ** END OF RUN : > 00769> ******************************************************************************* 00770> 00771> 00772> 00773> 00774> 00775> RUN:COMMAND# 00776> 400: > START 00778> [TZERO =.00 hrs on 0] 00779> [METOUT= 2 (1=imperial, 2=metric output)] 00780> [NSTORM= 1 ] 00781> [NRUN = 400 ] 00782> #****************************************************************************** 00783> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 00784> # Date : > # Modeller : [AMP] 00786> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 00789> 400: > READ STORM 00791> Filename = storm > Comment = 00793> [SDT=10.00:SDUR= 3.00:PTOT= 86.00] 00794> #****************************************************************************** 00795> # 00796> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 00797> #****************************************************************************** 00798> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 00799> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 00800> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 00802> # - 12 hr SCS Storm as per City Guidelines 00803> # > # ASSUMPTIONS 00805> # > # - CN values estimated based on land use and soils information provided in 00807> # Paterson's Geotechnical Investigation (October 2013) 00808> # - SCS Curve Number converted to a modified CN* to account for a more represe 00809> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 00810> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 00812> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 00813> # Stormwater and Drainage Study (Stantec, October 2002) 00814> # - Rearyard surface storage has not been accounted for 00815> # - Infiltrated runoff along road side ditches and rear yard swales as well as 00816> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 00818> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 00819> # that will assess the storage capacity of the road side ditches as well as 00820> # ditch, SWM dry pond and culvert hydraulics 00821> 400: > DEFAULT VALUES 00823> Filename = C:\TEMP\1012\SHIELDS.VAL 00824> ICASEdv = 1 (read and print data) 00825> FileTitle= File comment: [ ] 00826> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 00827> Horton's infiltration equation parameters: 00828> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 00829> Parameters for PERVIOUS surfaces in STANDHYD: 00830> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 00831> Parameters for IMPERVIOUS surfaces in STANDHYD: 00832> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 00833> Parameters used in NASHYD: 00834> [Ia= 1.50 mm] [N= 3.00] 00835> #****************************************************************************** 00836> # 00837> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 00838> # 00839> #****************************************************************************** 00840> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 2: > [CN= 49.5: N= 3.00] 00843> [Tp=.84:DT= 1.00] 00844> #****************************************************************************** 00845> #****************************************************************************** 00846> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 1: > [XIMP=.23:TIMP=.23] 00849> [SLP=1.30:DT= 1.00] 00850> [LOSS= 1 : HORTONS] 00851> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 1: > [CN= 41.8: N= 3.00] 00854> [Tp=.38:DT= 1.00] 00855> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 1: > + 04:A No_date 1: > [DT= 1.00] SUM= 10:A1-OV No_date 1: > 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 1: > [XIMP=.23:TIMP=.45] 00862> [SLP=.30:DT= 1.00] 00863> [LOSS= 1 : HORTONS] 00864> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 1: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 00868> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 1: > [XIMP=.23:TIMP=.45] 00871> [SLP=.30:DT= 1.00] 00872> [LOSS= 1 : HORTONS] 00873> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 1: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 00877> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 1: > [XIMP=.23:TIMP=.45] 00880> [SLP=.30:DT= 1.00] 00881> [LOSS= 1 : HORTONS] 00882> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 1: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 00886> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 1: > [CN= 41.8: N= 3.00] 00889> [Tp=.31:DT= 1.00] 00890> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 1: > [XIMP=.18:TIMP=.36] 00893> [SLP=.30:DT= 1.00] 00894> [LOSS= 1 : HORTONS] 00895> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 00899> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 1: > [CN= 39.4: N= 3.00] 00902> [Tp=.21:DT= 1.00] 00903> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 1: > [XIMP=.23:TIMP=.45] 00906> [SLP=.30:DT= 1.00] 00907> [LOSS= 1 : HORTONS] 00908> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 1: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 00912> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 1: > [XIMP=.23:TIMP=.45] 00915> [SLP=.30:DT= 1.00] 00916> [LOSS= 1 : HORTONS] 00917> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 1: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 00921> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 1: > [XIMP=.19:TIMP=.37] 00924> [SLP=.30:DT= 1.00] 00925> [LOSS= 1 : HORTONS] 00926> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 1: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 00930> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 1: > [CN= 41.8: N= 3.00] 00933> [Tp=.07:DT= 1.00] 00934> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 1: > [CN= 41.8: N= 3.00] 00937> [Tp=.15:DT= 1.00] 00938> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 1: > [CN= 39.4: N= 3.00] 00941> [Tp=.75:DT= 1.00] 00942> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 1: > [CN= 39.4: N= 3.00] 00945> [Tp=.24:DT= 1.00] 00946> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 1: > + 08:A No_date 1: > + 07:A No_date 1: > + 06:A No_date 1: > + 04:A No_date 1: > + 03:A No_date 1: > [DT= 1.00] SUM= 02:UNC No_date 1: > 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 1: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 00958> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 1: > [XIMP=.52:TIMP=.52] 00961> [SLP=.30:DT= 1.00] 00962> [LOSS= 1 : HORTONS] 00963> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 00967> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 1: > [XIMP=.90:TIMP=.90] 00970> [SLP=****:DT= 1.00] 00971> [LOSS= 1 : HORTONS] 00972> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 1: > + 08:PND No_date 1: > [DT= 1.00] SUM= 09:POND No_date 1: > 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 1: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 00980> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 1: > [XIMP=.39:TIMP=.39] 00983> [SLP=6.00:DT= 1.00] 00984> [LOSS= 1 : HORTONS] 00985> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00989> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 1: > [XIMP=.44:TIMP=.44] 00992> [SLP=.56:DT= 1.00] 00993> [LOSS= 1 : HORTONS] 00994> 400: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 1: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 00998> ** END OF RUN : > 01000> ******************************************************************************* 01001> 01002> 01003> 01004> 01005> 01006> RUN:COMMAND# 01007> 500: > START 01009> [TZERO =.00 hrs on 0] 01010> [METOUT= 2 (1=imperial, 2=metric output)] 01011> [NSTORM= 1 ] 01012> [NRUN = 500 ] 01013> #****************************************************************************** 01014> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 01015> # Date : > # Modeller : [AMP] Stantec Consulting Ltd 604 Page 3

43 (C:\...14f16.sum) Stantec Consulting Ltd > # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 01020> 500: > READ STORM 01022> Filename = storm > Comment = 01024> [SDT=30.00:SDUR= 12.00:PTOT= 56.17] 01025> #****************************************************************************** 01026> # 01027> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 01028> #****************************************************************************** 01029> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 01030> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 01031> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 01033> # - 12 hr SCS Storm as per City Guidelines 01034> # > # ASSUMPTIONS 01036> # > # - CN values estimated based on land use and soils information provided in 01038> # Paterson's Geotechnical Investigation (October 2013) 01039> # - SCS Curve Number converted to a modified CN* to account for a more represe 01040> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 01041> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 01043> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 01044> # Stormwater and Drainage Study (Stantec, October 2002) 01045> # - Rearyard surface storage has not been accounted for 01046> # - Infiltrated runoff along road side ditches and rear yard swales as well as 01047> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 01049> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 01050> # that will assess the storage capacity of the road side ditches as well as 01051> # ditch, SWM dry pond and culvert hydraulics 01052> 500: > DEFAULT VALUES 01054> Filename = C:\TEMP\1012\SHIELDS.VAL 01055> ICASEdv = 1 (read and print data) 01056> FileTitle= File comment: [ ] 01057> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 01058> Horton's infiltration equation parameters: 01059> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 01060> Parameters for PERVIOUS surfaces in STANDHYD: 01061> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 01062> Parameters for IMPERVIOUS surfaces in STANDHYD: 01063> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 01064> Parameters used in NASHYD: 01065> [Ia= 1.50 mm] [N= 3.00] 01066> #****************************************************************************** 01067> # 01068> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 01069> # 01070> #****************************************************************************** 01071> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 6: > [CN= 49.5: N= 3.00] 01074> [Tp=.84:DT= 1.00] 01075> #****************************************************************************** 01076> #****************************************************************************** 01077> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 6: > [XIMP=.23:TIMP=.23] 01080> [SLP=1.30:DT= 1.00] 01081> [LOSS= 1 : HORTONS] 01082> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 6: > [CN= 41.8: N= 3.00] 01085> [Tp=.38:DT= 1.00] 01086> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 6: > + 04:A No_date 6: > [DT= 1.00] SUM= 10:A1-OV No_date 6: > 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 6: > [XIMP=.23:TIMP=.45] 01093> [SLP=.30:DT= 1.00] 01094> [LOSS= 1 : HORTONS] 01095> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 6: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 01099> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 6: > [XIMP=.23:TIMP=.45] 01102> [SLP=.30:DT= 1.00] 01103> [LOSS= 1 : HORTONS] 01104> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 6: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 01108> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 6: > [XIMP=.23:TIMP=.45] 01111> [SLP=.30:DT= 1.00] 01112> [LOSS= 1 : HORTONS] 01113> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 6: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 01117> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 6: > [CN= 41.8: N= 3.00] 01120> [Tp=.31:DT= 1.00] 01121> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.18:TIMP=.36] 01124> [SLP=.30:DT= 1.00] 01125> [LOSS= 1 : HORTONS] 01126> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 01130> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 6: > [CN= 39.4: N= 3.00] 01133> [Tp=.21:DT= 1.00] 01134> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 6: > [XIMP=.23:TIMP=.45] 01137> [SLP=.30:DT= 1.00] 01138> [LOSS= 1 : HORTONS] 01139> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 6: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 01143> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 6: > [XIMP=.23:TIMP=.45] 01146> [SLP=.30:DT= 1.00] 01147> [LOSS= 1 : HORTONS] 01148> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 6: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 01152> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 6: > [XIMP=.19:TIMP=.37] 01155> [SLP=.30:DT= 1.00] 01156> [LOSS= 1 : HORTONS] 01157> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 6: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 01161> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 6: > [CN= 41.8: N= 3.00] 01164> [Tp=.07:DT= 1.00] 01165> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 6: > [CN= 41.8: N= 3.00] 01168> [Tp=.15:DT= 1.00] 01169> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 6: > [CN= 39.4: N= 3.00] 01172> [Tp=.75:DT= 1.00] 01173> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 6: > [CN= 39.4: N= 3.00] 01176> [Tp=.24:DT= 1.00] 01177> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 6: > + 08:A No_date 6: > + 07:A No_date 6: > + 06:A No_date 6: > + 04:A No_date 6: > + 03:A No_date 6: > [DT= 1.00] SUM= 02:UNC No_date 6: > 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 6: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 01189> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 6: > [XIMP=.52:TIMP=.52] 01192> [SLP=.30:DT= 1.00] 01193> [LOSS= 1 : HORTONS] 01194> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 01198> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 6: > [XIMP=.90:TIMP=.90] 01201> [SLP=****:DT= 1.00] 01202> [LOSS= 1 : HORTONS] 01203> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 6: > + 08:PND No_date 6: > [DT= 1.00] SUM= 09:POND No_date 6: > 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 6: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 01211> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.39:TIMP=.39] 01214> [SLP=6.00:DT= 1.00] 01215> [LOSS= 1 : HORTONS] 01216> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01220> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 6: > [XIMP=.44:TIMP=.44] 01223> [SLP=.56:DT= 1.00] 01224> [LOSS= 1 : HORTONS] 01225> 500: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01229> ** END OF RUN : > 01231> ******************************************************************************* 01232> 01233> 01234> 01235> 01236> 01237> RUN:COMMAND# 01238> 600: > START 01240> [TZERO =.00 hrs on 0] 01241> [METOUT= 2 (1=imperial, 2=metric output)] 01242> [NSTORM= 1 ] 01243> [NRUN = 600 ] 01244> #****************************************************************************** 01245> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 01246> # Date : > # Modeller : [AMP] 01248> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 01251> 600: > READ STORM 01253> Filename = storm > Comment = 01255> [SDT=10.00:SDUR= 12.00:PTOT= 93.90] 01256> #****************************************************************************** 01257> # 01258> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 01259> #****************************************************************************** 01260> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 01261> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 01262> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 01264> # - 12 hr SCS Storm as per City Guidelines 01265> # > # ASSUMPTIONS 01267> # > # - CN values estimated based on land use and soils information provided in 01269> # Paterson's Geotechnical Investigation (October 2013) 01270> # - SCS Curve Number converted to a modified CN* to account for a more represe Stantec Consulting Ltd 604 Page 4

44 (C:\...14f16.sum) Stantec Consulting Ltd > # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 01272> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 01274> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 01275> # Stormwater and Drainage Study (Stantec, October 2002) 01276> # - Rearyard surface storage has not been accounted for 01277> # - Infiltrated runoff along road side ditches and rear yard swales as well as 01278> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 01280> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 01281> # that will assess the storage capacity of the road side ditches as well as 01282> # ditch, SWM dry pond and culvert hydraulics 01283> 600: > DEFAULT VALUES 01285> Filename = C:\TEMP\1012\SHIELDS.VAL 01286> ICASEdv = 1 (read and print data) 01287> FileTitle= File comment: [ ] 01288> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 01289> Horton's infiltration equation parameters: 01290> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 01291> Parameters for PERVIOUS surfaces in STANDHYD: 01292> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 01293> Parameters for IMPERVIOUS surfaces in STANDHYD: 01294> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 01295> Parameters used in NASHYD: 01296> [Ia= 1.50 mm] [N= 3.00] 01297> #****************************************************************************** 01298> # 01299> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 01300> # 01301> #****************************************************************************** 01302> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 6: > [CN= 49.5: N= 3.00] 01305> [Tp=.84:DT= 1.00] 01306> #****************************************************************************** 01307> #****************************************************************************** 01308> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 6: > [XIMP=.23:TIMP=.23] 01311> [SLP=1.30:DT= 1.00] 01312> [LOSS= 1 : HORTONS] 01313> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 6: > [CN= 41.8: N= 3.00] 01316> [Tp=.38:DT= 1.00] 01317> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 6: > + 04:A No_date 6: > [DT= 1.00] SUM= 10:A1-OV No_date 6: > 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 6: > [XIMP=.23:TIMP=.45] 01324> [SLP=.30:DT= 1.00] 01325> [LOSS= 1 : HORTONS] 01326> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 6: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 01330> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 6: > [XIMP=.23:TIMP=.45] 01333> [SLP=.30:DT= 1.00] 01334> [LOSS= 1 : HORTONS] 01335> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 6: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 01339> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 6: > [XIMP=.23:TIMP=.45] 01342> [SLP=.30:DT= 1.00] 01343> [LOSS= 1 : HORTONS] 01344> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 6: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 01348> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 6: > [CN= 41.8: N= 3.00] 01351> [Tp=.31:DT= 1.00] 01352> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.18:TIMP=.36] 01355> [SLP=.30:DT= 1.00] 01356> [LOSS= 1 : HORTONS] 01357> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 01361> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 6: > [CN= 39.4: N= 3.00] 01364> [Tp=.21:DT= 1.00] 01365> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 6: > [XIMP=.23:TIMP=.45] 01368> [SLP=.30:DT= 1.00] 01369> [LOSS= 1 : HORTONS] 01370> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 6: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 01374> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 6: > [XIMP=.23:TIMP=.45] 01377> [SLP=.30:DT= 1.00] 01378> [LOSS= 1 : HORTONS] 01379> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 6: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 01383> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 6: > [XIMP=.19:TIMP=.37] 01386> [SLP=.30:DT= 1.00] 01387> [LOSS= 1 : HORTONS] 01388> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 6: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 01392> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 6: > [CN= 41.8: N= 3.00] 01395> [Tp=.07:DT= 1.00] 01396> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 6: > [CN= 41.8: N= 3.00] 01399> [Tp=.15:DT= 1.00] 01400> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 6: > [CN= 39.4: N= 3.00] 01403> [Tp=.75:DT= 1.00] 01404> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 6: > [CN= 39.4: N= 3.00] 01407> [Tp=.24:DT= 1.00] 01408> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 6: > + 08:A No_date 6: > + 07:A No_date 6: > + 06:A No_date 6: > + 04:A No_date 6: > + 03:A No_date 6: > [DT= 1.00] SUM= 02:UNC No_date 6: > 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 6: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 01420> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 6: > [XIMP=.52:TIMP=.52] 01423> [SLP=.30:DT= 1.00] 01424> [LOSS= 1 : HORTONS] 01425> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 01429> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 6: > [XIMP=.90:TIMP=.90] 01432> [SLP=****:DT= 1.00] 01433> [LOSS= 1 : HORTONS] 01434> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 6: > + 08:PND No_date 6: > [DT= 1.00] SUM= 09:POND No_date 6: > 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 6: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 01442> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.39:TIMP=.39] 01445> [SLP=6.00:DT= 1.00] 01446> [LOSS= 1 : HORTONS] 01447> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01451> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 6: > [XIMP=.44:TIMP=.44] 01454> [SLP=.56:DT= 1.00] 01455> [LOSS= 1 : HORTONS] 01456> 600: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01460> ** END OF RUN : > 01462> ******************************************************************************* 01463> 01464> 01465> 01466> 01467> 01468> RUN:COMMAND# 01469> 700: > START 01471> [TZERO =.00 hrs on 0] 01472> [METOUT= 2 (1=imperial, 2=metric output)] 01473> [NSTORM= 1 ] 01474> [NRUN = 700 ] 01475> #****************************************************************************** 01476> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 01477> # Date : > # Modeller : [AMP] 01479> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 01482> 700: > READ STORM 01484> Filename = storm > Comment = 01486> [SDT=10.00:SDUR= 12.00:PTOT= ] 01487> #****************************************************************************** 01488> # 01489> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 01490> #****************************************************************************** 01491> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 01492> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 01493> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 01495> # - 12 hr SCS Storm as per City Guidelines 01496> # > # ASSUMPTIONS 01498> # > # - CN values estimated based on land use and soils information provided in 01500> # Paterson's Geotechnical Investigation (October 2013) 01501> # - SCS Curve Number converted to a modified CN* to account for a more represe 01502> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 01503> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 01505> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 01506> # Stormwater and Drainage Study (Stantec, October 2002) 01507> # - Rearyard surface storage has not been accounted for 01508> # - Infiltrated runoff along road side ditches and rear yard swales as well as 01509> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 01511> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 01512> # that will assess the storage capacity of the road side ditches as well as 01513> # ditch, SWM dry pond and culvert hydraulics 01514> 700: > DEFAULT VALUES 01516> Filename = C:\TEMP\1012\SHIELDS.VAL 01517> ICASEdv = 1 (read and print data) 01518> FileTitle= File comment: [ ] 01519> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 01520> Horton's infiltration equation parameters: 01521> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 01522> Parameters for PERVIOUS surfaces in STANDHYD: 01523> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 01524> Parameters for IMPERVIOUS surfaces in STANDHYD: Stantec Consulting Ltd 604 Page 5

