Alternative Approaches to 3-Dimensional Packaging and Interconnection

Size: px
Start display at page:

Download "Alternative Approaches to 3-Dimensional Packaging and Interconnection"

Transcription

1 Alternative Approaches to 3-Dimensional Packaging and Interconnection Joseph Fjelstad SiliconPipe, Inc. IC Packaging a Technology in Transition In the past, IC packaging has been considered a formula-matic activity Now, the importance of IC packaging has risen significantly IC package is commonly the limiting factor in chip/system performance Improved IC packaging options and design approach are required to meet future needs and overcome the limitations of current PCBs

2 Perspective Modern Electronics are driven by IC packaging technology Thus far there have been three eras in packaging Through hole DIPs, PGAs Surface mount PQFPs, BGAs Chip Scale Flip Chip, Wafer Level 3D packaging is the dawn of the next era Seeds of 3D packaging were planted in the 1980 s Package Selection Growth

3 3-Dimensional Drivers Consumer demand is for smaller, lighter products with more features. Portable products (e.g cell phones, PDAs, digital cameras etc.) require volumetric system miniaturization and interconnection (VSMI) to meet the demand for increased functionality in less overall space. This is best achieved with 3D packaging technology. Worldwide Mobile Phone Example

4 What is 3D Packaging? Packaging and interconnection technologies that address and utilize all dimensions of space in their construction are embraced by the term 3D packaging. There are several approaches to 3D packaging Stacked chips in packages ICs stacked and interconnected inside the package before encapsulation. Stacked packages packaged chips stacked one atop another Hybrid stacked structures Stacked chip or multi-chip packages that are themselves stacked. Chips in separate packages separated in space but interconnected on multiple planes Benefits of 3D Packaging 3D packaging offers several benefits including: Smaller, Thinner Packages i.e. More silicon functions per cm 3 Significant size and weight reductions Reduced Packaging Costs Reduction in Test Reduction in Number of Components on Assembly Package I/O reduction Reduced Time to Market More freedom is silicon design and mixing of technologies Simplified system level circuit routing to direct chip to chip interconnect. Reduction motherboard size and layer count Reduced System Cost (SiP vs SoC) Higher performance at reduced power

5 Die Stacked Structures Many potential solutions in die stacking. Stacked face up and wire bonded Flip chip stacks Combination flip chip and wire bond Stacked chip structures generally use thinned die (75µm- 200µm) Substrates are normally thin core rigid laminate or flexible substrates. Wire bonding technology modified to allow low loop wire bonding Reverse bonding technology provides solutions Over mold material is thinner to keep height down multiple die within the package. Stacked die technology Source: Amkor

6 Chip Stacking Package Options Stacked Package Structures A few potential solutions for package stacking Stacked lead frame packages TSOPs, DIPs (not common) Stacked Peripheral array packages Examples: Micro Z, etcsp Fold over full area array packages Tessera, Valtronics Applications: Stacked DRAM memory Stacked SRAM and flash Others

7 Stacked Packaging Options Stacked Lead Frame Packages Stacked Packaging Options Stacked Peripheral Array Packages

8 Stacked Package Comparison TSOP Stacked TSOP µz Package 1-die 4-die 2-die Size comparison of stacked package technologies Source: Tessera From PQFP to Stack BGA

9 Finished Structures Folded Package Options

10 Folded Packaging Source: Tessera Stacked Packaging from the 1980s

11 3D for High Speed? Technology Trends: Digital electronics and telecom operating frequencies have entered into the multi-ghz range Currently, the mainstream SERDES data rate is 1.25Gb/s to 5Gb/s and is expected to reach 10Gb/s to 40Gb/s within the next 3-5 years. The entire electronic networking and computer industry, (i.e. High Speed Backplanes, Fiber Channel, InfiniBand, OIF, RapidIO, 3GIO, and XAUI), are moving into multigigabit serial link topologies. Intel P4, CPU frequency is currently 3GHz and could increase to 10GHz in three to five years.

12 IC Packaging Drives Design As on-chip signal speeds rise, the importance of IC packaging has also risen significantly IC package and PCB design, materials and manufacturing practices presently the limiting factors in chip/system performance Improved IC packaging options and PCB design approach are required to meet future performance needs and overcome current limitations But Design Approach Must Change Packaging can no longer be an afterthought Sequential design is out, concurrent design is in Silicon, package and PCB interconnections must be considered together in the design process Design tools are evolving to address the challenge Performance requirements impacting and influencing material choices and reliability More than an IC volume reduction opportunity

13 IC Packaging Challenges/Needs Chip, packaging & substrate co-design Digital & analog mixed signal, transient thermal analysis, thermomechanical analysis, electrical power disturb, signal integrity Organic substrates Tg, dielectric loss, planarity & warpage, processing temperature, (e.g Pb Free impact), moisture absorption Electrostatic Discharge (ESD) control Need for better and alternative ESD control methods Cu/low-k impact on IC packaging Wire bond, FC and underfill on Cu & low-k wafers (adhesion, material strength, etc.) Understanding the Issues High speed means rapid rise times Rise time degradation is a major concern Rise time degradation is caused by: Signal loss Conductor and dielectric loss Impedance Discontinuities Connectors, vias, material changes, mfg defects

14 Performance Limiters PCB Problem Areas

15 Moving Ahead of Moore s Law

16 The Interconnect Gap There is a 10X gap between signal speeds on IC and signal speeds on PC boards. This gap is increasing and rapidly becoming a major technology bottleneck. Traditional chip-based interconnect gap solutions are running out of steam. Problems with traditional copper solutions include signal loss, signal degradation, cross-talk, reflections, power requirements new channel-based solutions are needed. Silicon and optical solutions are being readied but which is right? Unleashing IC Performance