45 (C:\...14f16.sum) Stantec Consulting Ltd > [IAimp=.80 mm] [CLI=.38] [MNI=.013] 01526> Parameters used in NASHYD: 01527> [Ia= 1.50 mm] [N= 3.00] 01528> #****************************************************************************** 01529> # 01530> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 01531> # 01532> #****************************************************************************** 01533> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 6: > [CN= 49.5: N= 3.00] 01536> [Tp=.84:DT= 1.00] 01537> #****************************************************************************** 01538> #****************************************************************************** 01539> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 6: > [XIMP=.23:TIMP=.23] 01542> [SLP=1.30:DT= 1.00] 01543> [LOSS= 1 : HORTONS] 01544> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 6: > [CN= 41.8: N= 3.00] 01547> [Tp=.38:DT= 1.00] 01548> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 6: > + 04:A No_date 6: > [DT= 1.00] SUM= 10:A1-OV No_date 6: > 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 6: > [XIMP=.23:TIMP=.45] 01555> [SLP=.30:DT= 1.00] 01556> [LOSS= 1 : HORTONS] 01557> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 6: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 01561> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 6: > [XIMP=.23:TIMP=.45] 01564> [SLP=.30:DT= 1.00] 01565> [LOSS= 1 : HORTONS] 01566> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 6: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 01570> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 6: > [XIMP=.23:TIMP=.45] 01573> [SLP=.30:DT= 1.00] 01574> [LOSS= 1 : HORTONS] 01575> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 6: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 01579> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 6: > [CN= 41.8: N= 3.00] 01582> [Tp=.31:DT= 1.00] 01583> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.18:TIMP=.36] 01586> [SLP=.30:DT= 1.00] 01587> [LOSS= 1 : HORTONS] 01588> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 01592> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 6: > [CN= 39.4: N= 3.00] 01595> [Tp=.21:DT= 1.00] 01596> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 6: > [XIMP=.23:TIMP=.45] 01599> [SLP=.30:DT= 1.00] 01600> [LOSS= 1 : HORTONS] 01601> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 6: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 01605> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 6: > [XIMP=.23:TIMP=.45] 01608> [SLP=.30:DT= 1.00] 01609> [LOSS= 1 : HORTONS] 01610> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 6: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 01614> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 6: > [XIMP=.19:TIMP=.37] 01617> [SLP=.30:DT= 1.00] 01618> [LOSS= 1 : HORTONS] 01619> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 6: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 01623> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 6: > [CN= 41.8: N= 3.00] 01626> [Tp=.07:DT= 1.00] 01627> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 6: > [CN= 41.8: N= 3.00] 01630> [Tp=.15:DT= 1.00] 01631> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 6: > [CN= 39.4: N= 3.00] 01634> [Tp=.75:DT= 1.00] 01635> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 6: > [CN= 39.4: N= 3.00] 01638> [Tp=.24:DT= 1.00] 01639> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 6: > + 08:A No_date 6: > + 07:A No_date 6: > + 06:A No_date 6: > + 04:A No_date 6: > + 03:A No_date 6: > [DT= 1.00] SUM= 02:UNC No_date 6: > 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 6: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 01651> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 6: > [XIMP=.52:TIMP=.52] 01654> [SLP=.30:DT= 1.00] 01655> [LOSS= 1 : HORTONS] 01656> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 01660> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 6: > [XIMP=.90:TIMP=.90] 01663> [SLP=****:DT= 1.00] 01664> [LOSS= 1 : HORTONS] 01665> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 6: > + 08:PND No_date 6: > [DT= 1.00] SUM= 09:POND No_date 6: > 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 6: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 01673> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.39:TIMP=.39] 01676> [SLP=6.00:DT= 1.00] 01677> [LOSS= 1 : HORTONS] 01678> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01682> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 6: > [XIMP=.44:TIMP=.44] 01685> [SLP=.56:DT= 1.00] 01686> [LOSS= 1 : HORTONS] 01687> 700: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01691> ** END OF RUN : > 01693> ******************************************************************************* 01694> 01695> 01696> 01697> 01698> 01699> RUN:COMMAND# 01700> 800: > START 01702> [TZERO =.00 hrs on 0] 01703> [METOUT= 2 (1=imperial, 2=metric output)] 01704> [NSTORM= 1 ] 01705> [NRUN = 800 ] 01706> #****************************************************************************** 01707> # Project Name: [Greely Rural Subdivision] Project Number: [ ] 01708> # Date : > # Modeller : [AMP] 01710> # Company : Stantec Consulting Ltd > # License # : > #****************************************************************************** 01713> 800: > READ STORM 01715> Filename = storm > Comment = 01717> [SDT=30.00:SDUR= 12.00:PTOT= 76.40] 01718> #****************************************************************************** 01719> # 01720> # GREELY RURAL SUBDIVISION YR CONCEPTUAL POST DEVELOPMENT CONDITIONS 01721> #****************************************************************************** 01722> # STORM: 3 hr Chicago, 6 hr and 12 hr SCS Storms 01723> # - 3 hr Chicago Storm based on City of Ottawa IDF Parameters 01724> # - 6 hr SCS Storm as per Hydrologic Assessment - Greely/Shields Creek Storm > # water and Drainage Study (Stantec, October 2002) 01726> # - 12 hr SCS Storm as per City Guidelines 01727> # > # ASSUMPTIONS 01729> # > # - CN values estimated based on land use and soils information provided in 01731> # Paterson's Geotechnical Investigation (October 2013) 01732> # - SCS Curve Number converted to a modified CN* to account for a more represe 01733> # tative initial abstraction parameter (1.5mm) used in the Nashyd sub-routin 01734> # - Horton's Infiltration Parameters used in the standhyd sub-routine and ini > # tial abstraction and number of linear reservoir used in the nashyd sub-rou 01736> # tine were obtained from the Hydrologic Assessment - Greely/Shields Creek 01737> # Stormwater and Drainage Study (Stantec, October 2002) 01738> # - Rearyard surface storage has not been accounted for 01739> # - Infiltrated runoff along road side ditches and rear yard swales as well as 01740> # underground storage provided in the proposed bioswales designed for infil > # tration and quality control purposes has not been accounted for 01742> # - Peak flow hydrographs from SWMHYMO will be imported into an XP-SWMM model 01743> # that will assess the storage capacity of the road side ditches as well as 01744> # ditch, SWM dry pond and culvert hydraulics 01745> 800: > DEFAULT VALUES 01747> Filename = C:\TEMP\1012\SHIELDS.VAL 01748> ICASEdv = 1 (read and print data) 01749> FileTitle= File comment: [ ] 01750> THE FOLLOWING PARAMETERS ARE USED IN THE DESIGN STANDHYD COM 01751> Horton's infiltration equation parameters: 01752> [Fo= mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F=.00 mm] 01753> Parameters for PERVIOUS surfaces in STANDHYD: 01754> [IAper= 1.50 mm] [LGP=40.00 m] [MNP=.250] 01755> Parameters for IMPERVIOUS surfaces in STANDHYD: 01756> [IAimp=.80 mm] [CLI=.38] [MNI=.013] 01757> Parameters used in NASHYD: 01758> [Ia= 1.50 mm] [N= 3.00] 01759> #****************************************************************************** 01760> # 01761> # EXISTING CONDITIONS - DENSE WOODLOT, SOME PASTURE AND AN EXISTING FARM 01762> # 01763> #****************************************************************************** 01764> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:SITE No_date 6: > [CN= 49.5: N= 3.00] 01767> [Tp=.84:DT= 1.00] 01768> #****************************************************************************** 01769> #****************************************************************************** 01770> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 04:A No_date 6: > [XIMP=.23:TIMP=.23] 01773> [SLP=1.30:DT= 1.00] 01774> [LOSS= 1 : HORTONS] 01775> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 01:A No_date 6: > [CN= 41.8: N= 3.00] 01778> [Tp=.38:DT= 1.00] Stantec Consulting Ltd 604 Page 6

46 (C:\...14f16.sum) Stantec Consulting Ltd > 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 01:A No_date 6: > + 04:A No_date 6: > [DT= 1.00] SUM= 10:A1-OV No_date 6: > 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2a No_date 6: > [XIMP=.23:TIMP=.45] 01786> [SLP=.30:DT= 1.00] 01787> [LOSS= 1 : HORTONS] 01788> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2a No_date 6: > fname :C:\TEMP\1012\H-A2a > remark:runoff from area A2a into road side ditch 01792> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2b No_date 6: > [XIMP=.23:TIMP=.45] 01795> [SLP=.30:DT= 1.00] 01796> [LOSS= 1 : HORTONS] 01797> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2b No_date 6: > fname :C:\TEMP\1012\H-A2b > remark:runoff from area A2b into road side ditch 01801> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A2c No_date 6: > [XIMP=.23:TIMP=.45] 01804> [SLP=.30:DT= 1.00] 01805> [LOSS= 1 : HORTONS] 01806> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A2c No_date 6: > fname :C:\TEMP\1012\H-A2c > remark:runoff from area A2c into road side ditch 01810> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 08:A No_date 6: > [CN= 41.8: N= 3.00] 01813> [Tp=.31:DT= 1.00] 01814> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.18:TIMP=.36] 01817> [SLP=.30:DT= 1.00] 01818> [LOSS= 1 : HORTONS] 01819> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A4 into road side ditch 01823> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 06:A No_date 6: > [CN= 39.4: N= 3.00] 01826> [Tp=.21:DT= 1.00] 01827> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6a No_date 6: > [XIMP=.23:TIMP=.45] 01830> [SLP=.30:DT= 1.00] 01831> [LOSS= 1 : HORTONS] 01832> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6a No_date 6: > fname :C:\TEMP\1012\H-A6a > remark:runoff from area A6a into road side ditch 01836> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6b No_date 6: > [XIMP=.23:TIMP=.45] 01839> [SLP=.30:DT= 1.00] 01840> [LOSS= 1 : HORTONS] 01841> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6b No_date 6: > fname :C:\TEMP\1012\H-A6b > remark:runoff from area A6b into road side ditch 01845> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 05:A6c No_date 6: > [XIMP=.19:TIMP=.37] 01848> [SLP=.30:DT= 1.00] 01849> [LOSS= 1 : HORTONS] 01850> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 05:A6c No_date 6: > fname :C:\TEMP\1012\H-A6c > remark:runoff from area A6c into road side ditch 01854> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 04:A No_date 6: > [CN= 41.8: N= 3.00] 01857> [Tp=.07:DT= 1.00] 01858> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 03:A No_date 6: > [CN= 41.8: N= 3.00] 01861> [Tp=.15:DT= 1.00] 01862> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 09:A No_date 6: > [CN= 39.4: N= 3.00] 01865> [Tp=.75:DT= 1.00] 01866> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN NASHYD 07:A No_date 6: > [CN= 39.4: N= 3.00] 01869> [Tp=.24:DT= 1.00] 01870> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 09:A No_date 6: > + 08:A No_date 6: > + 07:A No_date 6: > + 06:A No_date 6: > + 04:A No_date 6: > + 03:A No_date 6: > [DT= 1.00] SUM= 02:UNC No_date 6: > 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 02:UNC No_date 6: > fname :C:\TEMP\1012\H-UNC > remark:uncontrolled runoff 01882> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 09:A No_date 6: > [XIMP=.52:TIMP=.52] 01885> [SLP=.30:DT= 1.00] 01886> [LOSS= 1 : HORTONS] 01887> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from area A11 into road side ditch 01891> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 08:PND No_date 6: > [XIMP=.90:TIMP=.90] 01894> [SLP=****:DT= 1.00] 01895> [LOSS= 1 : HORTONS] 01896> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > ADD HYD 10:A1-OV No_date 6: > + 08:PND No_date 6: > [DT= 1.00] SUM= 09:POND No_date 6: > 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 09:POND No_date 6: > fname :C:\TEMP\1012\H-POND > remark:runoff to Pond 01904> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 07:A No_date 6: > [XIMP=.39:TIMP=.39] 01907> [SLP=6.00:DT= 1.00] 01908> [LOSS= 1 : HORTONS] 01909> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 07:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01913> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > DESIGN STANDHYD 06:A No_date 6: > [XIMP=.44:TIMP=.44] 01916> [SLP=.56:DT= 1.00] 01917> [LOSS= 1 : HORTONS] 01918> 800: ID:NHYD AREA----QPEAK-TpeakDate_hh:mm----R.V > SAVE HYD 06:A No_date 6: > fname :C:\TEMP\1012\H-A > remark:runoff from Old Prescott Road to road side ditch 01922> 800: > FINISH 01924> > ******************************************************************************** 01926> WARNINGS / ERRORS / NOTES 01927> > Simulation ended on at 16:25: > ================================================================================ 01930> 01931> Stantec Consulting Ltd 604 Page 7

47 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix B : XP-SWMM Modeling Parameters and Results : XP-SWMM MODELING PARAMETERS AND RESULTS B.1

48

49 Current Directory: C:\XPS\XP-SWMM Engine Name: C:\XPS\XP-SWMM\swmmengw.exe Read 1 line(s) and found 1 items(s) from your cfg file. Input File : avanagh\design\analysis\swm\january 2018\XP\f28-16_100chi_pond.XP *===============================================* XP-SWMM Storm and Wastewater Management Model Interface Version: 9.52A Engine Version: 9.28 =============================================== Developed by XP Software =============================================== XP Software November, 2004 Data File Version ---> 11.7 Serial Number: Stantec *===============================================* Engine Name: C:\XPS\XP-SWMM\swmmengw.exe *====================================================* Input and Output file names by Layer *====================================================* Input File to Layer # 1 JOT.US Output File to Layer # 1 JOT.US *===========================================================* Special command line arguments in XP-SWMM2000. This now includes program defaults. $Keywords are the program defaults. Other Keywords are from the SWMMCOM.CFG file. or the command line or any cfg file on the command line. Examples include these in the file xpswm.bat under the section :solve or in the windows version XPSWMM32 in the file solve.bat Note: the cfg file should be in the subdirectory swmxp or defined by the set variable in the xpswm.bat file. Some examples of the command lines possible are shown below: swmmd swmmcom.cfg swmmd my.cfg swmmd nokeys nconv5 perv extranwq *===========================================================* $powerstation $perv $oldegg $as $noflat $oldomega Page 1 $oldvol $implicit $oldhot $oldscs $flood $nokeys $pzero $oldvol $storage $oldhot $pumpwt $ecloss $exout $spatial = $djref = $weirlen = $oldbnd $nogrelev $ncmid $new_nl_ $best $newbound $q_tol = $new_storage $old_iteration MINLEN= $review_elevation $use_half_volume $min_ts = $design_restart = on $zero_value=1.e $relax_depth = on *==========================================================* Parameter Values on the Tapes Common Block.These are the values read from the data file and dynamically allocated by the model for this simulation. *==========================================================* Number of Subcatchments in the Runoff Block (NW)... 0 Number of Channel/Pipes in the Runoff Block (NG)... 0 Runoff Water quality constituents (NRQ)... 0 Runoff Land Uses per Subcatchment (NLU)... 0 Number of Elements in the Transport Block (NET)... 0 Number of Storage Junctions in Transport (NTSE)... 0 Number of Input Hydrographs in Transport (NTH)... 0 Number of Elements in the Extran Block (NEE) Number of Groundwater Subcatchments in Runoff (NGW). 0 Number of Interface locations for all Blocks (NIE).. 30 Number of Pumps in Extran (NEP)... 0 Number of Orifices in Extran (NEO)... 0 Number of Tide Gates/Free Outfalls in Extran (NTG).. 3 Number of Extran Weirs (NEW)... 8 Number of scs hydrograph points... 1 Number of Extran printout locations (NPO)... 0 Number of Tide elements in Extran (NTE)... 3 Number of Natural channels (NNC)... 0 Number of Storage junctions in Extran (NVSE)... 1 Number of Time history data points in Extran(NTVAL). 0 Number of Variable storage elements in Extran (NVST) 2 Number of Input Hydrographs in Extran (NEH) Number of Particle sizes in Transport Block (NPS)... 0 Number of User defined conduits (NHW) Page 2

50 Number of Connecting conduits in Extran (NECC) Number of Upstream elements in Transport (NTCC) Number of Storage/treatment plants (NSTU)... 0 Number of Values for R1 lines in Transport (NR1)... 0 Number of Nodes to be allowed for (NNOD) Number of Plugs in a Storage Treatment Unit... 1 ####################################################### # Entry made to the HYDRAULIC Layer(Block) of SWMM # # Last Updated October,2000 by XP Software # Project Greely Rural Subdivision Conceptual 100 yr Hydraulic Analysis *===========================================================* HYDRAULICS TABLES IN THE OUTPUT FILE These are the more important tables in the output file. You can use your editor to find the table numbers, for example: search for Table E20 to check continuity. This output file can be imported into a Word Processor and printed on US letter or A4 paper using portrait mode, courier font, a size of 8 pt. and margins of 0.75 Table E1 - Basic Conduit Data Table E2 - Conduit Factor Data Table E3a - Junction Data Table E3b - Junction Data Table E4 - Conduit Connectivity Data Table E4a - Dry Weather Flow Data Table E4b - Real Time Control Data Table E5 - Junction Time Step Limitation Summary Table E5a - Conduit Explicit Condition Summary Table E6 - Final Model Condition Table E7 - Iteration Summary Table E8 - Junction Time Step Limitation Summary Table E9 - Junction Summary Statistics Table E10 - Conduit Summary Statistics Table E11 - Area assumptions used in the analysis Table E12 - Mean conduit information Table E13 - Channel losses(h) and culvert info Table E13a - Culvert Analysis Classification Table E14 - Natural Channel Overbank Flow Information Table E14a - Natural Channel Encroachment Information Table E14b - Floodplain Mapping Table E15 - Spreadsheet Info List Table E15a - Spreadsheet Reach List Table E16 - New Conduit Output Section Table E17 - Pump Operation Table E18 - Junction Continuity Error Table E19 - Junction Inflow Sources Table E20 - Junction Flooding and Volume List Table E21 - Continuity balance at simulation end Table E22 - Model Judgement Section *==========================================================* Time Control from Hydraulics Job Control Year Month... 1 Day... 1 Hour... 0 Minute... 0 Second... 0 Page 3 Control information for simulation Integration cycles Length of integration step is seconds Simulation length hours Do not create equiv. pipes(nequal). 0 Use metric units for I/O... 1 Printing starts in cycle... 1 Intermediate printout intervals of. 500 cycles Intermediate printout intervals of minutes Summary printout intervals of cycles Summary printout time interval of minutes Hot start file parameter (REDO)... 0 Initial time hours Iteration variables: Flow Tolerance Head Tolerance Minimum depth (m or ft) Underrelaxation parameter Time weighting parameter Conduit roughness factor Flow adjustment factor Initial Condition Smoothing... 0 Courant Time Step Factor Default Expansion/Contraction K Default Entrance/Exit K Routing Method... Dynamic Wave Default surface area of junctions square meters. Minimum Junction/Conduit Depth meter. Ponding Area Coefficient Ponding Area Exponent Minimum Orifice Length meters. NJSW input hydrograph junctions or user defined hydrographs... *==================================================* Table E1 - Conduit Data *==================================================* Trapezoid Inp Conduit Length Conduit Area Manning Max Width Depth Side Num Name (m) Class ( m^2) Coef. (m) (m) Slopes L Trapezoid L Trapezoid L Trapezoid L Trapezoid L Trapezoid L Trapezoid L Trapezoid Page 4

51 L Trapezoid L Trapezoid L Trapezoid L Circular mmN Circular mmN Circular mmN Circular mmS Circular mmS Circular mm Circular mmS Circular mmout Circular Total length of all conduits meters *==================================================* Table E2 - Conduit Factor Data *==================================================* Time Low Flow Depth at Conduit Number Entrance Exit Exp/Contc Weighting Roughness Which Flow Name of Barrels Loss Coef Loss Coef Coefficnt Parameter Factor n Changes Routing mmN Standard - Dynamic Wave 525mmN Standard - Dynamic Wave 300mmN Standard - Dynamic Wave 375mmS Standard - Dynamic Wave 300mmS Standard - Dynamic Wave *===================================================* If there are messages about (sqrt(g*d)*dt/dx), or the sqrt(wave celerity)*time step/conduit length in the output file all it means is that the program will lower the internal time step to satisfy this condition (explicit condition). You control the actual internal time step by using the minimum courant time step factor in the HYDRAULICS job control. The message put in words states that the smallest conduit with the fastest velocity will control the time step selection. You have further control by using the modify conduit option in the HYDRAULICS Job Control. Page 5 *===================================================* Conduit Courant Name Ratio L L L L L L L L L L L ===> Warning! (sqrt(wave celerity)*time step/conduit length) 375mmN ===> Warning! (sqrt(wave celerity)*time step/conduit length) 525mmN ===> Warning! (sqrt(wave celerity)*time step/conduit length) 300mmN ===> Warning! (sqrt(wave celerity)*time step/conduit length) 375mmS ===> Warning! (sqrt(wave celerity)*time step/conduit length) 300mmS ===> Warning! (sqrt(wave celerity)*time step/conduit length) 200mm 3.26 ===> Warning! (sqrt(wave celerity)*time step/conduit length) 200mmS ===> Warning! (sqrt(wave celerity)*time step/conduit length) 250mmout 0.95 *==================* Conduit Volume *==================* Full pipe or full open conduit volume Input full depth volume E+03 cubic meters *===================================================* Table E3a - Junction Data *===================================================* Inp Junction Ground Crown Invert Qinst Initial Interface Num Name Elevation Elevation Elevation cms Depth-m Flow (%) outn A6c A6b Lot A OD outn Page 6

52 8 A Lot A6a outs A2c A2b Lot A Lot A2a outs A OD OD POND *===================================================* Table E3b - Junction Data *===================================================* Inp Junction X Y Type of Type of Maximum Pavement Num Name Coord. Coord. Manhole Inlet Capacity Shape Slope outn No Ponding Normal A6c No Ponding Normal A6b No Ponding Normal Lot No Ponding Normal A No Ponding Normal OD No Ponding Normal outn No Ponding Normal A No Ponding Normal Lot No Ponding Normal A6a No Ponding Normal outs No Ponding Normal Page A2c No Ponding Normal A2b No Ponding Normal Lot No Ponding Normal A No Ponding Normal Lot No Ponding Normal A2a No Ponding Normal outs No Ponding Normal A No Ponding Normal OD No Ponding Normal OD No Ponding Normal POND No Ponding Normal *===================================================* Table E4 - Conduit Connectivity *===================================================* Input Conduit Upstream Downstream Upstream Downstream Number Name Node Node Elevation Elevation ====== ================ ============== =============== ========= ========= 1 L1 A13 A6a No Design 2 L2 Lot41 A6b No Design 3 L3 Lot34 A6c No Design 4 L4 A6c outn No Design 5 L11 A11 outn No Design 6 L1.1 A14 A2a No Design 7 L2.1 Lot6 A2b No Design 8 L3.1 Lot15 A2c No Design 9 L4.1 A2c outs No Design 10 L11.1 A4 outs No Design 11 L23 outn1 POND No Design mmN2 A6b Lot No Design mmN1 outs1 outn No Design mmN3 A6a Lot No Design mmS2 A2b Lot No Design mmS3 A2a Lot Page 8

53 No Design mm outn11 OD No Design mmS4 outs4 OD No Design mmout POND OD No Design *==========================================* Storage Junction Data *==========================================* MAXIMUM OR PEAK OR CROWN DEPTH STORAGE JUNCTION JUNCTION CONSTANT SURFACE CONSTANT VOLUME ELEVATION STARTS NUMBER OR NAME TYPE AREA (M2) (CUBIC MET.) (M) FROM POND Stage/Area Node Invert *==================================* Variable storage data for node POND *==================================* Data Elevation Depth Area Volume Point meters meters m^2 m^3 ===== ========= ====== =========== ============ *===========================================* Weir Data *===========================================* Weir From To Crest Weir Weir Discharge Weir Name Junction Junction Type Height(ft) Top (m) Length (m) Coefficient Power weirn2 A6b Lot weirn1 outs1 outn Page 9 weirn3 A6a Lot weirs2 A2b Lot WeirS3 A2a Lot weirn4 outn11 OD weirs4 outs4 OD overflow POND OD *================================================* FREE OUTFALL DATA (DATA GROUP I1) BOUNDARY CONDITION ON DATA GROUP J1 *================================================* Outfall at Junction...OD2 has boundary condition number... 1 Outfall at Junction...OD3 has boundary condition number... 2 Outfall at Junction...OD4 has boundary condition number... 3 ===> Warning!! Outfall Junction OD2 has two or more connecting conduits. ===> Warning!! Outfall Junction OD3 has two or more connecting conduits. ===> Warning!! Outfall Junction OD4 has two or more connecting conduits. *=============================================* Weir Outfall Data Boundary Condition on data group J1 *=============================================* Weir Outfall at Junction... OD2 has boundary condition number... 1 Weir Outfall at Junction... OD4 has boundary condition number... 3 Weir Outfall at Junction... OD3 has boundary condition number... 2 *================================================* INTERNAL CONNECTIVITY INFORMATION *================================================* CONDUIT JUNCTION JUNCTION weirn2 A6b Lot34 weirn1 outs1 outn1 weirn3 A6a Lot41 weirs2 A2b Lot15 WeirS3 A2a Lot6 weirn4 outn11 OD2 weirs4 outs4 OD4 overflow POND OD3 FREE # 1 OD2 BOUNDARY FREE # 2 OD3 BOUNDARY FREE # 3 OD4 BOUNDARY *===================================================* Boundary Condition Information Page 10

54 Data Groups J1-J4 *===================================================* BC NUMBER.. 1 Control water surface elevation is meters. BC NUMBER.. 2 Control water surface elevation is meters. BC NUMBER.. 3 Control water surface elevation is meters. *===================================================* XP Note Field Summary *===================================================* *=================================* Conduit Convergence Criteria *=================================* Conduit Full Conduit Name Flow Slope L L L L L L L L L L L mmN mmN mmN mmS mmS mm mmS mmout *=================================* Initial Model Condition Page 11 Initial Time = 0.00 hours *=================================* Junction / Depth / Elevation ===> "*" Junction is Surcharged. outn1/ 0.31 / A6c/ 0.00 / A6b/ 0.00 / Lot41/ 0.00 / A13/ 0.00 / OD2/ 1.11 / outn11/ 0.16 / A11/ 0.00 / Lot34/ 0.00 / A6a/ 0.00 / outs1/ 0.27 / A2c/ 0.10 / A2b/ 0.00 / Lot6/ 0.00 / A14/ 0.00 / Lot15/ 0.00 / A2a/ 0.00 / outs4/ 0.26 / A4/ 0.00 / OD3/ 1.11 / OD4/ 1.01 / POND/ 0.36 / Conduit/ FLOW ===> "*" Conduit uses the normal flow option. L1/ 0.00 L2/ 0.00 L3/ 0.00 L4/ 0.00 L11/ 0.00 L1.1/ 0.00 L2.1/ 0.00 L3.1/ 0.00 L4.1/ 0.00 L11.1/ 0.00 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.00 weirn2/ 0.00 weirn1/ 0.00 weirn3/ 0.00 weirs2/ 0.00 WeirS3/ 0.00 weirn4/ 0.00 weirs4/ 0.00 overflow/ 0.00 FREE # 1/ 0.00 FREE # 2/ 0.00 FREE # 3/ 0.00 Conduit/ Velocity L1/ 0.00 L2/ 0.00 L3/ 0.00 L4/ 0.00 L11/ 0.00 L1.1/ 0.00 L2.1/ 0.00 L3.1/ 0.00 L4.1/ 0.00 L11.1/ 0.00 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.00 Conduit/ Cross Sectional Area L1/ 0.00 L2/ 0.00 L3/ 0.00 L4/ 0.47 L11/ 0.20 L1.1/ 0.00 L2.1/ 0.00 L3.1/ 0.11 L4.1/ Page 12

55 0.15 L11.1/ 0.04 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.05 Conduit/ Hydraulic Radius L1/ 0.00 L2/ 0.00 L3/ 0.00 L4/ 0.19 L11/ 0.11 L1.1/ 0.00 L2.1/ 0.00 L3.1/ 0.07 L4.1/ 0.09 L11.1/ 0.02 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.06 Conduit/ Upstream/ Downstream Elevation L1/ / L2/ / L3/ / L4/ / L11/ / L1.1/ / L2.1/ / L3.1/ / L4.1/ / L11.1/ / L23/ / mmN2/ / mmN1/ / mmN3/ / mmS2/ / mmS3/ / mm/ / mmS4/ / mmout/ / ######## Important Information ######## Start time of user hydrographs was E+000 Start time of the simulation was E+000 Found a match between user hydrograph and simulation start time. ================================================================================ ===> System inflows (data group K3) at 0.00 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.00 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.02 hours ( Junction / Inflow,cu m/s ) Page 13 ===> System inflows (data group K3) at 0.03 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.05 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.07 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.08 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.10 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.12 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 0.13 hours ( Junction / Inflow,cu m/s ) POND / 6.00E-03 ===> System inflows (data group K3) at 0.15 hours ( Junction / Inflow,cu m/s ) Page 14

56 A6c / 0.00E+00 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 1.00E-03 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 0.00E+00 POND / 8.00E-03 ===> System inflows (data group K3) at 0.17 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-03 A6b / 1.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 1.00E-03 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 1.00E-03 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.00E-02 ===> System inflows (data group K3) at 0.18 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-03 A6b / 2.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 2.00E-03 A2c / 2.00E-03 A2b / 2.00E-03 A14 / 1.00E-03 A2a / 2.00E-03 A4 / 2.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.20 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-03 A6b / 3.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 2.00E-03 A2c / 3.00E-03 A2b / 3.00E-03 A14 / 1.00E-03 A2a / 2.00E-03 A4 / 2.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.22 hours ( Junction / Inflow,cu m/s ) A6c / 3.00E-03 A6b / 4.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 3.00E-03 A2c / 4.00E-03 A2b / 4.00E-03 A14 / 1.00E-03 A2a / 3.00E-03 A4 / 3.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.23 hours ( Junction / Inflow,cu m/s ) A6c / 3.00E-03 A6b / 4.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 3.00E-03 A2c / 4.00E-03 A2b / 5.00E-03 A14 / 1.00E-03 A2a / 3.00E-03 A4 / 3.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.25 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 5.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 3.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.27 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 5.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.28 hours ( Junction / Inflow,cu m/s ) Page 15 A6c / 4.00E-03 A6b / 5.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.30 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.32 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 4.00E-03 A2c / 6.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 1.10E-02 ===> System inflows (data group K3) at 0.33 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 6.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 1.40E-02 ===> System inflows (data group K3) at 0.35 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 6.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 1.40E-02 ===> System inflows (data group K3) at 0.37 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 6.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 5.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.38 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 7.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 5.00E-03 A2c / 7.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.40 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 7.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 7.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 1.50E-02 Page 16

57 ===> System inflows (data group K3) at 0.42 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 7.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 7.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.43 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 7.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.45 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.47 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 6.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.48 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 6.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 0.50 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 6.00E-03 POND / 2.00E-02 ===> System inflows (data group K3) at 0.52 hours ( Junction / Inflow,cu m/s ) A6c / 7.00E-03 A6b / 9.00E-03 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 7.00E-03 A2c / 9.00E-03 A2b / 1.00E-02 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 6.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 0.53 hours ( Junction / Inflow,cu m/s ) A6c / 7.00E-03 A6b / 9.00E-03 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 7.00E-03 A2c / 9.00E-03 A2b / 1.00E-02 A14 / 2.00E-03 A2a / 8.00E-03 A4 / 7.00E-03 POND / 2.30E-02 Page 17 ===> System inflows (data group K3) at 0.55 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-03 A6b / 1.00E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 8.00E-03 A2c / 1.00E-02 A2b / 1.10E-02 A14 / 2.00E-03 A2a / 8.00E-03 A4 / 7.00E-03 POND / 2.30E-02 ===> System inflows (data group K3) at 0.57 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-03 A6b / 1.10E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 8.00E-03 A2c / 1.10E-02 A2b / 1.20E-02 A14 / 2.00E-03 A2a / 9.00E-03 A4 / 8.00E-03 POND / 2.30E-02 ===> System inflows (data group K3) at 0.58 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.10E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 9.00E-03 A2c / 1.10E-02 A2b / 1.20E-02 A14 / 2.00E-03 A2a / 9.00E-03 A4 / 8.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 0.60 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.10E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 9.00E-03 A2c / 1.20E-02 A2b / 1.30E-02 A14 / 2.00E-03 A2a / 9.00E-03 A4 / 8.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 0.62 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.20E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 9.00E-03 A2c / 1.20E-02 A2b / 1.30E-02 A14 / 2.00E-03 A2a / 1.00E-02 A4 / 8.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 0.63 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.20E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 9.00E-03 A2c / 1.20E-02 A2b / 1.30E-02 A14 / 2.00E-03 A2a / 1.00E-02 A4 / 9.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 0.65 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.20E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 1.00E-02 A2c / 1.20E-02 A2b / 1.40E-02 A14 / 2.00E-03 A2a / 1.00E-02 A4 / 9.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 0.67 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-02 A6b / 1.30E-02 A13 / 3.00E-03 A11 / 4.00E-03 A6a / 1.10E-02 A2c / 1.30E-02 A2b / 1.50E-02 A14 / 2.00E-03 A2a / 1.10E-02 A4 / 1.00E-02 POND / 4.70E-02 Page 18

58 ===> System inflows (data group K3) at 0.68 hours ( Junction / Inflow,cu m/s ) A6c / 1.20E-02 A6b / 1.50E-02 A13 / 3.00E-03 A11 / 6.00E-03 A6a / 1.20E-02 A2c / 1.50E-02 A2b / 1.70E-02 A14 / 3.00E-03 A2a / 1.30E-02 A4 / 1.10E-02 POND / 5.50E-02 ===> System inflows (data group K3) at 0.70 hours ( Junction / Inflow,cu m/s ) A6c / 1.40E-02 A6b / 1.80E-02 A13 / 3.00E-03 A11 / 7.00E-03 A6a / 1.40E-02 A2c / 1.80E-02 A2b / 2.00E-02 A14 / 4.00E-03 A2a / 1.50E-02 A4 / 1.30E-02 POND / 5.80E-02 ===> System inflows (data group K3) at 0.72 hours ( Junction / Inflow,cu m/s ) A6c / 1.70E-02 A6b / 2.20E-02 A13 / 4.00E-03 A11 / 7.00E-03 A6a / 1.80E-02 A2c / 2.20E-02 A2b / 2.50E-02 A14 / 4.00E-03 A2a / 1.80E-02 A4 / 1.60E-02 POND / 5.90E-02 ===> System inflows (data group K3) at 0.73 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-02 A6b / 2.50E-02 A13 / 4.00E-03 A11 / 8.00E-03 A6a / 2.00E-02 A2c / 2.50E-02 A2b / 2.80E-02 A14 / 4.00E-03 A2a / 2.10E-02 A4 / 1.80E-02 POND / 6.00E-02 ===> System inflows (data group K3) at 0.75 hours ( Junction / Inflow,cu m/s ) A6c / 2.20E-02 A6b / 2.80E-02 A13 / 4.00E-03 A11 / 8.00E-03 A6a / 2.30E-02 A2c / 2.80E-02 A2b / 3.10E-02 A14 / 4.00E-03 A2a / 2.30E-02 A4 / 2.00E-02 POND / 6.10E-02 ===> System inflows (data group K3) at 0.77 hours ( Junction / Inflow,cu m/s ) A6c / 2.40E-02 A6b / 3.10E-02 A13 / 4.00E-03 A11 / 8.00E-03 A6a / 2.50E-02 A2c / 3.10E-02 A2b / 3.40E-02 A14 / 4.00E-03 A2a / 2.60E-02 A4 / 2.20E-02 POND / 6.10E-02 ===> System inflows (data group K3) at 0.78 hours ( Junction / Inflow,cu m/s ) A6c / 2.60E-02 A6b / 3.30E-02 A13 / 4.00E-03 A11 / 8.00E-03 A6a / 2.70E-02 A2c / 3.40E-02 A2b / 3.70E-02 A14 / 5.00E-03 A2a / 2.80E-02 A4 / 2.40E-02 POND / 6.20E-02 ===> System inflows (data group K3) at 0.80 hours ( Junction / Inflow,cu m/s ) A6c / 2.70E-02 A6b / 3.60E-02 A13 / 4.00E-03 A11 / 8.00E-03 A6a / 2.80E-02 A2c / 3.60E-02 A2b / 4.00E-02 A14 / 5.00E-03 A2a / 3.00E-02 A4 / 2.60E-02 Page 19 POND / 6.20E-02 ===> System inflows (data group K3) at 0.82 hours ( Junction / Inflow,cu m/s ) A6c / 2.90E-02 A6b / 3.80E-02 A13 / 4.00E-03 A11 / 8.00E-03 A6a / 3.00E-02 A2c / 3.80E-02 A2b / 4.30E-02 A14 / 5.00E-03 A2a / 3.10E-02 A4 / 2.70E-02 POND / 6.30E-02 ===> System inflows (data group K3) at 0.83 hours ( Junction / Inflow,cu m/s ) A6c / 3.50E-02 A6b / 4.60E-02 A13 / 1.30E-02 A11 / 1.30E-02 A6a / 3.70E-02 A2c / 4.60E-02 A2b / 5.20E-02 A14 / 8.00E-03 A2a / 3.80E-02 A4 / 3.40E-02 POND / 1.96E-01 ===> System inflows (data group K3) at 0.85 hours ( Junction / Inflow,cu m/s ) A6c / 4.60E-02 A6b / 6.00E-02 A13 / 1.70E-02 A11 / 2.20E-02 A6a / 4.80E-02 A2c / 6.00E-02 A2b / 6.70E-02 A14 / 1.40E-02 A2a / 5.00E-02 A4 / 4.40E-02 POND / 2.46E-01 ===> System inflows (data group K3) at 0.87 hours ( Junction / Inflow,cu m/s ) A6c / 6.20E-02 A6b / 8.00E-02 A13 / 1.90E-02 A11 / 2.70E-02 A6a / 6.40E-02 A2c / 8.00E-02 A2b / 8.90E-02 A14 / 1.70E-02 A2a / 6.60E-02 A4 / 5.90E-02 POND / 2.69E-01 ===> System inflows (data group K3) at 0.88 hours ( Junction / Inflow,cu m/s ) A6c / 8.30E-02 A6b / 1.05E-01 A13 / 2.10E-02 A11 / 3.10E-02 A6a / 8.50E-02 A2c / 1.06E-01 A2b / 1.17E-01 A14 / 1.90E-02 A2a / 8.80E-02 A4 / 7.80E-02 POND / 2.82E-01 ===> System inflows (data group K3) at 0.90 hours ( Junction / Inflow,cu m/s ) A6c / 1.01E-01 A6b / 1.28E-01 A13 / 2.40E-02 A11 / 3.40E-02 A6a / 1.03E-01 A2c / 1.29E-01 A2b / 1.43E-01 A14 / 2.10E-02 A2a / 1.07E-01 A4 / 9.60E-02 POND / 2.93E-01 ===> System inflows (data group K3) at 0.92 hours ( Junction / Inflow,cu m/s ) A6c / 1.18E-01 A6b / 1.49E-01 A13 / 2.60E-02 A11 / 3.60E-02 A6a / 1.20E-01 A2c / 1.50E-01 A2b / 1.66E-01 A14 / 2.20E-02 A2a / 1.24E-01 A4 / 1.13E-01 POND / 3.03E-01 ===> System inflows (data group K3) at 0.93 hours ( Junction / Inflow,cu m/s ) A6c / 1.35E-01 A6b / 1.69E-01 A13 / 2.80E-02 A11 / 3.70E-02 A6a / 1.36E-01 A2c / 1.70E-01 Page 20

59 A2b / 1.88E-01 A14 / 2.30E-02 A2a / 1.41E-01 A4 / 1.29E-01 POND / 3.12E-01 ===> System inflows (data group K3) at 0.95 hours ( Junction / Inflow,cu m/s ) A6c / 1.51E-01 A6b / 1.88E-01 A13 / 2.90E-02 A11 / 3.90E-02 A6a / 1.51E-01 A2c / 1.90E-01 A2b / 2.10E-01 A14 / 2.50E-02 A2a / 1.56E-01 A4 / 1.44E-01 POND / 3.23E-01 ===> System inflows (data group K3) at 0.97 hours ( Junction / Inflow,cu m/s ) A6c / 1.67E-01 A6b / 2.07E-01 A13 / 3.00E-02 A11 / 4.00E-02 A6a / 1.66E-01 A2c / 2.09E-01 A2b / 2.31E-01 A14 / 2.60E-02 A2a / 1.72E-01 A4 / 1.60E-01 POND / 3.34E-01 ===> System inflows (data group K3) at 0.98 hours ( Junction / Inflow,cu m/s ) A6c / 1.83E-01 A6b / 2.26E-01 A13 / 3.10E-02 A11 / 4.10E-02 A6a / 1.80E-01 A2c / 2.28E-01 A2b / 2.53E-01 A14 / 2.70E-02 A2a / 1.87E-01 A4 / 1.76E-01 POND / 3.44E-01 ===> System inflows (data group K3) at 1.00 hours ( Junction / Inflow,cu m/s ) A6c / 1.95E-01 A6b / 2.40E-01 A13 / 2.40E-02 A11 / 3.80E-02 A6a / 1.91E-01 A2c / 2.42E-01 A2b / 2.69E-01 A14 / 2.60E-02 A2a / 1.98E-01 A4 / 1.88E-01 POND / 2.34E-01 ===> System inflows (data group K3) at 1.02 hours ( Junction / Inflow,cu m/s ) A6c / 2.04E-01 A6b / 2.49E-01 A13 / 2.20E-02 A11 / 3.20E-02 A6a / 1.98E-01 A2c / 2.51E-01 A2b / 2.79E-01 A14 / 2.20E-02 A2a / 2.06E-01 A4 / 1.97E-01 POND / 1.99E-01 ===> System inflows (data group K3) at 1.03 hours ( Junction / Inflow,cu m/s ) A6c / 2.09E-01 A6b / 2.54E-01 A13 / 2.00E-02 A11 / 2.80E-02 A6a / 2.01E-01 A2c / 2.56E-01 A2b / 2.85E-01 A14 / 2.00E-02 A2a / 2.09E-01 A4 / 2.03E-01 POND / 1.88E-01 ===> System inflows (data group K3) at 1.05 hours ( Junction / Inflow,cu m/s ) A6c / 2.11E-01 A6b / 2.55E-01 A13 / 1.90E-02 A11 / 2.60E-02 A6a / 2.01E-01 A2c / 2.56E-01 A2b / 2.86E-01 A14 / 1.90E-02 A2a / 2.09E-01 A4 / 2.05E-01 POND / 1.85E-01 ===> System inflows (data group K3) at 1.07 hours ( Junction / Inflow,cu m/s ) A6c / 2.15E-01 A6b / 2.56E-01 A13 / 1.70E-02 A11 / 2.50E-02 Page 21 A6a / 2.01E-01 A2c / 2.58E-01 A2b / 2.87E-01 A14 / 1.80E-02 A2a / 2.10E-01 A4 / 2.10E-01 POND / 1.85E-01 ===> System inflows (data group K3) at 1.08 hours ( Junction / Inflow,cu m/s ) A6c / 2.19E-01 A6b / 2.57E-01 A13 / 1.60E-02 A11 / 2.40E-02 A6a / 2.02E-01 A2c / 2.59E-01 A2b / 2.89E-01 A14 / 1.80E-02 A2a / 2.10E-01 A4 / 2.14E-01 POND / 1.85E-01 ===> System inflows (data group K3) at 1.10 hours ( Junction / Inflow,cu m/s ) A6c / 2.23E-01 A6b / 2.58E-01 A13 / 1.40E-02 A11 / 2.40E-02 A6a / 2.03E-01 A2c / 2.60E-01 A2b / 2.90E-01 A14 / 1.70E-02 A2a / 2.11E-01 A4 / 2.18E-01 POND / 1.85E-01 ===> System inflows (data group K3) at 1.12 hours ( Junction / Inflow,cu m/s ) A6c / 2.26E-01 A6b / 2.58E-01 A13 / 1.30E-02 A11 / 2.40E-02 A6a / 2.03E-01 A2c / 2.60E-01 A2b / 2.90E-01 A14 / 1.70E-02 A2a / 2.11E-01 A4 / 2.21E-01 POND / 1.84E-01 ===> System inflows (data group K3) at 1.13 hours ( Junction / Inflow,cu m/s ) A6c / 2.27E-01 A6b / 2.57E-01 A13 / 1.30E-02 A11 / 2.40E-02 A6a / 2.03E-01 A2c / 2.59E-01 A2b / 2.89E-01 A14 / 1.70E-02 A2a / 2.11E-01 A4 / 2.23E-01 POND / 1.82E-01 ===> System inflows (data group K3) at 1.15 hours ( Junction / Inflow,cu m/s ) A6c / 2.28E-01 A6b / 2.55E-01 A13 / 1.20E-02 A11 / 2.40E-02 A6a / 2.01E-01 A2c / 2.57E-01 A2b / 2.87E-01 A14 / 1.60E-02 A2a / 2.09E-01 A4 / 2.24E-01 POND / 1.81E-01 ===> System inflows (data group K3) at 1.17 hours ( Junction / Inflow,cu m/s ) A6c / 2.27E-01 A6b / 2.51E-01 A13 / 1.00E-02 A11 / 2.30E-02 A6a / 1.98E-01 A2c / 2.53E-01 A2b / 2.83E-01 A14 / 1.50E-02 A2a / 2.06E-01 A4 / 2.23E-01 POND / 1.55E-01 ===> System inflows (data group K3) at 1.18 hours ( Junction / Inflow,cu m/s ) A6c / 2.23E-01 A6b / 2.45E-01 A13 / 9.00E-03 A11 / 2.10E-02 A6a / 1.93E-01 A2c / 2.47E-01 A2b / 2.76E-01 A14 / 1.30E-02 A2a / 2.00E-01 A4 / 2.19E-01 POND / 1.45E-01 ===> System inflows (data group K3) at 1.20 hours ( Junction / Inflow,cu m/s ) Page 22