17 How Do You Get There? Chip or Channel? Chip choices Chip solutions use complex signaling technology and higher transmit power to move high-speed chip-to-chip signals over increasing complex PCBs. Limitations on transistors available for I/O and insufficient power budgets prevents I/O design from solving fundamental channel problems. The companies that address chip-to-chip speed issues do so by providing increasingly expensive semiconductor I/O designs requiring more sophisticated SERDES designs, highly engineered packages and increasing power requirements. Channel choices Optical solutions: Challenges for optical: cost, power, heat, manufacturability, conversion cost and business disruption. Copper solutions move chip-to-chip high speed signals through innovative copper alternatives to traditional PC boards. Challenges in copper: new IC packaging techniques, high speed, low power transceivers, new constant-impedance connectors, new ESD in-package techniques and PCB signal loss mitigation.

18 Chip to Chip Disciplines Off the Top (OTT) Interconnection

19 20Gbps Chip-to-Chip Solution Clearing the Channel SiliconPipe, Inc - Copyright 2004 All rights reserved

20 Eye Diagram Comparison SiliconPipe, Inc - Copyright 2004 All rights reserved 20Gbps Channel for Chip-to-Chip Technological Advantages... High speed flex based channel technology enables the link between packages over distances up to 15 inches, with near zero skew at speeds to 20Gbps per channel. (15Gbps/channel packaging for 0.13µm CMOS structures, 20Gbps for 90nm CMOS structures) Chip interconnections are standard in the package is structured as a commodity item allowing many companies to bid for the task Easily standardized interconnection architecture Applicable to various die sizes and performances Increased design flexibility Full compatibility with existing packaging assembly

21 Rethinking Circuit Design Patents Pending OTT Advantage at Test

22 Performance Potential Example of a Perfect Channel

23 Optical Performance - Copper Simplicity Photonic performance Production or in Development Research Electron performance Supercharged Copper Interconnects Production or in Development Research Phone Modems Cable DSL T1 Modems Ethernet Fast T3 OC3 OC12 OC192 OC768 Ethernet 1Gig En 10 Gig En DWDM 1Kb/s 10Kb/s 100Kb/s 1Mb/s 10Mb/s 100Mb/s 1Gb/s 10Gb/s 100Gb/s 1Tb/s 10Tb/s 100Tb/s 1000Tb/s Can Copper Deliver the Promise?

24 I don't see anything to replace copper Shekhar Borkar, Intel fellow Quoted by Jessica Davis in article titled: Intel: Copper Here to Stay -- Electronic News, 6/16/2004 OTT Structures

25 New I/O Placement Off The Top IC Packaging

26 OTT Package (before chip placement) Prototypes

27 Directly from Chip to Chip Connector Option Example

28 Retrofitting Possibilities Retrofitting Possibilities

29 OTT Applications Summary Volumetric interconnection and packaging concepts (3D) appear now to be the only way of meeting the performance, cost and power demands of future generation systems Next generation products require that all elements of interconnection infrastructure work cooperatively together to accomplish shared objectives Approaches to electronic design and manufacture must evolve to meet the needs of next generation performance requirements or you re out of the game.

Increasing challenges for size and cost reduction,

Increasing challenges for size and cost reduction, Packageon-Package: The Story Behind This Industry Hit Package-onpackage (PoP) technology is rapidly evolving to keep pace with the demand for faster, higherdensity devices in smaller, thinner stacks. As

More information

5. Packaging Technologies Trends

5. Packaging Technologies Trends 5. Packaging Technologies Trends Electronic products and microsystems continue to find new applications in personal, healthcare, home, automotive, environmental and security systems. Advancements in packaging

More information

Development of System in Package

Development of System in Package Development of System in Package In recent years, there has been a demand to offer increasingly enhanced performance for a SiP that implements downsized and lower-profile chips at lower cost. This article

More information

Semiconductor IC Packaging Technology Challenges: The Next Five Years

Semiconductor IC Packaging Technology Challenges: The Next Five Years SPAY025 May 2006 White Paper Mario A. Bolanos, Director Semiconductor Group Packaging Technology Development, Texas Instruments In the era of communications and entertainment, growth of consumer electronics

More information

System in Package: Identified Technology Needs from the 2004 inemi Roadmap

System in Package: Identified Technology Needs from the 2004 inemi Roadmap System in Package: Identified Technology Needs from the 2004 inemi Roadmap James Mark Bird Amkor Technology Inc System in package (SiP) technology has grown significantly in the past several years. It

More information

Challenges of Fan-Out WLP and Solution Alternatives John Almiranez

Challenges of Fan-Out WLP and Solution Alternatives John Almiranez Challenges of Fan-Out WLP and Solution Alternatives John Almiranez Advanced Packaging Business Development Asia Introduction to Fan-Out WLP Introduction World of mobile gadgetry continues to rapidly evolve

More information

Narrowing the Gap between Packaging and System

Narrowing the Gap between Packaging and System Narrowing the Gap between Packaging and System Meptec Symposium 2015 ASE (US) Inc Ou Li Nov 10 th, 2015 Outline Industry Dynamics The Need for System Integrators IC/Pkg/System Collaboration Summary 2 Market

More information

Technology Disrupts; Supply Chains Manage. Outline. Dr. Herbert J. Neuhaus TechLead Corporation

Technology Disrupts; Supply Chains Manage. Outline. Dr. Herbert J. Neuhaus TechLead Corporation Technology Disrupts; Supply Chains Manage Dr. Herbert J. Neuhaus TechLead Corporation Outline Supply Chain Management Disruptive Innovation SMT Examples Chip-on-Board Package-on-Package Insights & Recommendations