60 A6c / 2.17E-01 A6b / 2.36E-01 A13 / 8.00E-03 A11 / 1.90E-02 A6a / 1.86E-01 A2c / 2.38E-01 A2b / 2.65E-01 A14 / 1.20E-02 A2a / 1.93E-01 A4 / 2.14E-01 POND / 1.41E-01 ===> System inflows (data group K3) at 1.22 hours ( Junction / Inflow,cu m/s ) A6c / 2.09E-01 A6b / 2.24E-01 A13 / 7.00E-03 A11 / 1.80E-02 A6a / 1.76E-01 A2c / 2.26E-01 A2b / 2.53E-01 A14 / 1.10E-02 A2a / 1.83E-01 A4 / 2.06E-01 POND / 1.39E-01 ===> System inflows (data group K3) at 1.23 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-01 A6b / 2.14E-01 A13 / 7.00E-03 A11 / 1.70E-02 A6a / 1.68E-01 A2c / 2.15E-01 A2b / 2.41E-01 A14 / 1.10E-02 A2a / 1.75E-01 A4 / 1.97E-01 POND / 1.37E-01 ===> System inflows (data group K3) at 1.25 hours ( Junction / Inflow,cu m/s ) A6c / 1.91E-01 A6b / 2.04E-01 A13 / 6.00E-03 A11 / 1.60E-02 A6a / 1.60E-01 A2c / 2.06E-01 A2b / 2.30E-01 A14 / 1.00E-02 A2a / 1.67E-01 A4 / 1.89E-01 POND / 1.36E-01 ===> System inflows (data group K3) at 1.27 hours ( Junction / Inflow,cu m/s ) A6c / 1.84E-01 A6b / 1.96E-01 A13 / 6.00E-03 A11 / 1.60E-02 A6a / 1.54E-01 A2c / 1.97E-01 A2b / 2.21E-01 A14 / 1.00E-02 A2a / 1.60E-01 A4 / 1.81E-01 POND / 1.35E-01 ===> System inflows (data group K3) at 1.28 hours ( Junction / Inflow,cu m/s ) A6c / 1.77E-01 A6b / 1.88E-01 A13 / 5.00E-03 A11 / 1.50E-02 A6a / 1.47E-01 A2c / 1.89E-01 A2b / 2.12E-01 A14 / 9.00E-03 A2a / 1.53E-01 A4 / 1.74E-01 POND / 1.34E-01 ===> System inflows (data group K3) at 1.30 hours ( Junction / Inflow,cu m/s ) A6c / 1.70E-01 A6b / 1.80E-01 A13 / 5.00E-03 A11 / 1.50E-02 A6a / 1.41E-01 A2c / 1.82E-01 A2b / 2.03E-01 A14 / 9.00E-03 A2a / 1.47E-01 A4 / 1.67E-01 POND / 1.32E-01 ===> System inflows (data group K3) at 1.32 hours ( Junction / Inflow,cu m/s ) A6c / 1.63E-01 A6b / 1.73E-01 A13 / 5.00E-03 A11 / 1.40E-02 A6a / 1.36E-01 A2c / 1.74E-01 A2b / 1.95E-01 A14 / 8.00E-03 A2a / 1.41E-01 A4 / 1.61E-01 POND / 1.31E-01 ===> System inflows (data group K3) at 1.33 hours ( Junction / Inflow,cu m/s ) Page 23 A6c / 1.57E-01 A6b / 1.66E-01 A13 / 4.00E-03 A11 / 1.40E-02 A6a / 1.30E-01 A2c / 1.67E-01 A2b / 1.87E-01 A14 / 8.00E-03 A2a / 1.35E-01 A4 / 1.55E-01 POND / 1.22E-01 ===> System inflows (data group K3) at 1.35 hours ( Junction / Inflow,cu m/s ) A6c / 1.50E-01 A6b / 1.58E-01 A13 / 4.00E-03 A11 / 1.30E-02 A6a / 1.24E-01 A2c / 1.60E-01 A2b / 1.79E-01 A14 / 7.00E-03 A2a / 1.29E-01 A4 / 1.48E-01 POND / 1.18E-01 ===> System inflows (data group K3) at 1.37 hours ( Junction / Inflow,cu m/s ) A6c / 1.43E-01 A6b / 1.51E-01 A13 / 3.00E-03 A11 / 1.20E-02 A6a / 1.18E-01 A2c / 1.52E-01 A2b / 1.70E-01 A14 / 7.00E-03 A2a / 1.23E-01 A4 / 1.41E-01 POND / 1.15E-01 ===> System inflows (data group K3) at 1.38 hours ( Junction / Inflow,cu m/s ) A6c / 1.36E-01 A6b / 1.43E-01 A13 / 3.00E-03 A11 / 1.10E-02 A6a / 1.12E-01 A2c / 1.44E-01 A2b / 1.62E-01 A14 / 6.00E-03 A2a / 1.16E-01 A4 / 1.34E-01 POND / 1.14E-01 Cycle 500 Time 1 Hrs Min Junction / Depth / Elevation ===> "*" Junction is Surcharged. outn1/ 0.68 / A6c/ 0.35 / A6b/ 0.75 / Lot41/ 0.25 / A13/ 0.04 / OD2/ 1.11 / outn11/ 0.17 / A11/ 0.06 / Lot34/ 0.31 / A6a/ 0.67 / outs1/ 0.83*/ A2c/ 0.67 / A2b/ 0.74 / Lot6/ 0.23 / A14/ 0.05 / Lot15/ 0.32 / A2a/ 0.70 / outs4/ 0.65 / A4/ 0.25 / OD3/ 1.11 / OD4/ 0.70 / POND/ 0.63 / Conduit/ FLOW ===> "*" Conduit uses the normal flow option. L1/ 0.01* L2/ 0.12 L3/ 0.23 L4/ 0.37 L11/ 0.02* L1.1/ 0.01* L2.1/ 0.13 L3.1/ 0.26 L4.1/ 0.35 L11.1/ 0.15 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.08 weirn2/ 0.00 weirn1/ 0.00 weirn3/ 0.00 weirs2/ 0.00 WeirS3/ 0.00 Page 24

61 weirn4/ 0.00 weirs4/ 0.00 overflow/ 0.00 FREE # 1/ 0.02 FREE # 2/ 0.08 FREE # 3/ 0.10 ===> System inflows (data group K3) at 1.40 hours ( Junction / Inflow,cu m/s ) A6c / 1.30E-01 A6b / 1.36E-01 A13 / 3.00E-03 A11 / 1.10E-02 A6a / 1.06E-01 A2c / 1.37E-01 A2b / 1.53E-01 A14 / 6.00E-03 A2a / 1.10E-01 A4 / 1.28E-01 POND / 1.12E-01 ===> System inflows (data group K3) at 1.42 hours ( Junction / Inflow,cu m/s ) A6c / 1.23E-01 A6b / 1.29E-01 A13 / 3.00E-03 A11 / 1.00E-02 A6a / 1.01E-01 A2c / 1.30E-01 A2b / 1.46E-01 A14 / 6.00E-03 A2a / 1.05E-01 A4 / 1.22E-01 POND / 1.11E-01 ===> System inflows (data group K3) at 1.43 hours ( Junction / Inflow,cu m/s ) A6c / 1.17E-01 A6b / 1.23E-01 A13 / 3.00E-03 A11 / 1.00E-02 A6a / 9.60E-02 A2c / 1.24E-01 A2b / 1.39E-01 A14 / 5.00E-03 A2a / 1.00E-01 A4 / 1.16E-01 POND / 1.10E-01 ===> System inflows (data group K3) at 1.45 hours ( Junction / Inflow,cu m/s ) A6c / 1.12E-01 A6b / 1.17E-01 A13 / 2.00E-03 A11 / 9.00E-03 A6a / 9.20E-02 A2c / 1.18E-01 A2b / 1.33E-01 A14 / 5.00E-03 A2a / 9.50E-02 A4 / 1.10E-01 POND / 1.09E-01 ===> System inflows (data group K3) at 1.47 hours ( Junction / Inflow,cu m/s ) A6c / 1.07E-01 A6b / 1.12E-01 A13 / 2.00E-03 A11 / 9.00E-03 A6a / 8.70E-02 A2c / 1.13E-01 A2b / 1.27E-01 A14 / 5.00E-03 A2a / 9.10E-02 A4 / 1.05E-01 POND / 1.07E-01 ===> System inflows (data group K3) at 1.48 hours ( Junction / Inflow,cu m/s ) A6c / 1.02E-01 A6b / 1.07E-01 A13 / 2.00E-03 A11 / 9.00E-03 A6a / 8.40E-02 A2c / 1.08E-01 A2b / 1.21E-01 A14 / 5.00E-03 A2a / 8.70E-02 A4 / 1.01E-01 POND / 1.06E-01 ===> System inflows (data group K3) at 1.50 hours ( Junction / Inflow,cu m/s ) A6c / 9.80E-02 A6b / 1.02E-01 A13 / 2.00E-03 A11 / 8.00E-03 A6a / 8.00E-02 A2c / 1.03E-01 A2b / 1.16E-01 A14 / 4.00E-03 A2a / 8.30E-02 A4 / 9.60E-02 POND / 1.01E-01 ===> System inflows (data group K3) at 1.52 hours ( Junction / Inflow,cu m/s ) A6c / 9.30E-02 A6b / 9.80E-02 A13 / 2.00E-03 A11 / 8.00E-03 Page 25 A6a / 7.60E-02 A2c / 9.80E-02 A2b / 1.11E-01 A14 / 4.00E-03 A2a / 7.90E-02 A4 / 9.20E-02 POND / 9.80E-02 ===> System inflows (data group K3) at 1.53 hours ( Junction / Inflow,cu m/s ) A6c / 8.90E-02 A6b / 9.30E-02 A13 / 2.00E-03 A11 / 7.00E-03 A6a / 7.20E-02 A2c / 9.40E-02 A2b / 1.05E-01 A14 / 4.00E-03 A2a / 7.50E-02 A4 / 8.70E-02 POND / 9.60E-02 ===> System inflows (data group K3) at 1.55 hours ( Junction / Inflow,cu m/s ) A6c / 8.40E-02 A6b / 8.80E-02 A13 / 2.00E-03 A11 / 7.00E-03 A6a / 6.80E-02 A2c / 8.90E-02 A2b / 1.00E-01 A14 / 3.00E-03 A2a / 7.10E-02 A4 / 8.30E-02 POND / 9.40E-02 ===> System inflows (data group K3) at 1.57 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-02 A6b / 8.40E-02 A13 / 2.00E-03 A11 / 7.00E-03 A6a / 6.50E-02 A2c / 8.50E-02 A2b / 9.50E-02 A14 / 3.00E-03 A2a / 6.80E-02 A4 / 7.90E-02 POND / 9.30E-02 ===> System inflows (data group K3) at 1.58 hours ( Junction / Inflow,cu m/s ) A6c / 7.60E-02 A6b / 8.00E-02 A13 / 2.00E-03 A11 / 6.00E-03 A6a / 6.20E-02 A2c / 8.10E-02 A2b / 9.10E-02 A14 / 3.00E-03 A2a / 6.50E-02 A4 / 7.50E-02 POND / 9.10E-02 ===> System inflows (data group K3) at 1.60 hours ( Junction / Inflow,cu m/s ) A6c / 7.20E-02 A6b / 7.60E-02 A13 / 1.00E-03 A11 / 6.00E-03 A6a / 5.90E-02 A2c / 7.70E-02 A2b / 8.60E-02 A14 / 3.00E-03 A2a / 6.20E-02 A4 / 7.10E-02 POND / 9.00E-02 ===> System inflows (data group K3) at 1.62 hours ( Junction / Inflow,cu m/s ) A6c / 6.90E-02 A6b / 7.30E-02 A13 / 1.00E-03 A11 / 6.00E-03 A6a / 5.60E-02 A2c / 7.30E-02 A2b / 8.30E-02 A14 / 3.00E-03 A2a / 5.90E-02 A4 / 6.80E-02 POND / 8.90E-02 ===> System inflows (data group K3) at 1.63 hours ( Junction / Inflow,cu m/s ) A6c / 6.60E-02 A6b / 7.00E-02 A13 / 1.00E-03 A11 / 6.00E-03 A6a / 5.40E-02 A2c / 7.00E-02 A2b / 7.90E-02 A14 / 3.00E-03 A2a / 5.60E-02 A4 / 6.50E-02 POND / 8.70E-02 ===> System inflows (data group K3) at 1.65 hours ( Junction / Inflow,cu m/s ) Page 26

62 A6c / 6.30E-02 A6b / 6.70E-02 A13 / 1.00E-03 A11 / 5.00E-03 A6a / 5.20E-02 A2c / 6.70E-02 A2b / 7.60E-02 A14 / 3.00E-03 A2a / 5.40E-02 A4 / 6.20E-02 POND / 8.60E-02 ===> System inflows (data group K3) at 1.67 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-02 A6b / 6.40E-02 A13 / 1.00E-03 A11 / 5.00E-03 A6a / 4.90E-02 A2c / 6.40E-02 A2b / 7.20E-02 A14 / 2.00E-03 A2a / 5.10E-02 A4 / 5.90E-02 POND / 8.20E-02 ===> System inflows (data group K3) at 1.68 hours ( Junction / Inflow,cu m/s ) A6c / 5.70E-02 A6b / 6.10E-02 A13 / 1.00E-03 A11 / 5.00E-03 A6a / 4.70E-02 A2c / 6.10E-02 A2b / 6.90E-02 A14 / 2.00E-03 A2a / 4.90E-02 A4 / 5.60E-02 POND / 8.00E-02 ===> System inflows (data group K3) at 1.70 hours ( Junction / Inflow,cu m/s ) A6c / 5.50E-02 A6b / 5.80E-02 A13 / 1.00E-03 A11 / 5.00E-03 A6a / 4.50E-02 A2c / 5.90E-02 A2b / 6.60E-02 A14 / 2.00E-03 A2a / 4.70E-02 A4 / 5.40E-02 POND / 7.80E-02 ===> System inflows (data group K3) at 1.72 hours ( Junction / Inflow,cu m/s ) A6c / 5.20E-02 A6b / 5.50E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 4.30E-02 A2c / 5.60E-02 A2b / 6.30E-02 A14 / 2.00E-03 A2a / 4.50E-02 A4 / 5.10E-02 POND / 7.70E-02 ===> System inflows (data group K3) at 1.73 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-02 A6b / 5.30E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 4.10E-02 A2c / 5.30E-02 A2b / 6.00E-02 A14 / 2.00E-03 A2a / 4.20E-02 A4 / 4.90E-02 POND / 7.50E-02 ===> System inflows (data group K3) at 1.75 hours ( Junction / Inflow,cu m/s ) A6c / 4.70E-02 A6b / 5.00E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 3.90E-02 A2c / 5.10E-02 A2b / 5.70E-02 A14 / 2.00E-03 A2a / 4.10E-02 A4 / 4.60E-02 POND / 7.40E-02 ===> System inflows (data group K3) at 1.77 hours ( Junction / Inflow,cu m/s ) A6c / 4.50E-02 A6b / 4.80E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 3.70E-02 A2c / 4.90E-02 A2b / 5.50E-02 A14 / 2.00E-03 A2a / 3.90E-02 A4 / 4.40E-02 POND / 7.20E-02 ===> System inflows (data group K3) at 1.78 hours ( Junction / Inflow,cu m/s ) Page 27 A6c / 4.30E-02 A6b / 4.60E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 3.60E-02 A2c / 4.70E-02 A2b / 5.20E-02 A14 / 2.00E-03 A2a / 3.70E-02 A4 / 4.20E-02 POND / 7.10E-02 ===> System inflows (data group K3) at 1.80 hours ( Junction / Inflow,cu m/s ) A6c / 4.10E-02 A6b / 4.40E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 3.40E-02 A2c / 4.50E-02 A2b / 5.00E-02 A14 / 2.00E-03 A2a / 3.60E-02 A4 / 4.00E-02 POND / 7.00E-02 ===> System inflows (data group K3) at 1.82 hours ( Junction / Inflow,cu m/s ) A6c / 3.90E-02 A6b / 4.20E-02 A13 / 1.00E-03 A11 / 4.00E-03 A6a / 3.30E-02 A2c / 4.30E-02 A2b / 4.80E-02 A14 / 2.00E-03 A2a / 3.40E-02 A4 / 3.90E-02 POND / 6.90E-02 ===> System inflows (data group K3) at 1.83 hours ( Junction / Inflow,cu m/s ) A6c / 3.80E-02 A6b / 4.10E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 3.10E-02 A2c / 4.10E-02 A2b / 4.60E-02 A14 / 2.00E-03 A2a / 3.30E-02 A4 / 3.70E-02 POND / 6.60E-02 ===> System inflows (data group K3) at 1.85 hours ( Junction / Inflow,cu m/s ) A6c / 3.60E-02 A6b / 3.90E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 3.00E-02 A2c / 3.90E-02 A2b / 4.40E-02 A14 / 1.00E-03 A2a / 3.10E-02 A4 / 3.50E-02 POND / 6.40E-02 ===> System inflows (data group K3) at 1.87 hours ( Junction / Inflow,cu m/s ) A6c / 3.40E-02 A6b / 3.70E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.90E-02 A2c / 3.80E-02 A2b / 4.30E-02 A14 / 1.00E-03 A2a / 3.00E-02 A4 / 3.40E-02 POND / 6.30E-02 ===> System inflows (data group K3) at 1.88 hours ( Junction / Inflow,cu m/s ) A6c / 3.30E-02 A6b / 3.60E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.80E-02 A2c / 3.60E-02 A2b / 4.10E-02 A14 / 1.00E-03 A2a / 2.90E-02 A4 / 3.20E-02 POND / 6.10E-02 ===> System inflows (data group K3) at 1.90 hours ( Junction / Inflow,cu m/s ) A6c / 3.10E-02 A6b / 3.40E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.60E-02 A2c / 3.40E-02 A2b / 3.90E-02 A14 / 1.00E-03 A2a / 2.70E-02 A4 / 3.10E-02 POND / 6.00E-02 Page 28

63 ===> System inflows (data group K3) at 1.92 hours ( Junction / Inflow,cu m/s ) A6c / 3.00E-02 A6b / 3.30E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.50E-02 A2c / 3.30E-02 A2b / 3.70E-02 A14 / 1.00E-03 A2a / 2.60E-02 A4 / 2.90E-02 POND / 5.90E-02 ===> System inflows (data group K3) at 1.93 hours ( Junction / Inflow,cu m/s ) A6c / 2.90E-02 A6b / 3.10E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.40E-02 A2c / 3.20E-02 A2b / 3.60E-02 A14 / 1.00E-03 A2a / 2.50E-02 A4 / 2.80E-02 POND / 5.80E-02 ===> System inflows (data group K3) at 1.95 hours ( Junction / Inflow,cu m/s ) A6c / 2.70E-02 A6b / 3.00E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.30E-02 A2c / 3.10E-02 A2b / 3.40E-02 A14 / 1.00E-03 A2a / 2.40E-02 A4 / 2.70E-02 POND / 5.70E-02 ===> System inflows (data group K3) at 1.97 hours ( Junction / Inflow,cu m/s ) A6c / 2.60E-02 A6b / 2.90E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.20E-02 A2c / 2.90E-02 A2b / 3.30E-02 A14 / 1.00E-03 A2a / 2.30E-02 A4 / 2.60E-02 POND / 5.60E-02 ===> System inflows (data group K3) at 1.98 hours ( Junction / Inflow,cu m/s ) A6c / 2.50E-02 A6b / 2.80E-02 A13 / 1.00E-03 A11 / 3.00E-03 A6a / 2.20E-02 A2c / 2.80E-02 A2b / 3.20E-02 A14 / 1.00E-03 A2a / 2.30E-02 A4 / 2.50E-02 POND / 5.50E-02 ===> System inflows (data group K3) at 2.00 hours ( Junction / Inflow,cu m/s ) A6c / 2.40E-02 A6b / 2.70E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 2.10E-02 A2c / 2.70E-02 A2b / 3.10E-02 A14 / 1.00E-03 A2a / 2.20E-02 A4 / 2.40E-02 POND / 5.30E-02 ===> System inflows (data group K3) at 2.02 hours ( Junction / Inflow,cu m/s ) A6c / 2.30E-02 A6b / 2.60E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 2.00E-02 A2c / 2.60E-02 A2b / 3.00E-02 A14 / 1.00E-03 A2a / 2.10E-02 A4 / 2.30E-02 POND / 5.20E-02 ===> System inflows (data group K3) at 2.03 hours ( Junction / Inflow,cu m/s ) A6c / 2.20E-02 A6b / 2.50E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.90E-02 A2c / 2.50E-02 A2b / 2.90E-02 A14 / 1.00E-03 A2a / 2.00E-02 A4 / 2.20E-02 POND / 5.00E-02 Page 29 ===> System inflows (data group K3) at 2.05 hours ( Junction / Inflow,cu m/s ) A6c / 2.10E-02 A6b / 2.40E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.80E-02 A2c / 2.40E-02 A2b / 2.70E-02 A14 / 1.00E-03 A2a / 1.90E-02 A4 / 2.10E-02 POND / 5.00E-02 ===> System inflows (data group K3) at 2.07 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-02 A6b / 2.30E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.80E-02 A2c / 2.30E-02 A2b / 2.60E-02 A14 / 1.00E-03 A2a / 1.90E-02 A4 / 2.00E-02 POND / 4.90E-02 ===> System inflows (data group K3) at 2.08 hours ( Junction / Inflow,cu m/s ) A6c / 1.90E-02 A6b / 2.20E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.70E-02 A2c / 2.20E-02 A2b / 2.50E-02 A14 / 1.00E-03 A2a / 1.80E-02 A4 / 1.90E-02 POND / 4.80E-02 ===> System inflows (data group K3) at 2.10 hours ( Junction / Inflow,cu m/s ) A6c / 1.90E-02 A6b / 2.10E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.60E-02 A2c / 2.20E-02 A2b / 2.40E-02 A14 / 1.00E-03 A2a / 1.70E-02 A4 / 1.80E-02 POND / 4.70E-02 ===> System inflows (data group K3) at 2.12 hours ( Junction / Inflow,cu m/s ) A6c / 1.80E-02 A6b / 2.10E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.60E-02 A2c / 2.10E-02 A2b / 2.40E-02 A14 / 1.00E-03 A2a / 1.70E-02 A4 / 1.70E-02 POND / 4.60E-02 ===> System inflows (data group K3) at 2.13 hours ( Junction / Inflow,cu m/s ) A6c / 1.70E-02 A6b / 2.00E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.50E-02 A2c / 2.00E-02 A2b / 2.30E-02 A14 / 1.00E-03 A2a / 1.60E-02 A4 / 1.70E-02 POND / 4.50E-02 ===> System inflows (data group K3) at 2.15 hours ( Junction / Inflow,cu m/s ) A6c / 1.70E-02 A6b / 1.90E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.50E-02 A2c / 2.00E-02 A2b / 2.20E-02 A14 / 1.00E-03 A2a / 1.60E-02 A4 / 1.60E-02 POND / 4.50E-02 ===> System inflows (data group K3) at 2.17 hours ( Junction / Inflow,cu m/s ) A6c / 1.60E-02 A6b / 1.90E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.40E-02 A2c / 1.90E-02 A2b / 2.10E-02 A14 / 1.00E-03 A2a / 1.50E-02 A4 / 1.60E-02 POND / 4.30E-02 Page 30

64 ===> System inflows (data group K3) at 2.18 hours ( Junction / Inflow,cu m/s ) A6c / 1.50E-02 A6b / 1.80E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.40E-02 A2c / 1.80E-02 A2b / 2.10E-02 A14 / 1.00E-03 A2a / 1.50E-02 A4 / 1.50E-02 POND / 4.20E-02 ===> System inflows (data group K3) at 2.20 hours ( Junction / Inflow,cu m/s ) A6c / 1.50E-02 A6b / 1.70E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.30E-02 A2c / 1.80E-02 A2b / 2.00E-02 A14 / 1.00E-03 A2a / 1.40E-02 A4 / 1.40E-02 POND / 4.10E-02 ===> System inflows (data group K3) at 2.22 hours ( Junction / Inflow,cu m/s ) A6c / 1.40E-02 A6b / 1.70E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.30E-02 A2c / 1.70E-02 A2b / 1.90E-02 A14 / 1.00E-03 A2a / 1.30E-02 A4 / 1.40E-02 POND / 4.10E-02 ===> System inflows (data group K3) at 2.23 hours ( Junction / Inflow,cu m/s ) A6c / 1.40E-02 A6b / 1.60E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.20E-02 A2c / 1.60E-02 A2b / 1.80E-02 A14 / 1.00E-03 A2a / 1.30E-02 A4 / 1.30E-02 POND / 4.00E-02 ===> System inflows (data group K3) at 2.25 hours ( Junction / Inflow,cu m/s ) A6c / 1.30E-02 A6b / 1.60E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.20E-02 A2c / 1.60E-02 A2b / 1.80E-02 A14 / 1.00E-03 A2a / 1.30E-02 A4 / 1.30E-02 POND / 3.90E-02 ===> System inflows (data group K3) at 2.27 hours ( Junction / Inflow,cu m/s ) A6c / 1.20E-02 A6b / 1.50E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.20E-02 A2c / 1.50E-02 A2b / 1.70E-02 A14 / 1.00E-03 A2a / 1.20E-02 A4 / 1.20E-02 POND / 3.90E-02 ===> System inflows (data group K3) at 2.28 hours ( Junction / Inflow,cu m/s ) A6c / 1.20E-02 A6b / 1.50E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.10E-02 A2c / 1.50E-02 A2b / 1.70E-02 A14 / 1.00E-03 A2a / 1.20E-02 A4 / 1.20E-02 POND / 3.80E-02 ===> System inflows (data group K3) at 2.30 hours ( Junction / Inflow,cu m/s ) A6c / 1.20E-02 A6b / 1.40E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.10E-02 A2c / 1.40E-02 A2b / 1.60E-02 A14 / 1.00E-03 A2a / 1.10E-02 A4 / 1.10E-02 Page 31 POND / 3.80E-02 ===> System inflows (data group K3) at 2.32 hours ( Junction / Inflow,cu m/s ) A6c / 1.10E-02 A6b / 1.40E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.10E-02 A2c / 1.40E-02 A2b / 1.60E-02 A14 / 1.00E-03 A2a / 1.10E-02 A4 / 1.10E-02 POND / 3.70E-02 ===> System inflows (data group K3) at 2.33 hours ( Junction / Inflow,cu m/s ) A6c / 1.10E-02 A6b / 1.30E-02 A13 / 1.00E-03 A11 / 2.00E-03 A6a / 1.00E-02 A2c / 1.30E-02 A2b / 1.50E-02 A14 / 1.00E-03 A2a / 1.10E-02 A4 / 1.00E-02 POND / 3.60E-02 ===> System inflows (data group K3) at 2.35 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-02 A6b / 1.30E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 1.00E-02 A2c / 1.30E-02 A2b / 1.50E-02 A14 / 1.00E-03 A2a / 1.00E-02 A4 / 1.00E-02 POND / 3.50E-02 ===> System inflows (data group K3) at 2.37 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-02 A6b / 1.30E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 1.00E-02 A2c / 1.30E-02 A2b / 1.40E-02 A14 / 1.00E-03 A2a / 1.00E-02 A4 / 1.00E-02 POND / 3.40E-02 ===> System inflows (data group K3) at 2.38 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-02 A6b / 1.20E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 9.00E-03 A2c / 1.20E-02 A2b / 1.40E-02 A14 / 1.00E-03 A2a / 1.00E-02 A4 / 9.00E-03 POND / 3.40E-02 ===> System inflows (data group K3) at 2.40 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.20E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 9.00E-03 A2c / 1.20E-02 A2b / 1.30E-02 A14 / 1.00E-03 A2a / 9.00E-03 A4 / 9.00E-03 POND / 3.30E-02 ===> System inflows (data group K3) at 2.42 hours ( Junction / Inflow,cu m/s ) A6c / 9.00E-03 A6b / 1.10E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 9.00E-03 A2c / 1.10E-02 A2b / 1.30E-02 A14 / 1.00E-03 A2a / 9.00E-03 A4 / 8.00E-03 POND / 3.30E-02 ===> System inflows (data group K3) at 2.43 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-03 A6b / 1.10E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 8.00E-03 A2c / 1.10E-02 Page 32

65 A2b / 1.20E-02 A14 / 1.00E-03 A2a / 9.00E-03 A4 / 8.00E-03 POND / 3.30E-02 ===> System inflows (data group K3) at 2.45 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-03 A6b / 1.10E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 8.00E-03 A2c / 1.10E-02 A2b / 1.20E-02 A14 / 1.00E-03 A2a / 9.00E-03 A4 / 8.00E-03 POND / 3.20E-02 ===> System inflows (data group K3) at 2.47 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-03 A6b / 1.00E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 8.00E-03 A2c / 1.00E-02 A2b / 1.20E-02 A14 / 1.00E-03 A2a / 8.00E-03 A4 / 8.00E-03 POND / 3.20E-02 ===> System inflows (data group K3) at 2.48 hours ( Junction / Inflow,cu m/s ) A6c / 8.00E-03 A6b / 1.00E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 8.00E-03 A2c / 1.00E-02 A2b / 1.10E-02 A14 / 1.00E-03 A2a / 8.00E-03 A4 / 7.00E-03 POND / 3.10E-02 ===> System inflows (data group K3) at 2.50 hours ( Junction / Inflow,cu m/s ) A6c / 7.00E-03 A6b / 1.00E-02 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 8.00E-03 A2c / 1.00E-02 A2b / 1.10E-02 A14 / 1.00E-03 A2a / 8.00E-03 A4 / 7.00E-03 POND / 3.00E-02 ===> System inflows (data group K3) at 2.52 hours ( Junction / Inflow,cu m/s ) A6c / 7.00E-03 A6b / 9.00E-03 A13 / 1.00E-03 A11 / 1.00E-03 A6a / 7.00E-03 A2c / 1.00E-02 A2b / 1.10E-02 A14 / 1.00E-03 A2a / 8.00E-03 A4 / 7.00E-03 POND / 3.00E-02 ===> System inflows (data group K3) at 2.53 hours ( Junction / Inflow,cu m/s ) A6c / 7.00E-03 A6b / 9.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 7.00E-03 A2c / 9.00E-03 A2b / 1.00E-02 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 7.00E-03 POND / 2.90E-02 ===> System inflows (data group K3) at 2.55 hours ( Junction / Inflow,cu m/s ) A6c / 7.00E-03 A6b / 9.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 7.00E-03 A2c / 9.00E-03 A2b / 1.00E-02 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 6.00E-03 POND / 2.90E-02 ===> System inflows (data group K3) at 2.57 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 9.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 Page 33 A6a / 7.00E-03 A2c / 9.00E-03 A2b / 1.00E-02 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 6.00E-03 POND / 2.90E-02 ===> System inflows (data group K3) at 2.58 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 6.00E-03 POND / 2.80E-02 ===> System inflows (data group K3) at 2.60 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 7.00E-03 A4 / 6.00E-03 POND / 2.80E-02 ===> System inflows (data group K3) at 2.62 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 6.00E-03 POND / 2.80E-02 ===> System inflows (data group K3) at 2.63 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 8.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 9.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 2.70E-02 ===> System inflows (data group K3) at 2.65 hours ( Junction / Inflow,cu m/s ) A6c / 6.00E-03 A6b / 7.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 6.00E-03 A2c / 8.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 2.70E-02 ===> System inflows (data group K3) at 2.67 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 7.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 6.00E-03 A2c / 7.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 2.60E-02 ===> System inflows (data group K3) at 2.68 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 7.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 7.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 2.60E-02 ===> System inflows (data group K3) at 2.70 hours ( Junction / Inflow,cu m/s ) Page 34

66 A6c / 5.00E-03 A6b / 7.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 7.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 6.00E-03 A4 / 5.00E-03 POND / 2.60E-02 ===> System inflows (data group K3) at 2.72 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 7.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 7.00E-03 A2b / 8.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 5.00E-03 POND / 2.50E-02 ===> System inflows (data group K3) at 2.73 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 5.00E-03 POND / 2.50E-02 ===> System inflows (data group K3) at 2.75 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 2.50E-02 ===> System inflows (data group K3) at 2.77 hours ( Junction / Inflow,cu m/s ) A6c / 5.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 2.50E-02 Cycle 1000 Time 2 Hrs Min Junction / Depth / Elevation ===> "*" Junction is Surcharged. outn1/ 0.91*/ A6c/ 0.40 / A6b/ 0.15 / Lot41/ 0.05 / A13/ 0.01 / OD2/ 1.11 / outn11/ 0.16 / A11/ 0.01 / Lot34/ 0.15 / A6a/ 0.09 / outs1/ 0.87*/ A2c/ 0.70 / A2b/ 0.16 / Lot6/ 0.06 / A14/ 0.01 / Lot15/ 0.17 / A2a/ 0.09 / outs4/ 0.06 / A4/ 0.03 / OD3/ 1.11 / OD4/ 0.70 / POND/ 0.95 / Conduit/ FLOW ===> "*" Conduit uses the normal flow option. L1/ 0.00* L2/ 0.01* L3/ 0.03 L4/ 0.04 L11/ 0.00* L1.1/ 0.00* L2.1/ 0.01* L3.1/ 0.04 L4.1/ 0.05 L11.1/ 0.01* L23/ Page mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.11 weirn2/ 0.00 weirn1/ 0.00 weirn3/ 0.00 weirs2/ 0.00 WeirS3/ 0.00 weirn4/ 0.00 weirs4/ 0.00 overflow/ 0.00 FREE # 1/ 0.00 FREE # 2/ 0.11 FREE # 3/ 0.01 ===> System inflows (data group K3) at 2.78 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 5.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 2.80 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 6.00E-03 A2b / 7.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 2.82 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 6.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 5.00E-03 A4 / 4.00E-03 POND / 2.40E-02 ===> System inflows (data group K3) at 2.83 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 6.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 6.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 2.30E-02 ===> System inflows (data group K3) at 2.85 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 2.30E-02 ===> System inflows (data group K3) at 2.87 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 2.30E-02 ===> System inflows (data group K3) at 2.88 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 Page 36

67 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 2.30E-02 ===> System inflows (data group K3) at 2.90 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 2.92 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 4.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 2.93 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 6.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 3.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 2.95 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 5.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 3.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 2.97 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 5.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 3.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 2.98 hours ( Junction / Inflow,cu m/s ) A6c / 4.00E-03 A6b / 5.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 4.00E-03 A2c / 5.00E-03 A2b / 5.00E-03 A14 / 1.00E-03 A2a / 4.00E-03 A4 / 3.00E-03 POND / 2.20E-02 ===> System inflows (data group K3) at 3.00 hours ( Junction / Inflow,cu m/s ) A6c / 3.00E-03 A6b / 4.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 A6a / 3.00E-03 A2c / 4.00E-03 A2b / 5.00E-03 A14 / 0.00E+00 A2a / 4.00E-03 A4 / 3.00E-03 POND / 1.70E-02 ===> System inflows (data group K3) at 3.02 hours ( Junction / Inflow,cu m/s ) A6c / 3.00E-03 A6b / 4.00E-03 A13 / 0.00E+00 A11 / 1.00E-03 Page 37 A6a / 3.00E-03 A2c / 4.00E-03 A2b / 5.00E-03 A14 / 0.00E+00 A2a / 3.00E-03 A4 / 3.00E-03 POND / 1.50E-02 ===> System inflows (data group K3) at 3.03 hours ( Junction / Inflow,cu m/s ) A6c / 3.00E-03 A6b / 4.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 3.00E-03 A2c / 4.00E-03 A2b / 4.00E-03 A14 / 0.00E+00 A2a / 3.00E-03 A4 / 3.00E-03 POND / 1.40E-02 ===> System inflows (data group K3) at 3.05 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-03 A6b / 3.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 2.00E-03 A2c / 3.00E-03 A2b / 3.00E-03 A14 / 0.00E+00 A2a / 2.00E-03 A4 / 2.00E-03 POND / 1.40E-02 ===> System inflows (data group K3) at 3.07 hours ( Junction / Inflow,cu m/s ) A6c / 2.00E-03 A6b / 2.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 2.00E-03 A2c / 2.00E-03 A2b / 3.00E-03 A14 / 0.00E+00 A2a / 2.00E-03 A4 / 2.00E-03 POND / 1.40E-02 ===> System inflows (data group K3) at 3.08 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-03 A6b / 2.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 1.00E-03 A2c / 2.00E-03 A2b / 2.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.30E-02 ===> System inflows (data group K3) at 3.10 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-03 A6b / 2.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 1.00E-03 A2c / 2.00E-03 A2b / 2.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.30E-02 ===> System inflows (data group K3) at 3.12 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-03 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 1.00E-03 A2c / 1.00E-03 A2b / 2.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.30E-02 ===> System inflows (data group K3) at 3.13 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-03 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 1.00E-03 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.30E-02 ===> System inflows (data group K3) at 3.15 hours ( Junction / Inflow,cu m/s ) Page 38

68 A6c / 1.00E-03 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 1.00E-03 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.20E-02 ===> System inflows (data group K3) at 3.17 hours ( Junction / Inflow,cu m/s ) A6c / 1.00E-03 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 1.00E-03 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 0.00E+00 A2a / 1.00E-03 A4 / 1.00E-03 POND / 1.20E-02 ===> System inflows (data group K3) at 3.18 hours ( Junction / Inflow,cu m/s ) A6c / 0.00E+00 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 0.00E+00 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 0.00E+00 A2a / 0.00E+00 A4 / 0.00E+00 POND / 1.20E-02 ===> System inflows (data group K3) at 3.20 hours ( Junction / Inflow,cu m/s ) A6c / 0.00E+00 A6b / 1.00E-03 A13 / 0.00E+00 A11 / 0.00E+00 A6a / 0.00E+00 A2c / 1.00E-03 A2b / 1.00E-03 A14 / 0.00E+00 A2a / 0.00E+00 A4 / 0.00E+00 POND / 1.10E-02 ===> System inflows (data group K3) at 3.22 hours ( Junction / Inflow,cu m/s ) A2b / 1.00E-03 A14 / 0.00E+00 A2a / 0.00E+00 A4 / 0.00E+00 POND / 1.10E-02 ===> System inflows (data group K3) at 3.23 hours ( Junction / Inflow,cu m/s ) POND / 1.10E-02 ===> System inflows (data group K3) at 3.25 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-02 ===> System inflows (data group K3) at 3.27 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-02 ===> System inflows (data group K3) at 3.28 hours ( Junction / Inflow,cu m/s ) Page 39 POND / 1.00E-02 ===> System inflows (data group K3) at 3.30 hours ( Junction / Inflow,cu m/s ) POND / 9.00E-03 ===> System inflows (data group K3) at 3.32 hours ( Junction / Inflow,cu m/s ) POND / 9.00E-03 ===> System inflows (data group K3) at 3.33 hours ( Junction / Inflow,cu m/s ) POND / 9.00E-03 ===> System inflows (data group K3) at 3.35 hours ( Junction / Inflow,cu m/s ) POND / 9.00E-03 ===> System inflows (data group K3) at 3.37 hours ( Junction / Inflow,cu m/s ) POND / 8.00E-03 ===> System inflows (data group K3) at 3.38 hours ( Junction / Inflow,cu m/s ) POND / 8.00E-03 ===> System inflows (data group K3) at 3.40 hours ( Junction / Inflow,cu m/s ) POND / 8.00E-03 Page 40