More information

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package

Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Basic PCB Level Assembly Process Methodology for 3D Package-on-Package Vern Solberg STC-Madison Madison, Wisconsin USA Abstract The motivation for developing higher density IC packaging continues to be

More information

Assembly Reliability of TSOP/DFN PoP Stack Package

Assembly Reliability of TSOP/DFN PoP Stack Package As originally published in the IPC APEX EXPO Proceedings. Assembly Reliability of TSOP/DFN PoP Stack Package Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory, California Institute of Technology Pasadena,

More information

White Paper Quality and Reliability Challenges for Package on Package. By Craig Hillman and Randy Kong

White Paper Quality and Reliability Challenges for Package on Package. By Craig Hillman and Randy Kong White Paper Quality and Reliability Challenges for Package on Package By Craig Hillman and Randy Kong Background Semiconductor technology advances have been fulfilling Moore s law for many decades. However,

More information

IME Technical Proposal. High Density FOWLP for Mobile Applications. 22 April High Density FOWLP Consortium Forum

IME Technical Proposal. High Density FOWLP for Mobile Applications. 22 April High Density FOWLP Consortium Forum IME Technical Proposal High Density FOWLP for Mobile Applications 22 April 2014 Packaging driver for portable / mobile applications Key drivers/needs Smaller form-factor lower profile, substrate-less Higher

More information

Credit Suisse Technology Conference

Credit Suisse Technology Conference Credit Suisse Technology Conference November 2007 Oleg Khaykin Ken Joyce Jim Fusaro EVP & COO Chief Administrative Officer Corporate VP, Wire Bond Products Forward Looking Statement Disclaimer All information

More information

Design for Flip-Chip and Chip-Size Package Technology

Design for Flip-Chip and Chip-Size Package Technology Design for Flip-Chip and Chip-Size Package Technology Vern Solberg Solberg Technology Consulting Madison, Wisconsin Abstract As new generations of electronic products emerge they often surpass the capability

More information

Recent Advances in Die Attach Film

Recent Advances in Die Attach Film Recent Advances in Die Attach Film Frederick Lo, Maurice Leblon, Richard Amigh, and Kevin Chung. AI Technology, Inc. 70 Washington Road, Princeton Junction, NJ 08550 www.aitechnology.com Abstract: The

More information

Chips Face-up Panelization Approach For Fan-out Packaging

Chips Face-up Panelization Approach For Fan-out Packaging Chips Face-up Panelization Approach For Fan-out Packaging Oct. 15, 2015 B. Rogers, D. Sanchez, C. Bishop, C. Sandstrom, C. Scanlan, TOlson T. REV A Background on FOWLP Fan-Out Wafer Level Packaging o Chips

More information

Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA)

Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA) Development and Characterization of 300mm Large Panel ewlb (embedded Wafer Level BGA) Seung Wook Yoon, Yaojian Lin and Pandi C. Marimuthu STATS ChipPAC Ltd. 5 Yishun Street 23, Singapore 768442 E-mail

More information

VLSI Design and Simulation

VLSI Design and Simulation VLSI Design and Simulation CMOS Processing Technology Topics CMOS Processing Technology Semiconductor Processing How do we make a transistor? Fabrication Process Wafer Processing Silicon single crystal

More information

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012

Challenges and Solutions for Cost Effective Next Generation Advanced Packaging. H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Challenges and Solutions for Cost Effective Next Generation Advanced Packaging H.P. Wirtz, Ph.D. MiNaPAD Conference, Grenoble April 2012 Outline Next Generation Package Requirements ewlb (Fan-Out Wafer

More information

Wire-Bond CABGA A New Near Die Size Packaging Innovation Yeonho Choi February 1, 2017

Wire-Bond CABGA A New Near Die Size Packaging Innovation Yeonho Choi February 1, 2017 Amkor Technology, Inc. White Paper Wire-Bond CABGA A New Near Die Size Packaging Innovation Yeonho Choi February 1, 2017 Abstract Expanding its ChipArray Ball Grid Array (CABGA) package form factor miniaturization

More information

Outline. Market Size Industry Trends Material Segment Trends China Summary. Packaging Materials Market Trends, Issues and Opportunities

Outline. Market Size Industry Trends Material Segment Trends China Summary. Packaging Materials Market Trends, Issues and Opportunities Packaging Materials Market Trends, Issues and Opportunities Dan Tracy Sr. Director Industry Research SEMI 8 th December 2015 Outline Market Size Industry Trends Material Segment Trends China Summary 1

More information

Worldwide IC Package Forecast (Executive Summary) Executive Summary

Worldwide IC Package Forecast (Executive Summary) Executive Summary Worldwide IC Package Forecast (Executive Summary) Executive Summary Publication Date: 7 August 2003 Author Masao Kuniba This document has been published to the following Marketplace codes: SEMC-WW-EX-0275

More information

ELEC 6740 Electronics Manufacturing Chapter 5: Surface Mount Design Considerations

ELEC 6740 Electronics Manufacturing Chapter 5: Surface Mount Design Considerations ELEC 6740 Electronics Manufacturing Chapter 5: Surface Mount Design Considerations R. Wayne Johnson Alumni Professor 334-844 844-1880 johnson@eng.auburn. @eng.auburn.eduedu Outline System Design Issues

More information

ELEC 6740 Electronics Manufacturing Chapter 5: Surface Mount Design Considerations

ELEC 6740 Electronics Manufacturing Chapter 5: Surface Mount Design Considerations ELEC 6740 Electronics Manufacturing Chapter 5: Surface Mount Design Considerations R. Wayne Johnson Alumni Professor 334-844-1880 johnson@eng.auburn. @eng.auburn.eduedu Outline System Design Issues Package

More information

Lehman Brothers Global Technology Conference. December 2007

Lehman Brothers Global Technology Conference. December 2007 Lehman Brothers Global Technology Conference December 2007 Oleg Khaykin Joanne Solomon EVP & COO Chief Financial Officer Forward Looking Statement Disclaimer All information and other statements contained

More information

Encapsulation Selection, Characterization and Reliability for Fine Pitch BGA (fpbga )

Encapsulation Selection, Characterization and Reliability for Fine Pitch BGA (fpbga ) Encapsulation Selection, Characterization and Reliability for Fine Pitch BGA (fpbga ) Henry M.W. Sze, Marc Papageorge ASAT Limited 14th Floor, QPL Industrial Building, 138 Texaco Road, Tseun Wan, Hong

More information

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width Microelectronics Introduction to the IC technology M.Rencz 11 September, 2002 9/16/02 1/37 Integrated circuits Development is controlled by the roadmaps. Self-fulfilling predictions for the tendencies

More information

Close supply chain collaboration enables easy implementation of chip embedded power SiP

Close supply chain collaboration enables easy implementation of chip embedded power SiP Close supply chain collaboration enables easy implementation of chip embedded power SiP Gerald Weidinger, R&D Project Leader, AT&S AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Fabriksgasse13

More information

Fan-Out Packaging Technologies and Markets Jérôme Azémar

Fan-Out Packaging Technologies and Markets Jérôme Azémar Fan-Out Packaging Technologies and Markets Jérôme Azémar Senior Market and Technology Analyst at Yole Développement Outline Advanced Packaging Platforms & Market drivers Fan-Out Packaging Principle & Definition

More information

Flex Based Chip Scale Packages Meeting the Cost/Performance Challenges

Flex Based Chip Scale Packages Meeting the Cost/Performance Challenges Flex Based Chip Scale Packages Meeting the Cost/Performance Challenges R. D. Schueller, E. A. Bradley, and P. M. Harvey 3M Electronic Product Division Austin, Texas Introduction A number of terms have

More information

(13) PCB fabrication / (2) Focused assembly

(13) PCB fabrication / (2) Focused assembly Company Fact Sheet TTM Technologies, Inc. is a world-wide leader in the manufacture of technologically advanced PCBs, backplane and sub-system assemblies. Our Global Presence / Local Knowledge approach

More information

The Development of a Novel Stacked Package: Package in Package

The Development of a Novel Stacked Package: Package in Package The Development of a Novel Stacked Package: Package in Package Abstract Stacked die Chip Scale Packages (CSPs) or Fine-pitch BGAs (FBGAs) have been readily adopted and integrated in many handheld products,

More information

2.5D and 3D Semiconductor Package Technology: Evolution and Innovation

2.5D and 3D Semiconductor Package Technology: Evolution and Innovation 2.5D and 3D Semiconductor Package Technology: Evolution and Innovation Vern Solberg Solberg Technical Consulting Saratoga, California USA Abstract The electronics industry is experiencing a renaissance

More information

System-in-Package (SiP) on Wafer Level, Enabled by Fan-Out WLP (ewlb)

System-in-Package (SiP) on Wafer Level, Enabled by Fan-Out WLP (ewlb) System-in-Package (SiP) on Wafer Level, Enabled by Fan-Out WLP (ewlb) Steffen Kröhnert, José Campos, Eoin O Toole NANIUM S.A., Vila do Conde, Portugal Outline Short Company Overview NANIUM Introduction

More information

Cost effective 300mm Large Scale ewlb (embedded Wafer Level BGA) Technology

Cost effective 300mm Large Scale ewlb (embedded Wafer Level BGA) Technology Cost effective 300mm Large Scale ewlb (embedded Wafer Level BGA) Technology by Meenakshi Prashant, Seung Wook Yoon, Yaojian LIN and Pandi C. Marimuthu STATS ChipPAC Ltd. 5 Yishun Street 23, Singapore 768442

More information

S/C Packaging Assembly Challenges Using Organic Substrate Technology

S/C Packaging Assembly Challenges Using Organic Substrate Technology S/C Packaging Assembly Challenges Using Organic Substrate Technology Presented by Bernd Appelt ASE Group Nov. 17, 2009 Overview The Packaging Challenge Chip Substrate Interactions Stiffeners for FC-BGA

More information

Flexible Substrates for Smart Sensor Applications

Flexible Substrates for Smart Sensor Applications Flexible Substrates for Smart Sensor Applications A novel approach that delivers miniaturized, hermetic, biostable and highly reliable smart sensor modules. AUTHORS Dr. Eckardt Bihler, Dr. Marc Hauer,

More information

Fairchild Semiconductor Application Note January 2001 Revised September Using BGA Packages

Fairchild Semiconductor Application Note January 2001 Revised September Using BGA Packages Introduction AN-5026 Demanding space and weight requirements of personal computing and portable electronic equipment has led to many innovations in IC packaging. Combining the right interface and logic

More information

ECE414/514 Electronics Packaging Spring 2012 Lecture 2. Lecture Objectives

ECE414/514 Electronics Packaging Spring 2012 Lecture 2. Lecture Objectives ECE414/514 Electronics Packaging Lecture 2 James E. Morris Dept of Electrical & Computer Engineering Portland State University Lecture Objectives Introduce first-level interconnect technologies: wire-bond,