69 ===> System inflows (data group K3) at 3.42 hours ( Junction / Inflow,cu m/s ) POND / 7.00E-03 ===> System inflows (data group K3) at 3.43 hours ( Junction / Inflow,cu m/s ) POND / 7.00E-03 ===> System inflows (data group K3) at 3.45 hours ( Junction / Inflow,cu m/s ) POND / 7.00E-03 ===> System inflows (data group K3) at 3.47 hours ( Junction / Inflow,cu m/s ) POND / 6.00E-03 ===> System inflows (data group K3) at 3.48 hours ( Junction / Inflow,cu m/s ) POND / 6.00E-03 ===> System inflows (data group K3) at 3.50 hours ( Junction / Inflow,cu m/s ) POND / 6.00E-03 ===> System inflows (data group K3) at 3.52 hours ( Junction / Inflow,cu m/s ) POND / 6.00E-03 ===> System inflows (data group K3) at 3.53 hours ( Junction / Inflow,cu m/s ) POND / 5.00E-03 Page 41 ===> System inflows (data group K3) at 3.55 hours ( Junction / Inflow,cu m/s ) POND / 5.00E-03 ===> System inflows (data group K3) at 3.57 hours ( Junction / Inflow,cu m/s ) POND / 5.00E-03 ===> System inflows (data group K3) at 3.58 hours ( Junction / Inflow,cu m/s ) POND / 5.00E-03 ===> System inflows (data group K3) at 3.60 hours ( Junction / Inflow,cu m/s ) POND / 4.00E-03 ===> System inflows (data group K3) at 3.62 hours ( Junction / Inflow,cu m/s ) POND / 4.00E-03 ===> System inflows (data group K3) at 3.63 hours ( Junction / Inflow,cu m/s ) POND / 4.00E-03 ===> System inflows (data group K3) at 3.65 hours ( Junction / Inflow,cu m/s ) POND / 4.00E-03 ===> System inflows (data group K3) at 3.67 hours ( Junction / Inflow,cu m/s ) POND / 4.00E-03 Page 42

70 ===> System inflows (data group K3) at 3.68 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 3.70 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 3.72 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 3.73 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 3.75 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 3.77 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 3.78 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.80 hours ( Junction / Inflow,cu m/s ) Page 43 POND / 2.00E-03 ===> System inflows (data group K3) at 3.82 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.83 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.85 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.87 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.88 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.90 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.92 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 3.93 hours ( Junction / Inflow,cu m/s ) Page 44

71 POND / 1.00E-03 ===> System inflows (data group K3) at 3.95 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 3.97 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 3.98 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.00 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.02 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.03 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.05 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.07 hours ( Junction / Inflow,cu m/s ) Page 45 POND / 1.00E-03 ===> System inflows (data group K3) at 4.08 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.10 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.12 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.13 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.15 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 Cycle 1500 Time 4 Hrs Min Junction / Depth / Elevation ===> "*" Junction is Surcharged. outn1/ 0.85*/ A6c/ 0.34 / A6b/ 0.04 / Lot41/ 0.01 / A13/ 0.00 / OD2/ 1.11 / outn11/ 0.16 / A11/ 0.00 / Lot34/ 0.06 / A6a/ 0.02 / outs1/ 0.81*/ A2c/ 0.64 / A2b/ 0.04 / Lot6/ 0.01 / A14/ 0.00 / Lot15/ 0.10 / A2a/ 0.02 / outs4/ 0.01 / A4/ 0.00 / OD3/ 1.11 / OD4/ 0.70 / POND/ 0.90 / Page 46

72 Conduit/ FLOW ===> "*" Conduit uses the normal flow option. L1/ 0.00* L2/ 0.00* L3/ 0.00 L4/ 0.01 L11/ 0.00* L1.1/ 0.00* L2.1/ 0.00* L3.1/ 0.01 L4.1/ 0.01 L11.1/ 0.00* L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ mmout/ 0.11 weirn2/ 0.00 weirn1/ 0.00 weirn3/ 0.00 weirs2/ 0.00 WeirS3/ 0.00 weirn4/ 0.00 weirs4/ 0.00 overflow/ 0.00 FREE # 1/ 0.00 FREE # 2/ 0.11 FREE # 3/ 0.00 ===> System inflows (data group K3) at 4.17 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.18 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.20 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 4.22 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.23 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.25 hours ( Junction / Inflow,cu m/s ) Page 47 ===> System inflows (data group K3) at 4.27 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.28 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.30 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.32 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.33 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.35 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.37 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.38 hours ( Junction / Inflow,cu m/s ) Page 48

73 ===> System inflows (data group K3) at 4.40 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.42 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.43 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.45 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.47 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.48 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.50 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.52 hours ( Junction / Inflow,cu m/s ) Page 49 ===> System inflows (data group K3) at 4.53 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.55 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.57 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.58 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.60 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.62 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.63 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.65 hours ( Junction / Inflow,cu m/s ) Page 50

74 ===> System inflows (data group K3) at 4.67 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.68 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.70 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.72 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.73 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.75 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.77 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.78 hours ( Junction / Inflow,cu m/s ) Page 51 ===> System inflows (data group K3) at 4.80 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.82 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.83 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.85 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.87 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.88 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.90 hours ( Junction / Inflow,cu m/s ) Page 52

75 ===> System inflows (data group K3) at 4.92 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.93 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.95 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.97 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 4.98 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.00 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.02 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.03 hours ( Junction / Inflow,cu m/s ) Page 53 ===> System inflows (data group K3) at 5.05 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.07 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.08 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.10 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.12 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.13 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.15 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.17 hours ( Junction / Inflow,cu m/s ) Page 54

76 ===> System inflows (data group K3) at 5.18 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.20 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.22 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.23 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.25 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.27 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.28 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.30 hours ( Junction / Inflow,cu m/s ) Page 55 ===> System inflows (data group K3) at 5.32 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.33 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.35 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.37 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.38 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.40 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.42 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.43 hours ( Junction / Inflow,cu m/s ) Page 56

77 ===> System inflows (data group K3) at 5.45 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.47 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.48 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.50 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.52 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.53 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.55 hours ( Junction / Inflow,cu m/s ) Cycle 2000 Time 5 Hrs Min Junction / Depth / Elevation ===> "*" Junction is Surcharged. Page 57 outn1/ 0.77*/ A6c/ 0.26 / A6b/ 0.02 / Lot41/ 0.01 / A13/ 0.00 / OD2/ 1.11 / outn11/ 0.16 / A11/ 0.00 / Lot34/ 0.00 / A6a/ 0.01 / outs1/ 0.73 / A2c/ 0.56 / A2b/ 0.02 / Lot6/ 0.01 / A14/ 0.00 / Lot15/ 0.03 / A2a/ 0.01 / outs4/ 0.00 / A4/ 0.00 / OD3/ 1.11 / OD4/ 0.70 / POND/ 0.82 / Conduit/ FLOW ===> "*" Conduit uses the normal flow option. L1/ 0.00* L2/ 0.00* L3/ 0.00 L4/ 0.01 L11/ 0.00* L1.1/ 0.00* L2.1/ 0.00* L3.1/ 0.00 L4.1/ 0.01 L11.1/ 0.00 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ 0.00* 250mmout/ 0.10 weirn2/ 0.00 weirn1/ 0.00 weirn3/ 0.00 weirs2/ 0.00 WeirS3/ 0.00 weirn4/ 0.00 weirs4/ 0.00 overflow/ 0.00 FREE # 1/ 0.00 FREE # 2/ 0.10 FREE # 3/ 0.00 ===> System inflows (data group K3) at 5.57 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.58 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.60 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.62 hours ( Junction / Inflow,cu m/s ) Page 58

78 ===> System inflows (data group K3) at 5.63 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.65 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.67 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.68 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.70 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.72 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.73 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.75 hours ( Junction / Inflow,cu m/s ) Page 59 ===> System inflows (data group K3) at 5.77 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.78 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.80 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.82 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.83 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.85 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.87 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.88 hours ( Junction / Inflow,cu m/s ) Page 60

79 ===> System inflows (data group K3) at 5.90 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.92 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.93 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.95 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.97 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 5.98 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.00 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.02 hours ( Junction / Inflow,cu m/s ) Page 61 ===> System inflows (data group K3) at 6.03 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.05 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.07 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.08 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.10 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.12 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.13 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.15 hours ( Junction / Inflow,cu m/s ) Page 62

80 ===> System inflows (data group K3) at 6.17 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.18 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.20 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.22 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.23 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.25 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.27 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.28 hours ( Junction / Inflow,cu m/s ) Page 63 ===> System inflows (data group K3) at 6.30 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.32 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.33 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.35 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.37 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.38 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.40 hours ( Junction / Inflow,cu m/s ) Page 64

81 ===> System inflows (data group K3) at 6.42 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.43 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.45 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.47 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.48 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.50 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.52 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 6.53 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 Page 65 ===> System inflows (data group K3) at 6.55 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 6.57 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 6.58 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 6.60 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 6.62 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 6.63 hours ( Junction / Inflow,cu m/s ) POND / 3.00E-03 ===> System inflows (data group K3) at 6.65 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.67 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 Page 66

82 ===> System inflows (data group K3) at 6.68 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.70 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.72 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.73 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.75 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.77 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.78 hours ( Junction / Inflow,cu m/s ) POND / 2.00E-03 ===> System inflows (data group K3) at 6.80 hours ( Junction / Inflow,cu m/s ) Page 67 POND / 1.00E-03 ===> System inflows (data group K3) at 6.82 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.83 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.85 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.87 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.88 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.90 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.92 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.93 hours ( Junction / Inflow,cu m/s ) Page 68

83 POND / 1.00E-03 Cycle 2500 Time 6 Hrs Min Junction / Depth / Elevation ===> "*" Junction is Surcharged. outn1/ 0.70 / A6c/ 0.19 / A6b/ 0.01 / Lot41/ 0.00 / A13/ 0.00 / OD2/ 1.11 / outn11/ 0.16 / A11/ 0.00 / Lot34/ 0.01 / A6a/ 0.01 / outs1/ 0.66 / A2c/ 0.49 / A2b/ 0.01 / Lot6/ 0.00 / A14/ 0.00 / Lot15/ 0.00 / A2a/ 0.01 / outs4/ 0.00 / A4/ 0.00 / OD3/ 1.11 / OD4/ 0.70 / POND/ 0.75 / Conduit/ FLOW ===> "*" Conduit uses the normal flow option. L1/ 0.00* L2/ 0.00* L3/ 0.00* L4/ 0.00 L11/ 0.00* L1.1/ 0.00* L2.1/ 0.00* L3.1/ 0.00* L4.1/ 0.01 L11.1/ 0.00 L23/ mmN2/ mmN1/ mmN3/ mmS2/ mmS3/ mm/ mmS4/ 0.00* 250mmout/ 0.09 weirn2/ 0.00 weirn1/ 0.00 weirn3/ 0.00 weirs2/ 0.00 WeirS3/ 0.00 weirn4/ 0.00 weirs4/ 0.00 overflow/ 0.00 FREE # 1/ 0.00 FREE # 2/ 0.09 FREE # 3/ 0.00 ===> System inflows (data group K3) at 6.95 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.97 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 6.98 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 Page 69 ===> System inflows (data group K3) at 7.00 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.02 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.03 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.05 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.07 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.08 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.10 hours ( Junction / Inflow,cu m/s ) POND / 1.00E-03 ===> System inflows (data group K3) at 7.12 hours ( Junction / Inflow,cu m/s ) Page 70

84 ===> System inflows (data group K3) at 7.13 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.15 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.17 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.18 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.20 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.22 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.23 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.25 hours ( Junction / Inflow,cu m/s ) Page 71 ===> System inflows (data group K3) at 7.27 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.28 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.30 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.32 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.33 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.35 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.37 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.38 hours ( Junction / Inflow,cu m/s ) Page 72

85 ===> System inflows (data group K3) at 7.40 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.42 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.43 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.45 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.47 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.48 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.50 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.52 hours ( Junction / Inflow,cu m/s ) Page 73 ===> System inflows (data group K3) at 7.53 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.55 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.57 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.58 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.60 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.62 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.63 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.65 hours ( Junction / Inflow,cu m/s ) Page 74

86 ===> System inflows (data group K3) at 7.67 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.68 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.70 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.72 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.73 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.75 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.77 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.78 hours ( Junction / Inflow,cu m/s ) Page 75 ===> System inflows (data group K3) at 7.80 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.82 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.83 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.85 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.87 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.88 hours ( Junction / Inflow,cu m/s ) ===> System inflows (data group K3) at 7.90 hours ( Junction / Inflow,cu m/s ) Page 76

87 *===================================================* Table E5 - Junction Time Limitation Summary (0.10 or 0.25)* Depth * Area Time step = Sum of Flow *===================================================* The time this junction was the limiting junction is listed in the third column. *===================================================* Junction Time(.10) Time(.25) Time(sec) outn A6c A6b Lot A OD outn A Lot A6a outs A2c A2b Lot A Lot A2a outs A OD OD POND The junction requiring the smallest time step was...outn1 *==========================================================* Table E5a - Conduit Explicit Condition Summary Courant = Conduit Length Page 77 Time step = Velocity + sqrt(g*depth) Conduit Implicit Condition Summary Courant = Conduit Length Time step = Velocity *==========================================================* The 3rd column is the Explicit time step times the minimum courant time step factor Minimum Conduit Time Step in seconds in the 4th column in the list. Maximum possible is 10 * maximum time step The 5th column is the maximum change at any time step during the simulation. The 6th column is the wobble value which is an indicator of the flow stability. You should use this section to find those conduits that are slowing your model down. Use modify conduits to alter the length of the slow conduits to make your simulation faster, or change the conduit name to "CHME?????" where????? are any characters, this will lengthen the conduit based on the model time step, not the value listed in modify conduits. *==========================================================* Conduit Time(exp) Expl*Cmin Time(imp) Time(min) Max Qchange Wobble Type of Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln L Normal Soln 375mmN Normal Soln 525mmN Normal Soln 300mmN Normal Soln 375mmS Normal Soln 300mmS Normal Soln Page 78

88 200mm Normal Soln 200mmS Normal Soln 250mmout Normal Soln The conduit with the smallest time step limitation was..200mm The conduit with the largest wobble was...200mms4 The conduit with the largest flow change in any consecutive time step...200mms4 *==================================================* Table E6. Final Model Condition This table is used for steady state flow comparison and is the information saved to the hot-restart file. Final Time = hours *==================================================* Junction / Depth / Elevation ===> "*" Junction is Surcharged. outn1/ 0.64 / / A6c/ 0.13 / / A6b/ 0.01 / / Lot41/ 0.00 / / A13/ 0.00 / / OD2/ 1.11 / / outn11/ 0.16 / / A11/ 0.00 / / Lot34/ 0.00 / / A6a/ 0.01 / / outs1/ 0.60 / / A2c/ 0.43 / / A2b/ 0.01 / / Lot6/ 0.00 / / A14/ 0.00 / / Lot15/ 0.00 / / A2a/ 0.01 / / outs4/ 0.00 / / A4/ 0.00 / / OD3/ 1.11 / / OD4/ 0.70 / / POND/ 0.69 / / Conduit/ Flow ===> "*" Conduit uses the normal flow option. L1/ 0.00*/ L2/ 0.00*/ L3/ 0.00*/ L4/ 0.00 / L11/ 0.00*/ L1.1/ 0.00*/ L2.1/ 0.00*/ L3.1/ 0.00*/ L4.1/ 0.01 / L11.1/ 0.00 / L23/ 0.01 / 375mmN2/ 0.00 / 525mmN1/ 0.01 / 300mmN3/ 0.00 / 375mmS2/ 0.00 / 300mmS3/ 0.00 / 200mm/ 0.00 / 200mmS4/ 0.00*/ 250mmout/ 0.09 / weirn2/ 0.00 / weirn1/ 0.00 / weirn3/ 0.00 / weirs2/ 0.00 / WeirS3/ 0.00 / weirn4/ 0.00 / weirs4/ 0.00 / overflow/ 0.00 / FREE # 1/ 0.00 / FREE # 2/ 0.09 / FREE # 3/ 0.00 / 0.01 / 0.00 / Conduit/ Velocity L1/ 0.00 / L2/ 0.02 / L3/ L4/ 0.01 / L11/ 0.00 / L1.1/ Page 79 L2.1/ 0.02 / L3.1/ 0.00 / L4.1/ 0.01 / L11.1/ 0.01 / L23/ 0.04 / 375mmN2/ 0.14 / 525mmN1/ 0.03 / 300mmN3/ 0.09 / 375mmS2/ 0.16 / 300mmS3/ 0.09 / 200mm/ 0.00 / 200mmS4/ 0.00 / 250mmout/ 1.72 / Conduit/ Width L1/ 1.00 / L2/ 1.02 / L3/ 1.08 / L4/ 1.83 / L11/ 1.07 / L1.1/ 1.00 / L2.1/ 1.02 / L3.1/ 1.21 / L4.1/ 3.03 / L11.1/ 1.00 / L23/ 0.28 / 375mmN2/ 0.15 / 525mmN1/ 0.12 / 300mmN3/ 0.12 / 375mmS2/ 0.15 / 300mmS3/ 0.12 / 200mm/ 0.02 / 200mmS4/ 0.09 / 250mmout/ 0.00 / Junction/ EGL outn1/ 0.64 / A6c/ 0.13 / A6b/ 0.01 / Lot41/ 0.10 / A13/ 0.00 / OD2/ 1.11 / outn11/ 0.16 / A11/ 0.00 / Lot34/ 0.11 / A6a/ 0.01 / outs1/ 0.60 / A2c/ 0.43 / A2b/ 0.01 / Lot6/ 0.11 / A14/ 0.00 / Lot15/ 0.11 / A2a/ 0.01 / outs4/ 0.00 / A4/ 0.00 / OD3/ 1.26 / OD4/ 0.70 / POND/ 0.69 / Junction/ Freeboard outn1/ 0.36 / A6c/ 0.87 / A6b/ 0.99 / Lot41/ 1.15 / A13/ 1.05 / OD2/ 0.43 / outn11/ 0.64 / A11/ 0.80 / Lot34/ 1.15 / A6a/ 1.00 / outs1/ 0.37 / A2c/ 0.48 / A2b/ 1.02 / Lot6/ 1.15 / A14/ 0.80 / Lot15/ 1.15 / A2a/ 0.99 / outs4/ 0.85 / A4/ 0.80 / OD3/ 0.59 / OD4/ 0.74 / POND/ 0.46 / Junction/ Max Volume outn1/ 1.11 / A6c/ 0.49 / A6b/ 0.93 / Lot41/ 0.32 / A13/ 0.08 / OD2/ Page 80