More information

Next Gen Packaging & Integration Panel

Next Gen Packaging & Integration Panel Next Gen Packaging & Integration Panel ECTC 2012 Daniel Tracy, Sr. Director Industry Research & Statistics SEMI May 29, 2012 Packaging Supply Chain Market Trends Material Needs and Opportunities Market

More information

FOR SEMICONDUCTORS 2007 EDITION

FOR SEMICONDUCTORS 2007 EDITION INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2007 EDITION ASSEMBLY AND PACKAGING THE ITRS IS DEVISED AND INTENDED FOR TECHNOLOGY ASSESSMENT ONLY AND IS WITHOUT REGARD TO ANY COMMERCIAL CONSIDERATIONS

More information

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Li Zheng, Student Member, IEEE, and Muhannad S. Bakir, Senior Member, IEEE Georgia Institute of Technology Atlanta,

More information

Asia/Pacific Semiconductor Packaging and Assembly Facilities, 2002 (Executive Summary) Executive Summary

Asia/Pacific Semiconductor Packaging and Assembly Facilities, 2002 (Executive Summary) Executive Summary Asia/Pacific Semiconductor Packaging and Assembly Facilities, 2002 (Executive Summary) Executive Summary Publication Date: October 24, 2002 Author Philip Koh This document has been published to the following

More information

A Multilayer Process for 3D-Molded-Interconnect-Devices to Enable the Assembly of Area-Array Based Package Types

A Multilayer Process for 3D-Molded-Interconnect-Devices to Enable the Assembly of Area-Array Based Package Types A Multilayer Process for 3D-Molded-Interconnect-Devices to Enable the Assembly of Area-Array Based Package Types T. Leneke and S. Hirsch TEPROSA Otto-von-Guericke University Magdeburg, Germany thomas.leneke@teprosa.de

More information

3D & 2½D Test Challenges Getting to Known Good Die & Known Good Stack

3D & 2½D Test Challenges Getting to Known Good Die & Known Good Stack 1 3D & 2½D Test Challenges Getting to Known Good Die & Known Good Stack Advantest Corporation 2 The final yield Any Multi-die Product Must Consider the Accumulated Yield Assume Test Can Provide 99% Die

More information

Silicon Interposers with Integrated Passive Devices: Ultra-Miniaturized Solution using 2.5D Packaging Platform

Silicon Interposers with Integrated Passive Devices: Ultra-Miniaturized Solution using 2.5D Packaging Platform Minapad 2014, May 21 22th, Grenoble; France Silicon Interposers with Integrated Passive Devices: Ultra-Miniaturized Solution using 2.5D Packaging Platform Stéphane Bellenger, Laëtitia Omnès, Jean-René

More information

Innovative Substrate Technologies in the Era of IoTs

Innovative Substrate Technologies in the Era of IoTs Innovative Substrate Technologies in the Era of IoTs Dyi- Chung Hu 胡迪群 September 4, 2015 Unimicron Contents Introduction Substrate Technology - Evolution Substrate Technology - Revolution Glass substrate

More information

RF System in Packages using Integrated Passive Devices

RF System in Packages using Integrated Passive Devices RF System in Packages using Integrated Passive Devices by Kai Liu, YongTaek Lee, HyunTai Kim, Gwang Kim, and Billy Ahn STATS ChipPAC 1711 W. Greentree Drive, Suite #117, Tempe, AZ 85284, USA Tel: 480-222-1722

More information

IME Proprietary. EPRC 12 Project Proposal. 3D Embedded WLP. 15 th August 2012

IME Proprietary. EPRC 12 Project Proposal. 3D Embedded WLP. 15 th August 2012 EPRC 12 Project Proposal 3D Embedded WLP 15 th August 2012 Motivation Factors driving IC market Higher density, lower cost, high yield Fan-out WLP/eWLP advantages Small footprint, low profile Low cost,

More information

Organic Flip Chip Packages for Use in Military and Aerospace Applications. David Alcoe, Kim Blackwell and Irving Memis, Endicott NY

Organic Flip Chip Packages for Use in Military and Aerospace Applications. David Alcoe, Kim Blackwell and Irving Memis, Endicott NY Organic Flip Chip Packages for Use in Military and Aerospace Applications David Alcoe, Kim Blackwell and Irving Memis, Endicott NY 1 Contents 1. Bridge from Commercial Reliability 2. Existing PBGA use

More information

IPC-AJ-820A Assembly and Joining Handbook. The How and Why of All Things PCB & PCA

IPC-AJ-820A Assembly and Joining Handbook. The How and Why of All Things PCB & PCA IPC-AJ-820A Assembly and Joining Handbook The How and Why of All Things PCB & PCA 1 Scope To provide guidelines and supporting info for the mfg of electronic equipment To explain the HOW TO and WHY Discussions

More information

ewlb (embedded Wafer Level BGA) Technology: Next Generation 3D Packaging Solutions

ewlb (embedded Wafer Level BGA) Technology: Next Generation 3D Packaging Solutions ewlb (embedded Wafer Level BGA) Technology: Next Generation 3D Packaging Solutions by Seung Wook Yoon and Meenakshi Padmanathan STATS ChipPAC Ltd. Seungwook.yoon@statschippac.com Andreas Bahr Infineon

More information

2015 Board Assembly Roadmap

2015 Board Assembly Roadmap 2015 Board Assembly Roadmap Jasbir Beth-Rework Chair Dennis Willie-Pressfit Chair Leigh William Gesick, Material Chair Mike Gerner-NPI Chair Brent Fischthal-Placement Chair TWG Chair-Paul Wang, Ph.D, MBA

More information

Design and Assembly Process Implementation of 3D Components

Design and Assembly Process Implementation of 3D Components IPC-7091 Design and Assembly Process Implementation of 3D Components Developed by the 3-D Electronic Packages Subcommittee (B-11) of the Packaged Electronic Components Committee (B-10) of IPC Users of

More information

Factors Influencing Semiconductor Package Migration

Factors Influencing Semiconductor Package Migration Factors Influencing Semiconductor Package Migration by Tom Strothmann and Kevin Kan Tempe, AZ, USA STATS ChipPAC, Inc Originally published in the International Wafer Level Packaging Conference Proceedings,

More information

iniaturization of medical devices thanks to flexible substrates ISO 9001 certified

iniaturization of medical devices thanks to flexible substrates ISO 9001 certified iniaturization of medical devices thanks to flexible substrates 04-12-2012 Hightec MC Presentation 2 Medical industry is clearly and urgently in need of the development of advanced interconnection solutions

More information

PoP/CSP Warpage Evaluation and Viscoelastic Modeling

PoP/CSP Warpage Evaluation and Viscoelastic Modeling PoP/CSP Warpage Evaluation and Viscoelastic Modeling Wei Lin, Min Woo Lee Amkor Technology 19 S Price Rd, Chandler, AZ 85286 wlin@amkor.com Abstract The purpose of this paper was to evaluate the critical

More information

Building HDI Structures using Thin Films and Low Temperature Sintering Paste

Building HDI Structures using Thin Films and Low Temperature Sintering Paste Building HDI Structures using Thin Films and Low Temperature Sintering Paste Catherine Shearer, James Haley and Chris Hunrath Ormet Circuits Inc. - Integral Technology California, USA chunrath@integral-hdi.com

More information

Fraunhofer IZM. All Silicon System Integration Dresden Scope. M. Juergen Wolf

Fraunhofer IZM. All Silicon System Integration Dresden Scope. M. Juergen Wolf Fraunhofer IZM All Silicon System Integration Dresden Scope M. Juergen Wolf Fraunhofer IZM All Silicon System Integration - ASSID Dresden, Berlin, Germany Fraunhofer IZM Focus of Activities Materials,

More information

KGC SCIENTIFIC Making of a Chip

KGC SCIENTIFIC  Making of a Chip KGC SCIENTIFIC www.kgcscientific.com Making of a Chip FROM THE SAND TO THE PACKAGE, A DIAGRAM TO UNDERSTAND HOW CPU IS MADE? Sand CPU CHAIN ANALYSIS OF SEMICONDUCTOR Material for manufacturing process

More information

Adaption to scientific and technical progress under Directive 2002/95/EC

Adaption to scientific and technical progress under Directive 2002/95/EC . Adaption to scientific and technical progress under Directive 2002/95/EC Results previous evaluation Exemption No. 15 Lead in solders to complete a viable electrical connection between semiconductor

More information

3D Package Technologies Review with Gap Analysis for Mobile Application Requirements. Apr 22, 2014 STATS ChipPAC Japan

3D Package Technologies Review with Gap Analysis for Mobile Application Requirements. Apr 22, 2014 STATS ChipPAC Japan 3D Package Technologies Review with Gap Analysis for Mobile Application Requirements Apr 22, 2014 STATS ChipPAC Japan T.Nishio Contents Package trends and roadmap update Advanced technology update Fine

More information

First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-Chip Integration

First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-Chip Integration 2017 IEEE 67th Electronic Components and Technology Conference First Demonstration of Panel Glass Fan-out (GFO) Packages for High I/O Density and High Frequency Multi-Chip Integration Tailong Shi, Chintan

More information

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION

IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION IMPACT OF MICROVIA-IN-PAD DESIGN ON VOID FORMATION Frank Grano, Felix Bruno Huntsville, AL Dana Korf, Eamon O Keeffe San Jose, CA Cheryl Kelley Salem, NH Joint Paper by Sanmina-SCI Corporation EMS, GTS

More information

!"#$"%&'()#*+,+-&.) )/01)"+.)101) )234)5"#$"%6+%)"7)"889) )!"#$"%6+%):&;-6:&<&+7') )=45&')*>)'6+%8&)#365)5"#$"%&')

!#$%&'()#*+,+-&.) )/01)+.)101) )234)5#$%6+%)7)889) )!#$%6+%):&;-6:&<&+7') )=45&')*>)'6+%8&)#365)5#$%&') !"#$"%&'()#*+,+-&.) )/01)"+.)101) )234)5"#$"%6+%)"7)"889) )!"#$"%6+%):&;-6:&)'6+%8&)#365)5"#$"%&') plastic ceramic DIP DIL PDIP CDIP CerDIP MDIP FDIP SDIP JLCC PLCC CLCC QFP PQFP HQFP RQFP

More information

Adaption to scientific and technical progress under Directive 2002/95/EC

Adaption to scientific and technical progress under Directive 2002/95/EC . Adaption to scientific and technical progress under Directive 2002/95/EC Results previous evaluation Exemption No. 7 a a) Lead in high melting temperature type solders (i.e. lead-based alloys containing

More information

"ewlb Technology: Advanced Semiconductor Packaging Solutions"

ewlb Technology: Advanced Semiconductor Packaging Solutions "ewlb Technology: Advanced Semiconductor Packaging Solutions" by Sharma Gaurav@, S.W. Yoon, Yap Yok Mian, Shanmugam Karthik, Yaojian Lin, Pandi C. Marimuthu and Yeong J. Lee* STATS ChipPAC Ltd. 5 Yishun

More information

Technical Viability of Stacked Silicon Interconnect Technology

Technical Viability of Stacked Silicon Interconnect Technology Technical Viability of Stacked Silicon Interconnect Technology Dr. Handel H. Jones Founder and CEO, IBS Inc. Los Gatos, California October 2010 TECHNICAL VIABILITY OF STACKED SILICON INTERCONNECT TECHNOLOGY

More information

Material based challenge and study of 2.1, 2.5 and 3D integration

Material based challenge and study of 2.1, 2.5 and 3D integration 1 Material based challenge and study of 2.1, 2.5 and 3D integration Toshihisa Nonaka Packaging Solution Center R&D Headquarters Hitachi Chemical Co., Ltd., Sep. 8, 2016 Hitachi Chemical Co., Ltd. 2010.