89 1.35 / outn11/ 0.23 / A11/ 0.12 / Lot34/ 0.38 / A6a/ 0.82 / outs1/ 1.12 / A2c/ 0.91 / A2b/ 0.91 / Lot6/ 0.29 / A14/ 0.08 / Lot15/ 0.41 / A2a/ 0.86 / outs4/ 0.83 / A4/ 0.33 / OD3/ 1.35 / OD4/ 0.85 / POND/ / Junction/Total Fldng outn1/ 0.00 / A6c/ 0.00 / A6b/ 0.00 / Lot41/ 0.00 / A13/ 0.00 / OD2/ 0.00 / outn11/ 0.00 / A11/ 0.00 / Lot34/ 0.00 / A6a/ 0.00 / outs1/ 0.00 / A2c/ 0.00 / A2b/ 0.00 / Lot6/ 0.00 / A14/ 0.00 / Lot15/ 0.00 / A2a/ 0.00 / outs4/ 0.00 / A4/ 0.00 / OD3/ 0.00 / OD4/ 0.00 / POND/ 0.00 / Conduit/ Cross Sectional Area L1/ 0.00 / L2/ 0.00 / L3/ 0.02 / L4/ 0.31 / L11/ 0.02 / L1.1/ 0.00 / L2.1/ 0.00 / L3.1/ 0.09 / L4.1/ 0.91 / L11.1/ 0.00 / L23/ 0.35 / 375mmN2/ 0.00 / 525mmN1/ 0.23 / 300mmN3/ 0.00 / 375mmS2/ 0.00 / 300mmS3/ 0.00 / 200mm/ 0.03 / 200mmS4/ 0.00 / 250mmout/ 0.05 / Conduit/ Final Volume L1/ 0.16 / L2/ 0.80 / L3/ 2.75 / L4/ / L11/ 3.54 / L1.1/ 0.17 / L2.1/ 0.92 / L3.1/ / L4.1/ / L11.1/ 0.11 / L23/ 5.61 / 375mmN2/ 0.02 / 525mmN1/ 3.40 / 300mmN3/ 0.01 / 375mmS2/ 0.01 / 300mmS3/ 0.01 / 200mm/ 0.13 / 200mmS4/ 0.01 / 250mmout/ 0.81 / Conduit/ Hydraulic Radius L1/ 0.00 / L2/ 0.00 / L3/ 0.01 / Page 81 L4/ 0.13 / L11/ 0.01 / L1.1/ 0.00 / L2.1/ 0.00 / L3.1/ 0.03 / L4.1/ 0.28 / L11.1/ 0.00 / L23/ 0.19 / 375mmN2/ 0.01 / 525mmN1/ 0.13 / 300mmN3/ 0.00 / 375mmS2/ 0.01 / 300mmS3/ 0.00 / 200mm/ 0.05 / 200mmS4/ 0.01 / 250mmout/ 0.06 / Conduit/ Upstream/ Downstream Elevation L1/ / L2/ / L3/ / / L4/ / L11/ / L1.1/ / / L2.1/ / L3.1/ / L4.1/ / / L11.1/ / L23/ / mmN2/ / / 525mmN1/ / mmN3/ / mmS2/ / / 300mmS3/ / mm/ / mmS4/ / / 250mmout/ / *=========================================================* Table E7 - Iteration Summary *=========================================================* Total number of time steps simulated Total number of passes in the simulation Total number of time steps during simulation Ratio of actual # of time steps / NTCYC Average number of iterations per time step Average time step size(seconds) Smallest time step size(seconds) Largest time step size(seconds) Average minimum Conduit Courant time step (sec) Average minimum implicit time step (sec) Average minimum junction time step (sec) Average Courant Factor Tf Number of times omega reduced... 0 *=========================================================* Table E8 - Junction Time Step Limitation Summary *=========================================================* Not Convr = Number of times this junction did not converge during the simulation. Avg Convr = Average junction iterations. Conv err = Mean convergence error. Omega Cng = Change of omega during iterations Max Itern = Maximum number of iterations *=========================================================* Junction Not Convr Avg Convr Total Itt Omega Cng Max Itern Ittrn >10 Ittrn >25 Ittrn > outn Page 82

90 A6c A6b Lot A OD outn A Lot A6a outs A2c A2b Lot A Lot A2a outs A OD OD POND Total number of iterations for all junctions Minimum number of possible iterations Efficiency of the simulation Good Efficiency *==========================================================* Extran Efficiency is an indicator of the efficiency of the simulation. Ideal efficiency is one iteration per time step. Altering the underrelaxation parameter, lowering the time step, increasing the flow and head tolerance are good ways of improving the efficiency, another is lowering the internal time step. The lower the efficiency generally the faster your model will run. If your efficiency is less than 1.5 then you may try increasing your time step so that your overall simulation is faster. Ideal efficiency would be around 2.0 Good Efficiency < 1.5 mean iterations Excellent Efficiency < 2.5 and > 1.5 mean iterations Good Efficiency < 4.0 and > 2.5 mean iterations Fair Efficiency < 7.5 and > 4.0 mean iterations Page 83 Poor Efficiency > 7.5 mean iterations *==========================================================* *======================================================* Table E9 - JUNCTION SUMMARY STATISTICS The Maximum area is only the area of the node, it does not include the area of the surrounding conduits *======================================================* Uppermost Maximum Time Meters of Maximum Maximum Maximum Maximum Ground PipeCrown Junction of Surcharge Freeboard Junction Gutter Gutter Gutter Junction Elevation Elevation Elevation Occurence at Max of node Area Depth Width Velocity Name meters meters meters Hr. Min. Elevation meters m^2 meters meters m/s outn A6c A6b Lot A OD outn A Lot A6a outs A2c A2b Lot A Lot A2a outs A OD OD POND Page 84

91 *======================================================* Table E10 - CONDUIT SUMMARY STATISTICS Note: The peak flow may be less than the design flow and the conduit may still surcharge because of the downstream boundary conditions. * denotes an open conduit that has been overtopped this is a potential source of severe errors *======================================================* Conduit Maximum Maximum Time Maximum Time Ratio of Maximum Depth Ratio Design Design Vertical Computed of Computed of Max. to at Pipe Ends d/d Conduit Flow Velocity Depth Flow Occurence Velocity Occurence Design Upstream Dwnstrm US DS Name (cms) (m/s) (mm) (cms) Hr. Min. (m/s) Hr. Min. Flow (m) (m) L L L L * L L L L L * L L mmN mmN mmN mmS mmS mm mmS mmout weirn2 Undefnd Undefnd Undefn weirn1 Undefnd Undefnd Undefn weirn3 Undefnd Undefnd Undefn Page 85 weirs2 Undefnd Undefnd Undefn WeirS3 Undefnd Undefnd Undefn weirn4 Undefnd Undefnd Undefn weirs4 Undefnd Undefnd Undefn overflow Undefnd Undefnd Undefn FREE # 1 Undefnd Undefnd Undefn FREE # 2 Undefnd Undefnd Undefn FREE # 3 Undefnd Undefnd Undefn *==================================================* Table E11. Area assumptions used in the analysis Subcritical and Critical flow assumptions from Subroutine Head. See manual for more information. *==================================================* Duration Duration Durat. of Durat. of of of Sub- Upstream Downstream Maximum Maximum Maximum Conduit Dry Critical Critical Critical Hydraulic X-Sect Vel*D Name Flow(min) Flow(min) Flow(min) Flow(min) Radius-m Area(m^2) (m^2/s) L L L L L L L L L L L mmN mmN mmN mmS mmS mm mmS mmout Page 86

92 *===========================================* Table E12. Mean Conduit Flow Information *===========================================* Mean Total Mean Low Mean Mean Mean Mean Conduit Flow Flow Percent Flow Froude Hydraulic Cross Conduit Name (cms) (m^3) Change Weightng Number Radius Area Roughness L L L L mmN mmS mmS mm mmS mmout weirn L weirn L weirn L weirs L WeirS L weirn L weirs L overflow mmN FREE # mmN Page 87 FREE # Page 88

93 FREE # *===============================================================* Table E13. Channel losses(h), headwater depth (HW), tailwater depth (TW), critical and normal depth (Yc and Yn). Use this section for culvert comparisons *===============================================================* Conduit Maximum Head Friction Critical Normal HW TW Name Flow Loss Loss Depth Depth Elevat Elevat L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow L Max Flow 375mmN Max Flow 525mmN Max Flow 300mmN Max Flow 375mmS Max Flow 300mmS Max Flow 200mm Max Flow 200mmS Max Flow 250mmout Max Flow *==========================================================* Table E13a. CULVERT ANALYSIS CLASSIFICATION, and the time the culvert was in a particular classification during the simulation. The time is in minutes. The Dynamic Wave Equation is used for Page 89 all conduit analysis but the culvert flow classification condition is based on the HW and TW depths. *==========================================================* Mild Mild Steep Mild Mild Slope Slope TW Slope TW Slug Flow Slope Slope Critical D Control Insignf Outlet/ TW > D TW <= D Conduit Outlet Outlet Entrance Entrance Outlet Outlet Outlet Inlet Inlet Name Control Control Control Control Control Control Control Control Configuration L None L None L None L None L None L None L None L None L None L None L None 375mmN None 525mmN None 300mmN None 375mmS None 300mmS None 200mm None 200mmS None 250mmout None *=====================================* Kinematic Wave Approximations Time in Minutes for Each Condition *=====================================* Conduit Duration of Slope Super- Roll Name Normal Flow Criteria Critical Waves L L Page 90

94 L L L L L L L L L mmN mmN mmN mmS mmS mm mmS mmout *=========================================================* Table E15 - SPREADSHEET INFO LIST Conduit Flow and Junction Depth Information for use in spreadsheets. The maximum values in this table are the true maximum values because they sample every time step. The values in the review results may only be the maximum of a subset of all the time steps in the run. Note: These flows are only the flows in a single barrel. *=========================================================* Conduit Maximum Total Maximum Maximum ## Junction Invert Maximum Name Flow Flow Velocity Volume ## Name Elevation Elevation (cms) (m^3) (m/s) (m^3) ## (m) (m) ## L ## outn L ## A6c L ## A6b L ## Lot L ## A L ## OD L ## outn Page 91 L ## A L ## Lot L ## A6a L ## outs mmN ## A2c mmN ## A2b mmN ## Lot mmS ## A mmS ## Lot mm ## A2a mmS ## outs mmout ## A weirn ## OD weirn ## OD weirn ## POND weirs ## Page 92

95 WeirS ## Lot6 A2b weirn ## Lot15 A2c weirs ## A2c outs overflow ## A4 outs FREE # ## outn1 POND FREE # ## A6b Lot FREE # ## outs1 outn *====================================================* Table E15a - SPREADSHEET REACH LIST Peak flow and Total Flow listed by Reach or those conduits or diversions having the same upstream and downstream nodes. *====================================================* Upstream Downstream Maximum Total Node Node Flow Flow (cms) (m^3) A13 A6a A6a Lot A2b Lot A2a Lot outn11 OD Lot41 A6b outs4 OD Lot34 A6c POND OD A6c outn A11 outn A14 A2a Page 93 ######################################################### # Table E16. New Conduit Information Section # # Conduit Invert (IE) Elevation and Conduit # # Maximum Water Surface (WS) Elevations # ######################################################### Conduit Name Upstream Node Downstream Node IE Up IE Dn WS Up Page 94

96 WS Dn Conduit Type L1 A13 A6a Trapezoid L2 Lot41 A6b Trapezoid L3 Lot34 A6c Trapezoid L4 A6c outn Trapezoid L11 A11 outn Trapezoid L1.1 A14 A2a Trapezoid L2.1 Lot6 A2b Trapezoid L3.1 Lot15 A2c Trapezoid L4.1 A2c outs Trapezoid L11.1 A4 outs Trapezoid L23 outn1 POND Circular 375mmN2 A6b Lot Circular 525mmN1 outs1 outn Circular 300mmN3 A6a Lot Circular 375mmS2 A2b Lot Circular 300mmS3 A2a Lot Circular 200mm outn11 OD Circular 200mmS4 outs4 OD Circular 250mmout POND OD Circular *=============================================================================* Table E18 - Junction Continuity Error. Division by Volume added 11/96 Continuity Error = Net Flow + Beginning Volume - Ending Volume Total Flow + (Beginning Volume + Ending Volume)/2 Net Flow = Node Inflow - Node Outflow Total Flow = absolute (Inflow + Outflow) Intermediate column is a judgement on the node continuity error. Excellent < 1 percent Great 1 to 2 percent Good 2 to 5 percent Fair 5 to 10 percent Poor 10 to 25 percent Bad 25 to 50 percent Terrible > 50 percent *=============================================================================* Junction <------Continuity Error > Remaining Beginning Net Flow Total Flow Failed to Name Volume % of Node % of Inflow Volume Volume Thru Node Thru Node Converge outn A6c A6b Lot A OD Page 95 Page 96

97 outn A Lot A6a outs A2c A2b Lot A Lot A2a outs A OD OD POND Page 97 The total continuity error was cubic meters The remaining total volume was cubic meters Your mean node continuity error was Excellent Your worst node continuity error was Good *===================================================* Table E19 - Junction Inflow Sources Units are either ft^3 or m^3 depending on the units in your model. *===================================================* Constant User Interface DWF Inflow RNF Layer Inflow Junction Inflow Inflow Inflow Inlow through Inflow Outflow Evaporation from Name to Node to Node to Node to Node Outfall to Node from Node from Node 2D Layer A6c A6b A OD A A6a A2c A2b A A2a A Page 98

98 OD OD POND A Lot A6a *=====================================================* Table E20 - Junction Flooding and Volume Listing. The maximum volume is the total volume in the node including the volume in the flooded storage area. This is the max volume at any time. The volume in the flooded storage area is the total volume above the ground elevation, where the flooded pond storage area starts. The fourth column is instantaneous, the fifth is the sum of the flooded volume over the entire simulation Units are either ft^3 or m^3 depending on the units. *=====================================================* Out of System Stored in System Junction Surcharged Flooded Flooded Maximum Ponding Allowed Name Time (min) Time(min) Volume Volume Flood Pond Volume outn A6c A6b Lot A OD outn Page outs A2c A2b Lot A Lot A2a outs A OD OD POND Page 100

99 *==================================* Simulation Specific Information *==================================* Number of Input Conduits Number of Simulated Conduits Number of Natural Channels... 0 Number of Junctions Number of Storage Junctions... 1 Number of Weirs... 8 Number of Orifices... 0 Number of Pumps... 0 Number of Free Outfalls... 3 Number of Tide Gate Outfalls... 0 A2b A A2a A *=========================================================* Average % Change in Junction or Conduit is defined as: Conduit % Change ==> ( Q(n+1) - Q(n) ) / Qfull Junction % Change ==> ( Y(n+1) - Y(n) ) / Yfull *=========================================================* The Conduit with the largest average change was..l23 with percent The Junction with the largest average change was.outs4 with percent The Conduit with the largest sinuosity was...200mms4 with *===================================================================* Table E21. Continuity balance at the end of the simulation Junction Inflow, Outflow or Street Flooding Error = Inflow + Initial Volume - Outflow - Final Volume *===================================================================* Inflow Inflow Average Junction Volume, m^3 Inflow, cms A6c POND OD OD OD Outflow Outflow Average Junction Volume m^3 Outflow, cms OD A6b OD A OD OD A *=====================================================* A6a Initial system volume = Cu M A2c Total system inflow volume = Cu M Page 101 Inflow + Initial volume = Cu M Page 102

100 *=====================================================* Elapsed Time minutes or seconds *==============================================================* Total system outflow = Cu M Volume left in system = Cu M Evaporation = Cu M Outflow + Final Volume = Cu M *=====================================================* *===============================================* Total Model Continuity Error Error in Continuity, Percent = Error in Continuity, m^3 = Error means a continuity loss, - a gain *===============================================* ################################################### # Table E22. Numerical Model judgement section # ################################################### Your overall error was percent Worst nodal error was in node POND with percent Of the total inflow this loss was percent Your overall continuity error was Great Excellent Efficiency Efficiency of the simulation 1.04 Most Number of Non Convergences at one Node 0. Total Number Non Convergences at all Nodes 0. Total Number of Nodes with Non Convergences 0. ===> Hydraulic model simulation ended normally. ===> XP-SWMM Simulation ended normally. ===> Your input file was named : W:\active\ _Greely Subdivision_Cavanagh\design\analysis\SWM\January 2018\XP\f28-16_100chi_pond.DAT ===> Your output file was named : W:\active\ _Greely Subdivision_Cavanagh\design\analysis\SWM\January 2018\XP\ *==============================================================* SWMM Simulation Date and Time Summary *==============================================================* Starting Date... January 26, 2018 Time... 8:43:33:65 Ending Date... January 26, 2018 Time... 8:43:37:89 Page 103 Page 104

101 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix C : Preliminary Water Balance Calculations : PRELIMINARY WATER BALANCE CALCULATIONS C.1

102 Lynch, Amanda From: Sent: To: Cc: Subject: Russell Chown Thursday, November 03, :01 PM Matt Nesrallah Lynch, Amanda RE: Greely Subdivision Piezometers Hi See table below for overburden GW elevations at the BH/MW locations, based on a recent survey of reference elevations by Cavanaugh. This data makes sense. patersongroup 1240 Old Prescott Rd, Greely PH2095 OVERBURDEN GROUNDWATER ELEVATIONS Stand-pipe well ID Top of Riser Elevation (m) Ground Surface Elevation (m) Stickup (m) Groundwater Depth (m) below ground surface 15-Mar-13 Groundwater Elevation (m) Groundwater Depth (m) below top of riser 27-Oct-16 Groundwater Elevation (m) BH BH BH BH BH BH The top of riser and ground surface elevations were surveyed by Cavanaugh in October 2016 avg incr Russell L. Chown, P.Geo. Senior Hydrogeologist Cell: (343) From: Matt Nesrallah [mailto:mnesrallah@thomascavanagh.ca] Sent: November :23 AM To: Russell Chown <RChown@Patersongroup.ca> Subject: FW: Greely Subdivision Piezometers Russell Please let me know if this clarifies your data. Thanks 1

103 Matt From: Ryan Sandberg Sent: November :21 AM To: Matt Nesrallah Cc: Chris Collins Subject: Greely Subdivision Piezometers Matt, See attached acad file showing our piezometer shots. Let me know if you require anything else. Thanks, Ryan Sandberg GPS Data Manager 9094 Cavanagh Rd Ashton, ON K0A 1B0 Cell: Office: Fax:

104 Infiltration Rate Calculations from Peremeameter Test Results Notes: -test results per Paterson field testing -infiltration rate calculated per CVC LID Manual Figure C1 where K fs = 6x10-11 i safety factor per Credit Valley Conservation Low Impact Development Manual for infiltration calculations for dry swales and bioswales (Table C2) Auger hole ID Test interval depth (m) Rate of WL change in permeameter (cm/min) Calculated K fs (m/s) Converted K fs (cm/s) Infiltration rate (i) (mm/hr) AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E AH E E Average infiltration (mm/hr) Ratio average to lowest rate Safety factor Corrected infiltration (mm/hr)

105 Rainfall Data Analysis Summary of 30-yr 24hr Min Interevent Rainfall <10mm <15mm <25mm total events events percent of events 63% 76% 88% percent total rainfall 55% 69% 85% Summary of 30-year 48 hour Min Interevent Rainfal Events <10mm <15mm <25mm total events events percent of total event 51% 66% 81% Percent total rainfall 46% 60% 77%

106 25000 Figure C.1: Cummulative Rainfall all Events, 10 mm, 15mm, and 25mm (24hr minimum interevent time) yr total = 20,379mm 30yr total = 17,289mm Cummulative Rainfall (mm) yr total = 14,052mm 30yr total = 11,245mm Cummulative <10mm 5000 Cummulative <15mm Cummulative <25mm All Events Number of Events ( )

107 Figure C.2: Cummulative Rainfall all Events, 10 mm, 15mm, and 25mm (48hr minimum interevent time) yr total = 20,484 mm Cummulative Rainfall (mm) yr total = 15,731 mm 30yr total = 12,214 mm 30yr total = 9,463 mm Cummulative <10mm Cummulative <15mm Cummulative <25mm All Events Number of Events ( )

108 Greely Rural Subdivision Water Balance Parameter Estimates (MOE values) Pro-rated Data Water Holding Capacity (mm) Hydrologi c Soil Group Precipitatio n (mm) Evapotranspiration (mm) Surplus Water (mm) Infiltration (mm) Runoff (mm) Total Infiltration Factor Cover Factor Topography Factor Soils Factor Pre-Development Moderately Rooted Crops Assume Rolling Land (~0.3%) Site Precipitation Fine Sand 75 A Pasture and Shrubs Assume Rolling Land (~0.3%) Fine Sand 100 A Mature Forests Assume Rolling Land (~0.3%) Fine Sand 250 A Post Development Urban Lawns/Shallow Rooted Crops Assume Rolling Land (~0.3%) Fine Sand 50 A Mature Forests Assume Rolling Land (~0.3%) Fine Sand 250 A MOE SWMPP Manual (Draft 1999), Water Balance Parameter Estimates Baseline Data Water Holding Capacity (mm) Hydrologi c Soil Group Precipitatio n (mm) Evapotranspiration (mm) % ET Runoff (mm) % RO Infiltration (mm) %Infilt. Urban Lawns/Shallow Rooted Crops Fine Sand 50 A % % % Fine Sandy Loam 75 B % % % Silt Loam 125 C % % % Clay Loam 100 CD % % % Clay 75 D % % % Moderately Rooted Crops (corn and cereal grains) Fine Sand 75 A % % % Fine Sandy Loam 150 B % % % Silt Loam 200 C % % % Clay Loam 200 CD % % % Clay 150 D % % % Pasture and Shrubs Fine Sand 100 A % % % Fine Sandy Loam 150 B % % % Silt Loam 250 C % % % Clay Loam 250 CD % % % Clay 200 D % % % Mature Forests Fine Sand 100 A % % % Fine Sandy Loam 150 B % % % Silt Loam 250 C % % % Clay Loam 250 CD % % % Clay 200 D % % % Date: April 2008 Stantec Consulting Ltd Country Hills East - Stage 1