More information

1 Thin-film applications to microelectronic technology

1 Thin-film applications to microelectronic technology 1 Thin-film applications to microelectronic technology 1.1 Introduction Layered thin-film structures are used in microelectronic, opto-electronic, flat panel display, and electronic packaging technologies.

More information

New Technology for High-Density LSI Mounting in Consumer Products

New Technology for High-Density LSI Mounting in Consumer Products New Technology for High-Density Mounting in Consumer Products V Hidehiko Kira V Akira Takashima V Yukio Ozaki (Manuscript received May 29, 2006) The ongoing trend toward downsizing and the growing sophistication

More information

Semiconductor Packaging and Assembly 2002 Review and Outlook

Semiconductor Packaging and Assembly 2002 Review and Outlook Gartner Dataquest Alert Semiconductor Packaging and Assembly 2002 Review and Outlook During 2002, the industry continued slow growth in unit volumes after bottoming out in September 2001. After a hearty

More information

Chapter 14. Designing with FineLine BGA Packages

Chapter 14. Designing with FineLine BGA Packages Chapter 14. Designing with FineLine BGA Packages S53009-1.3 Chapter 14, Designing with FineLine BGA Packages, replaces AN 114: Designing with FineLine BGA Packages. Introduction As programmable logic devices

More information

Chapter 2 Manufacturing Process

Chapter 2 Manufacturing Process Digital Integrated Circuits A Design Perspective Chapter 2 Manufacturing Process 1 CMOS Process 2 CMOS Process (n-well) Both NMOS and PMOS must be built in the same silicon material. PMOS in n-well NMOS

More information

Silicon Wafer Processing PAKAGING AND TEST

Silicon Wafer Processing PAKAGING AND TEST Silicon Wafer Processing PAKAGING AND TEST Parametrical test using test structures regularly distributed in the wafer Wafer die test marking defective dies dies separation die fixing (not marked as defective)

More information

TGV and Integrated Electronics

TGV and Integrated Electronics TGV and Integrated Electronics Shin Takahashi ASAHI GLASS CO., LTD. 1 Ambient Intelligence Green Energy/Environment Smart Factory Smart Mobility Smart Mobile Devices Bio/Medical Security/Biometrics 2 Glass

More information

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding

Chapter 4 Fabrication Process of Silicon Carrier and. Gold-Gold Thermocompression Bonding Chapter 4 Fabrication Process of Silicon Carrier and Gold-Gold Thermocompression Bonding 4.1 Introduction As mentioned in chapter 2, the MEMs carrier is designed to integrate the micro-machined inductor

More information

Stackup Planning, Part 1

Stackup Planning, Part 1 by Barry Olney coulmn BEYOND DESIGN Stackup Planning, Part 1 The PCB substrate that physically supports the components, links them together via highspeed interconnects and also distributes highcurrent

More information

Copper Wire Bonding Technology and Challenges

Copper Wire Bonding Technology and Challenges Copper Wire Bonding Technology and Challenges By Dr Roger Joseph Stierman Date: 21 & 22 October 2013 Venue: SHRDC, Shah Alam, Selangor *2 days training package RM 3,000 per pax [*] * includes hotel accommodation

More information

Challenges for Embedded Device Technologies for Package Level Integration

Challenges for Embedded Device Technologies for Package Level Integration Challenges for Embedded Device Technologies for Package Level Integration Kevin Cannon, Steve Riches Tribus-D Ltd Guangbin Dou, Andrew Holmes Imperial College London Embedded Die Technology IMAPS-UK/NMI

More information

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper High Efficiency UV LEDs Enabled by Next Generation Substrates Whitepaper Introduction A primary industrial market for high power ultra-violet (UV) LED modules is curing equipment used for drying paints,

More information

Designing With High-Density BGA Packages for Altera Devices. Introduction. Overview of BGA Packages

Designing With High-Density BGA Packages for Altera Devices. Introduction. Overview of BGA Packages Designing With High-Density BGA Packages for Altera Devices December 2007, ver. 5.1 Application Note 114 Introduction As programmable logic devices (PLDs) increase in density and I/O pins, the demand for

More information

SLIM TM, High Density Wafer Level Fan-out Package Development with Submicron RDL

SLIM TM, High Density Wafer Level Fan-out Package Development with Submicron RDL 2017 IEEE 67th Electronic Components and Technology Conference SLIM TM, High Density Wafer Level Fan-out Package Development with Submicron RDL YoungRae Kim 1, JaeHun Bae 1, MinHwa Chang 1, AhRa Jo 1,

More information

Design of High Density & 3D Packaging: Tools and Knowledge. Thomas S. Tarter Package Science Services LLC

Design of High Density & 3D Packaging: Tools and Knowledge. Thomas S. Tarter Package Science Services LLC Design of High Density & 3D Packaging: Tools and Knowledge Thomas S. Tarter Package Science Services LLC IEEE/CPMT Technical Luncheon Package Science Services 1 Outline Package Design Flow (the old way)