109 Water Balance and Infiltration Calculations Existing Drainage Conditions The soils are: Fine Sand (Moderately Rooted Crops) 389 mm/yr Infiltration Rate (1) Fine Sand (Pasture) 416 mm/yr Infiltration Rate (1) Fine Sand (Mature Forest) 444 mm/yr Infiltration Rate (1) Area with: Fine Sand (Moderately Rooted Crops) 1.44 ha % Impervious 0% 0.0 ha Fine Sand (Pasture) 0.99 ha % Impervious 0% 0.0 ha Fine Sand (Mature Forest) ha % Impervious 0% 0.0 ha Total ha % Impervious 0% 0.0 ha Fine Sand (Moderately Rooted Crops) Fine Sand (Pasture) Fine Sand (Mature Forest) Precipitation mm/yr (2) Evapotranspiration mm/yr (2) (ET*(1-%IMP)) Infiltration mm/yr (INFIL*(1-%IMP)) Evaporation (Open Water) mm/yr (3) Runoff mm/yr Precipitation 181,999 m 3 /yr mm/yr Total Evapotranspiration (pre) 78,165 m 3 /yr mm/yr Total Infiltration (pre) 84,618 m 3 /yr mm/yr Total Evaporation (pre) 0 m 3 /yr 0.0 mm/yr Total Runoff (pre) 19,216 m 3 /yr 99.6 mm/yr Total Infiltration (pre) 84,618 m 3 /yr mm/yr Total Runoff (pre) 19,216 m 3 /yr 99.6 mm/yr Proposed Drainage Conditions Surface Water Regime The soils are: Fine Sand (Mature Forest) 444 mm/yr Infiltration Rate (1) Fine Sand (Lawns) 361 mm/yr Infiltration Rate (1) Open Water Area with: Fine Sand (Mature Forest) 2.4 ha % Impervious 0% 0.0 ha Fine Sand (Lawns) 16.9 ha % Impervious 19% 0.0 ha Total 19.3 ha % Impervious 17% 0.0 ha Fine Sand (Mature Forest) Fine Sand (Lawns) Precipitation mm/yr (2) Evapotranspiration mm/yr (2) (ET*(1-%IMP)) Infiltration mm/yr (INFIL*(1-%IMP)) Evaporation mm/yr (3) Runoff mm/yr Precipitation 181,999 m 3 /yr mm/yr Total Evapotranspiration (post) 65,145 m 3 /yr mm/yr Total Infiltration (post) 60,009 m 3 /yr mm/yr Total Evaporation (post) 0 m 3 /yr 0.0 mm/yr Total Runoff (post) 56,845 m 3 /yr mm/yr Total Infiltration Post Development: 60,009 m 3 /yr 311 mm/yr Total Infiltration Deficit: -24,609 m 3 /yr -128 mm/yr (1) Infiltration rates based on MOE SWM Planning and Design Manual modified for local conditions as per Shields Creek Subwatershed Study (2) Evapotranspiration and precipitation contributing to surplus runoff and infiltration is based on: MOE SWM Planning and Design Manual (3) Open water evaporation (650 mm/yr) based on Environment Canada Calculated Lake Evaporation Data, (Ontario Climate Centre) Date: April 2008 Stantec Consulting Ltd. 603-XXXXX

110 Infiltration Trench Water Balance 1) Summary of Site Areas Area ID area (ha) % imp imperv area (ha) A A2a,b,c A6a,b,c A PND A A A Total ) Infiltration Roadside ditches (infiltration trenches) total site area captured to trenches Impervious area captured to trenches runoff volume to trenches Infiltration trench length Trench width Trench area Clearstone Depth trench storage volume (porosity 0.4) mm 7.12 ha 2.97 ha m m 1.00 m m m m3 3) Total Annual Runoff Infiltrated 15mm event is approx 0.65 of annual rainfall (average of 24 and 48hr event analysis) total annual rainfall mm/yr Environment Canada Rainfall infiltrated mm/yr Min Volume infiltrated m3/yr

111 GREELY RURAL SUBDIVISION 1240 OLD PRESCOTT ROAD STORMWATER MANAGEMENT REPORT Appendix D : Fieldstone Engineering Low Impact Development Design Report : FIELDSTONE ENGINEERING LOW IMPACT DEVELOPMENT DESIGN REPORT D.1

112 Low Impact Development Design: Dry Swales & Bioretention Swales Proposed Residential Subdivision 1240 Old Prescott Road Ottawa, Ontario Prepared For: Ontario Ltd. November 13, 2014 Report No: FS REP.01

113 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, 2014 Legal Notification This report was prepared by Fieldstone Engineering Inc. for Ontario Ltd. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Fieldstone Engineering Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken based on the contents of this report. Page ii

114 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, 2014 Table of Contents 1.0 INTRODUCTION Terms of Reference Background STORMWATER MANAGEMENT APPROACH PROPOSED STORMWATER MANAGEMENT BEST PRACTICE IMPLEMENTATION Supplementary Hydrogeological/Geotechnical Investigation Pre-Development Water Budget Analysis Stormwater Quality Enhancement DRY SWALE/BIOSWALE DESIGN Dry Swale/Bioswale Quality Control Requirements CONCLUSIONS... 8 List of Appendices Appendix 1 Soil Profile and Test Data Sheets Appendix 2 Stormwater Design Sheets Appendix 3 Figures List of Tables Table 4-1: Infiltration Trench Quality Control Design Requirements List of Figures Figure 1: Site Location Plan... Appendix 3 Figure 2: Proposed Dry Swale/Bioswale Layout Plan... Appendix 3 Figure 3: Pre-Development Stormwater Drainage Plan... Appendix 3 Page iii

115 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, INTRODUCTION 1.1 Terms of Reference Fieldstone Engineering Inc. (Fieldstone) was retained by Ontario Ltd. to provide geotechnical and hydrogeological support services to Stantec Consulting (Stantec) related to the design of low impact stormwater management facilities at the proposed residential subdivision located at 1240 Old Prescott Road, City of Ottawa, Ontario, hereafter referred to as the subject property. The purpose of this report is to present the findings of a supplementary geotechnical and hydrogeological investigation at the subject property related to the suitability of the site to implement low impact stormwater management instruments. It is understood that this report will form part of the stormwater management design package being prepared by Stantec. 1.2 Background The subject property has been previously studied from a geotechnical and hydrogeological perspective by Paterson Group Inc. in The geotechnical report, dated October Paterson Report No. PH2095-REP.02, contained a detailed summary of existing soil and groundwater conditions at random locations across the site. In addition, the hydrogeological report, dated October Paterson Report No. PH2095-REP.01, contained information regarding a site specific water budget analysis performed for the purposes of determining the dilution potential of the site to support onsite wastewater treatment systems. In addition, Stantec presented a conceptual stormwater management design contained within a brief dated, November In this report, the preliminary design for the stormwater management was presented. Further to the stormwater management design submission, comments received from the South Nation Conservation (SNC) and from the City of Ottawa, additional works were required to pursue the enhanced water quality criteria of a target of at least 80% total suspended solids (TSS) removal. In addition to a review of the above noted reports, several design documents were referred to in the preparation of this report. These include: Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003 (SMPDM). National Pollutant Discharge Elimination System (NPDES), United States Environmental Protection Agency, USEPA Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0 (Credit Valley Conservation and Toronto and Region Conservation (LIDSMPDG) Performance Evaluation of Grass Swales and Perforated Pipe Drainage Systems, JFSA, dated Page 1

116 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, STORMWATER MANAGEMENT APPROACH Stormwater design will include the use of Best Management Practices (BMPs). Rather than using typical roadside ditches, roadside d r y swales with subsurface storage trenches will be used in conjunction with rear yard bioretention swales. These swales have been designed to provide removal of suspended solids and promote infiltration in order to achieve the required target of TSS removal. These BMP s are in accordance with the guidelines of MOE s Stormwater Management Planning and Design Manual, and the Low Impact Development Stormwater Management Planning and Design Manual. 3.0 PROPOSED STORMWATER MANAGEMENT BEST PRACTICE IMPLEMENTATION 3.1 Supplementary Hydrogeological/Geotechnical Investigation Enhanced water quality objectives are required for this site. Based on the original geotechnical investigation, the site is underlain by a silty sand transitional layer which, in turn, is underlain by a medium to coarse sand. The hydraulic conductivity of the silty sand and medium/coarse sand layers was determined in the hydrogeological investigation completed by Paterson to be of the order of 10-4 cm/sec to 10-3 cm/sec, respectively. As such, the site was assigned a hydrologic soil classification of AB-B corresponding to soils having a low to medium runoff potential. The infiltration rate of the sand layers was estimated, for design purposes and based on the hydrologic site classification of AB-B of between 11 mm/hr and 20 mm/hr (Minnesota Pollution Control Agency 2013). Paterson, in conjunction with the hydrogeological investigation, undertook a site specific water budget analysis. Using the Environment Canada analysis for Thornthwaite and Mather, the site was determined to have a water surplus of 394 mm/m of soil per year. While the site works completed by Paterson provided critical information to support the potential of the site to utilize BMP s and low impact stormwater management facilities, the report indicated that the normal high groundwater table may be high in the central portion of the site. This was originally attributed to shallow water table measurements within the central quadrant of the site where the topography was flat, poorly drained. Moreover, the presence of a lower permeable silty clay to silt, located at depth beneath the site translated to the possibility of elevated water table conditions in the low lying areas. Additional field investigations were conducted by Fieldstone at the site in August The field works were completed to supplement the original geotechnical investigation in order to confirm the soil profile along the proposed dry swale and bioretention swale locations, and to confirm the depth to the normal high groundwater table. A total of 22 auger holes were put down along the proposed alignments. Reference can be made to the Soil Profile and Test Data sheets provided in Appendix 1. The locations are referenced on Figure 2 Proposed Dry Swale/Bioswale Layout Plan which is located in Appendix 3. Based on the findings of the additional fieldworks, the soil profile was confirmed to be consistent with the original geotechnical investigation. However, the normal high groundwater table (HGWT) was confirmed to be deeper than 2.2 m below ground surface in the west and eastern quadrants of the site. In the central quadrant of the site, the HGWT was measured at 1.8 m below ground surface. Page 2

117 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, 2014 Considering the proposed lot grading plan by Stantec (Drawing GR-1 Project No ), and based on the interpolated ground surface elevations, the HGWT has been estimated to be at between 99.4 m and 100 m at the central quadrant where the existing ditch is located. The ditch appears to act as a natural outlet to the subsurface water table whereby the HGWT is dictated by the invert of the ditch. This is evidenced by the elevations of the water table to the east and west of this location where the elevation increases slightly to between m and 99.9 m in the east and and 99.9 m in the western quadrants, respectively. Based on these elevations, and given the proposed swale inverts, the dry swales and bioretention swales will have sufficient vertical separation to the HGTW based on a filter media thickness of 500 mm (refer to Section 4 for design details) in all areas, save for the first 100 m to 150 m upgradient on immediately adjacent to the existing ditch along the proposed dry swale locations. (Refer to Figure 2 for location). In this location, the invert of the roadside ditch only provides a separation of approximately 0.45 m between the invert and the top of the 250 mm diameter underdrain. As such, the filter media and clear stone has been reduced to a depth of approximately 300 mm but has been increased in width (i.e. from 1.0 m to 1.75 m) to compensate for storage. Lot level grading has been altered to direct most of the runoff to the rear yard areas, thereby unburdening the roadside ditch in the affected lots. Based on the reduced runoff, and considering the alterations the dry swale design in this area, overall stormwater treatment in this area will remain compliant with site objectives. 3.2 Pre-Development Water Budget Analysis A pre-development water budget analysis was completed by Paterson in their Hydrogeological Study and Terrain Analysis Report Dated October Paterson completed the water budget analysis by determining the water holding capacity of the receiving soil within 500 mm of the ground surface and preparing a water budget based on climate data provided by Environment Canada (EC). EC actually completed the water budget analysis using the water holding capacity provided by Paterson and utilizing their climate data for two (2) nearby weather stations. The EC analysis was completed using a slightly modified version of Thornthwaite and Mather- a version that is currently accepted by the City of Ottawa at the time of preparation of this report. Based on the Paterson/EC site specific analysis, the water surplus of the medium to coarse sand layer, which was identified by Paterson to comprise the receiving soil for the site, was of the order of 407 mm/m of soil per year. The predevelopment infiltration factors were calculated, based on weighted averages for topography and cover, to be 0.221, 0.4 and 0.19 for topography, soil and cover, respectively yielding a weighted infiltration factor of This produced a predevelopment factored water surplus of 330 mm/yr with approximately 63, 640 m 3 /yr of infiltrate and 14,830 m 3 /yr of runoff combining to produce a total surplus water volume of approximately 78,470 m 3 /yr. In order to complete their predictive impact analysis for nitrates, Paterson utilized weighted factors for topography, soil type and cover of 0.2, 0.4 and 0.13 respectively, yielding a weighted infiltration factor of This produced a factored water surplus of groundwater infiltration, in a post development environment of 297 mm/yr with a total volume of infiltrate of 49,260 m 3 /yr. The pre-development to post development deficit for groundwater infiltration, based on these numbers is of the order of 14,380 m 3 /yr. As such, stormwater management practices are necessary to be employed at the subject property in order to achieve a balanced post development stormwater management scenario. Page 3

118 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, Stormwater Quality Enhancement The proposed stormwater management approach proposed by Stantec seeks to obtain a minimum treatment level of 80 % removal of TSS in runoff water entering the existing ditch. To achieve this, Stantec has proposed a series of lot level source, conveyance and end of pipe controls in general accordance with the intent of the Ontario Ministry of the Environment Stormwater Planning and Management Manual (2003). While the details of the source and end of pipe controls can be found in the associated Stantec report, this report specifically addresses the design of the dry swales and bioretention swales associated with the conveyance controls. The swales are proposed to be constructed at a grade of 0.3% along the roadway dry swales and rear yard bioretention swales (aka bioswales). Ground cover over the dry swales along the roadside are expected to consist of grass (allowed to achieve a height of at least 75 mm for enhanced TSS removal above design criteria) and the bioswales are expected to either be grassed, or consist of a combination of grass and deep rooting shrubbery. Each of the swales are designed with a filter media layer that will provide filtration for stormwater flows prior to percolation through the trench. 4.0 DRY SWALE/BIOSWALE DESIGN The dry swale and bioswales, as detailed in the previous section, are suitable for use on the subject site. Furthermore, based on the excellent permeability of the underlying shallow sand strata, the use of a perforated underdrain is considered optional only. In fact, only the dry swales running along the roadsides are proposed to be equipped with an underdrain. Fieldstone understands, based on discussions with Stantec, that the City of Ottawa has specified the use of a 250 mm diameter perforated subdrain for the dry swales. It is Fieldstone s understanding that the City of Ottawa generally requires subdrains where the grade of the grassed swale is less than 2% in order to prevent standing water. In this particular stormwater management scenario, it is essential that the slope of the swale is shallow to promote infiltration. The subdrain is essentially not necessary in a bioswale scenario as there is no need to convey the water elsewhere. As noted in the previous section, an enhanced level of quality treatment is required for this development. The quality design component will incorporate a dry swale vegetated infiltration facility and mechanical filter. The mechanical filter media will consist of a sand filter with organic content at the top (topsoil). Under the sand layer a gravel storage layer and underdrain will be used for the dry swales. No perorated underdrain is specified for the rear yard bioswales, however. Between these two layers and encasing the sand layer will be a geotextile filter fabric. Please refer to a typical trench detail included in Appendix 3. Table 4-1 below summarizes the required and proposed design elements of the stormwater system used, taken from the LIDSMPDM. Page 4

119 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, 2014 Table 4-1: Infiltration Trench Quality Control Design Requirements Parameter Requirement (as per LIDSMPDM) Provided Pre-treatment swale shape Grass filter strip along filter beds and gravel diaphragm along hard surfaces to promote settling Parabolic shape preferred. Trapezoidal shape acceptable. 1.5m Gravel shoulder along roadway helps to dissipate energy. Trapezoidal shape swale bottom width 0.75m to 3.0m. 1.0 m dry swale 1.5 m bioswale. swale side slopes No steeper than 3H:1V 3:1 front & 2.5:1 side slopes. swale longitudinal slope Velocity requirements Filter media composition Filter media depth Gravel storage area Underdrain geotextile 0.5% to 4.0% Slopes > 3% use check dams. Max 0.5 m/sec during 4 hour 25mm storm 85% 88% sand 8%-12% soil fines 3 5% organic material 500 mm minimum depth. 75mm mulch for top layer or 150mm topsoil and grass Depth computed based on native soil infiltration rates, drawdown, ponding depth. Area requirements computed based on quality volume and depth. 50mm diameter clear stone Volume based on void ratio of 0.40 Perforated HDPE 100mm diameter minimum. 200mm diameter recommended. Required when native soil infiltration rate is less than 15mm/hr Meet OPSS 1860 Class II Sized based on soil apparent opening size, percent open area, hydraulic conductivity, permeability. 0.3% used Raised culverts (100 mm) <0.5 m/sec 150mm topsoil and grass 500 mm deep filter media (sand used) Calculated 500 mm depth required. 50mm dia. clear stone with void ratio of 0.40 Thickness 350 mm 250mm dia. perforated HDPE underdrain proposed for dry swales only Terrafix 270R proposed Page 5

120 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, Dry Swale/Bioswale Quality Control Requirements From Table 3.2 of the MOE SMPDM the quality control volume requirements are as shown below, with detailed calculations provided in Appendix 2. Level of Protection Required = Enhanced TSS Removal Efficiency Required = 80% % Imperviousness = 17% (Stantec Calculated) Storage Requirement = 19.8 m 3 /ha (interpolatedgraph fit) For the 19.3 hectare site the quality volume requirement is 19.8 m 3 /ha x 19.3 ha = m 3 To determine the physical trench requirements an estimate of the filter media bed depth of the dry swale was completed using LIDSMPDG equation (page 4-160) as shown below. A depth of 100 mm was used for the depth of water over the trench as the conveyance design consists of raising each driveway culvert by 100 mm above the centerline of the roadside ditch. Rear yard conveyance is similarly set, based on a rear yard check dam of 100 mm at each lot line along the flow path.s d b = i * (t s d p / i) / V r where: d b = maximum filter media bed depth (mm) i = infiltration rate for native soils (mm/hr) [11 mm/hr used] V r = Void space ratio for filter bed and gravel layer [assume 0.40] d p = maximum surface ponding depth (mm) [100 mm used] t s = Time to drain (drawdown time) (24 hours 48 hours ) Substituting the appropriate values into the above equation yields: d b = 11 mm/hr * (24 100mm /11mm/hr) / 0.40 d b = 410 mm A filter depth of 500 mm was selected for all areas, except for the area noted in the previous section where the separation distance is only 400 mm. As noted in the LIDSMPDM it is important to understand the source of the runoff as rear- yards and roadways are not the same with respect to the quality of the runoff water. For the rear yard bioswales, there is minimal potential for contaminants to be mobilized and deposit into the bioswale. This is due to the expectation of grassed rear yard areas. Therefore, a filter media thickness of 500 mm is considered to be overly conservative for the rear yard area. However, in accordance with the LIDSMPDM, a minimum 500mm depth of sand filter will be used as recommended in the LIDSMPDM. Typical trench details are provided in Appendix 3 for reference. Page 6

121 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, 2014 An estimate of the required swale bottom area for 24 hour retention was calculated using Equation 4.3 from the MOE Stormwater Design Guidelines to confirm if the bottom trench area provided met the requirement: 1000 V A = P N t MOE Equation 4.3 where: A bottom area of trench (m 2 ) V P N t runoff volume to be infiltrated at 19.8m 3 /ha (from MOE Table 3.2) m 3 percolation rate of surrounding soil [11 mm/hr average used] porosity of the storage media [0.40 for clear stone] retention time in hours [24 hours] 1000 x 19.8 x 19.3 A = 11 x 0.40 x 24 Therefore A 3619 m 2 The calculated bottom surface area required, as per MOE s SMPDM, is 3619 m 2. The bottom width requirement as noted in the LIDSMPDG (page 4-155) is a minimum of 0.75 metres. Based on the above requirements, the dry swales and bioswales have been designed as: Dry Swales (Roadside Ditches) Width= 1.0 m Total Length = +/ m Filter Media Depth = 500 mm Total Filtration Area = +/ m 2 Bioswales (Rear Yard) Width= 1. 5 m Total Length = +/ m Filter Media Depth = 500 mm Total Filtration Area = +/- 2,325 m 2 As such, the proposed combined total area of filtration surface from the dry swale and bioswale areas is of the order of 3875 m 2. This is approximately 7% above the minimum requirements which, in turn, will compensate for approximately 750 m 2 of area where the vertical filtration thickness will be reduced as the swales approach the existing ditch area. Reference should be made to Tables A2-1 to A2-4, located on Appendix 2 for detailed design of the dry swales/bioswales. Page 7

122 Low Impact Development Design: Dry Swales and Bioswales Proposed Residential Subdivision 1240 Old Prescott Road, Ottawa, Ontario No: FS REP.01 Date of Issuance: November 12, CONCLUSIONS The stormwater management design proposed by Stantec includes elements of source, conveyance and end-of-pipe controls in accordance with established industry practice. All of these elements have been designed with the intent to achieve a target of at least 80% removal of TSS from the stormwater runoff before it outlets to the existing ditch. The roadside dry swales and rear yard bioswales, designed by Fieldstone and presented in this report, have been designed to achieve the required target TSS removal. It is anticipated that these conveyance controls, working in conjunction with other stormwater management elements, will achieve the required target in the long term. Prepared by: Fieldstone Engineering Inc. Robert A. Passmore, P.Eng. Senior Environmental Engineer President Page 8