More information

Board Assembly Roadmap. TWG Chair: Dr. Dongkai Shangguan (Flextronics) Co-chair: Dr. Ravi Bhatkal (Cookson) Co-chair: David Geiger (Flextronics)

Board Assembly Roadmap. TWG Chair: Dr. Dongkai Shangguan (Flextronics) Co-chair: Dr. Ravi Bhatkal (Cookson) Co-chair: David Geiger (Flextronics) Board Assembly Roadmap TWG Chair: Dr. Dongkai Shangguan (Flextronics) Co-chair: Dr. Ravi Bhatkal (Cookson) Co-chair: David Geiger (Flextronics) Agenda Roadmap Development Approach Participants Key Trends

More information

MEPTEC Semiconductor Packaging Technology Symposium

MEPTEC Semiconductor Packaging Technology Symposium MEPTEC Semiconductor Packaging Technology Symposium Advanced Packaging s Interconnect Technology Process Shift and Direction October 23, 2014 Jay Hayes- Director of Business Development -Bumping and Flip

More information

All-Polyimide Thermal Interface Products

All-Polyimide Thermal Interface Products All-Polyimide Thermal Interface Products SMTA Harsh Environment Electronics Workshop Dearborn, MI 6/24/03 Jim Fraivillig Fraivillig Technologies Boston, MA Why polyimide? HARSH ENVIRONMENT ELECTRONICS.

More information

3D technologies for More Efficient Product Development

3D technologies for More Efficient Product Development 3D technologies for More Efficient Product Development H. Ribot, D. Bloch, S. Cheramy, Y. Lamy, P. Leduc, T. Signamarcheix, G. Simon Semicon Europa, TechArena II, 09 October 2013 Photonics in Product development:

More information

High performance and high reliability passives for miniature medical devices based upon Silicon technologies. Laurent Dubos INEMI May 2011

High performance and high reliability passives for miniature medical devices based upon Silicon technologies. Laurent Dubos INEMI May 2011 High performance and high reliability passives for miniature medical devices based upon Silicon technologies Laurent Dubos INEMI May 2011 IPDIA overview Company located in Caen, Normandy, France Started

More information

Assembly and Rework of Lead Free Package on Package Technology By: Raymond G. Clark and Joseph D. Poole TT Electronics - IMS Perry, Ohio

Assembly and Rework of Lead Free Package on Package Technology By: Raymond G. Clark and Joseph D. Poole TT Electronics - IMS Perry, Ohio Assembly and Rework of Lead Free Package on Package Technology By: Raymond G. Clark and Joseph D. Poole TT Electronics - IMS Perry, Ohio Abstract: Miniaturization continues to be a driving force in both

More information

3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction

3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction 3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction Gilbert Lecarpentier*, Jean-Stéphane Mottet* SET S.A.S. (Smart Equipment Technology), 131 Impasse Barteudet, 74490

More information

Welcome to Streamline Circuits Lunch & Learn. Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology

Welcome to Streamline Circuits Lunch & Learn. Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology Welcome to Streamline Circuits Lunch & Learn Design for Reliability & Cost Reduction of Advanced Rigid-Flex/Flex PCB Technology Accurate PCB data is critical to the tooling process. Here are some key items

More information

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview

Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Freescale Semiconductor Tape Ball Grid Array (TBGA) Overview Revision 0 2006 Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the

More information

We fill the gaps! Increase of the integration density of PCBs by filling of blind microvias and through holes with electroplated copper.

We fill the gaps! Increase of the integration density of PCBs by filling of blind microvias and through holes with electroplated copper. Article about filling of blind microvias by Dr. Michael Dietterle, Dr.-Ing. Max Schlötter GmbH & Co. KG [Published in WOMag 05/2014] We fill the gaps! Increase of the integration density of PCBs by filling

More information

Beating the Heat Dealing with the Thermal Challenge: Past, Present and Future

Beating the Heat Dealing with the Thermal Challenge: Past, Present and Future Beating the Heat Dealing with the Thermal Challenge: Past, Present and Future MEPTEC The 4th Annual The Heat is On: Thermal Solutions for Advancing Technology February 28 th 2008 Joseph Fjelstad Verdant

More information

Assembly Challenges in Developing 3D IC Package with Ultra High Yield and High Reliability

Assembly Challenges in Developing 3D IC Package with Ultra High Yield and High Reliability Assembly Challenges in Developing 3D IC Package with Ultra High Yield and High Reliability Raghunandan Chaware, Ganesh Hariharan, Jeff Lin, Inderjit Singh, Glenn O Rourke, Kenny Ng, S. Y. Pai Xilinx Inc.

More information

Sherlock 4.0 and Printed Circuit Boards

Sherlock 4.0 and Printed Circuit Boards Sherlock 4.0 and Printed Circuit Boards DfR Solutions January 22, 2015 Presented by: Dr. Nathan Blattau Senior Vice President 9000 Virginia Manor Rd Ste 290, Beltsville MD 20705 301-474-0607 www.dfrsolutions.com

More information

Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics

Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics Development of a Fluxless Flip Chip Bonding Process for Optical Military Electronics Michael Girardi, Daric Laughlin, Philip Abel, Steve Goldammer, John Smoot NNSA s Kansas City Plant managed by Honeywell

More information

IPC -7095C Design and Assembly Process Implementation For BGAs

IPC -7095C Design and Assembly Process Implementation For BGAs IPC -7095C Design and Assembly Process Implementation For BGAs 1 Overview With the introduction of BGA components, things had to change: New design New assembly process New repair process New inspection

More information