Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant

Size: px
Start display at page:

Download "Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant"

Transcription

1 8 Concepts and Features of ATMEA1 TM as the latest 1100 MWe-class 3-Loop PWR Plant KOZO TABUCHI *1 MASAYUKI TAKEDA *2 KAZUO TANAKA *2 JUNICHI IMAIZUMI *2 TAKASHI KANAGAWA *3 ATMEA1 TM is a 3-loop 1100 MWe-class of the latest Generation III+ PWR plant under development by ATMEA TM, which is a joint venture established by MHI (Mitsubishi Heavy Industries, Ltd.) and AREVA, two world-leading nuclear plant suppliers. ATMEA1 TM 's high reliability is ensured by proven technologies superior operating performance, top-level safety features, flexible operability in response to customer needs, high adaptability to various site conditions, and high licensing certainty. ATMEA TM will complete the basic design by the end of 2009 and will deploy design certification activities, detailed design, and marketing activities hereafter. 1. Introduction Many countries that plan to introduce nuclear power plants (NPPs) in the near future strongly need 1100 MWe-class PWRs from the viewpoint of power demand and/or grid capacity. To meet these requirements, MHI and AREVA that are 2 world-leading nuclear suppliers established the joint venture ATMEA TM. This new joint venture is promoting the development of ATMEA1 TM, which is a 3-loop Generation III+ PWR, by combining the latest technologies held by the 2 companies. ATMEA TM is responsible for development, marketing, sales, licensing, and all technical and business operations of ATMEA1 TM. To complete the development within a short period, it has introduced a new approach, i.e., effective utilization of both companies facilities and designers, as well as the utilization of their latest technologies and experience in construction and licensing. ATMEA TM is planning to complete the basic design by the end of this year. 2. Concepts of the ATMEA1 TM plant ATMEA1 TM generates a net electric power of 1100 MWe with a 3-loop configuration, which is the same output level as Japanese existing 4-loop PWRs. Fuel assemblies are 4200 mm long type, and 157 assemblies are installed in the core. The safety system features 3 trains that fit the 3-loop design and these trains are independent, each train being connected to 1 loop. Each train has sufficient capacity to ensure the required safety functions for a whole plant and consists of highly reliable active components and is partially complemented by passive components such as advanced accumulators. ATMEA1 TM incorporates a pre-stressed concrete containment vessel (PCCV) whose construction design has been proven in 4-loop PWRs. The PCCV is also designed for protecting the reactor from large commercial aircraft crash accidents. In addition, the latest full digital I&C design is introduced to reduce human errors and improve the operational reliability. Table 1 lists the main features of ATMEA1 TM. *1 General Manager, ATMEA1 Development Department, Nuclear Energy Systems Headquarters *2 Manager, ATMEA1 Development Department, Nuclear Energy Systems Headquarters *3 Deputy Project Manager, ATMEA

2 9 Table 1 ATMEA1 TM Main Features ATMEA1 TM Remarks Electrical output (Net) to MWe Obtain electric output with 10% less thermal output, Thermal output MWth which results in less generation cost and less spent fuel. No. of fuel assemblies / effective length of fuel assembly 157 / 4.2 m Standard specifications Primary system loop configuration 3 loops The output per loop is similar to that of the latest plants (APWR and EPR TM ). Safety system configuration 3 trains Each train mainly consists of reliable active components and partially complemented by passive components. Steam generator with axial economizer A proven high-efficiency design is used. Main steam pressure 7.3 MPa World top-level pressure is achieved. Thermal efficiency (Net) 35 to 37% The thermal efficiency depends on the site conditions. CV design Pre-stressed concrete CV The CV design endures the impact of an aircraft. 3. Features of ATMEA1 TM The features of ATMEA1 TM are summarized as follows: (i) established reliability supported by proven technologies; (ii) superior operation performance; and (iii) top-level safety as Generation III+ plant. Described below are these advantages : 3.1 Established reliability supported by proven technologies MHI and AREVA have a large experience in the design and construction of more than 130 nuclear power plants. To design ATMEA1 TM, ATMEA TM utilizes these technologies, systems, and components that were validated through such experience, as well as those technologies of APWR/EPR TM that are latest PWR plants of MHI and AREVA. The ATMEA1 TM design fully complies with U.S. regulations, codes, standards, and ICRP (International Commission on Radiological Protection) requirements. Japanese and European regulations are also considered in this design. The IAEA (International Atomic Energy Agency) completed its review of ATMEA1 TM s safety features in June 2008 and concluded that the new plant s design adequately addresses the IAEA s fundamental safety principles as well as key design and safety requirements. The ATMEA1 TM design also addresses the latest regulatory trends in, for example, severe accident (core melt-down accident) and aircraft crash protection that will be required for future plants mainly in the U.S. and European countries, based on proven and validated technologies. Therefore, ATMEA1 TM has high reliability and licensing certainty by applying the latest and fully validated technologies. We describe the main characteristics as follows : (1) Heavy neutron reflector The heavy neutron reflector is a proven design applied to MHI s APWR plants and AREVA s EPR TM plants. Stainless steel ring blocks surround the core to reduce neutron irradiation toward the RV to extend the life of the plant, increase reliability, and improve fuel economy through the effective utilization of neutrons. Also, each ring block is bound by a tie rod to remove fixation bolts within the high irradiation area, contributing to reduction in maintenance workload and achievement of high plant reliability and availability factor. (2) Steam generator with axial economizer The steam generator with axial economizer is a proven design employed in France. The feedwater to the steam generator is delivered to the cold leg side and flows down in parallel to these tubes to ensure sufficient temperature exchange between primary and secondary systems and thus increase the heat transfer efficiency of the steam generator and the main steam pressure, achieving improved plant thermal efficiency. Figure 1 shows the steam generator with axial economizer.

3 10 Figure 1 Steam generator with axial economizer This figure shows the steam generator with axial economizer and the temperature distribution in the steam generator. (3) Top-mounted in-core instrumentation The in-core instrumentation is inserted into the RV from the top in order to remove the bottom RV penetration nozzles thus improving the reliability of the plant. This design has been applied to AREVA s plants as well as to MHI s latest plant to be exported to foreign countries. Accurately measuring the in-core power distribution can address diversified operational requirements while maintaining the proper operational margin. A proven structural design (lance-yoke structure) is used for detector guides to minimize maintenance workload. (4) Emergency power source equipment Diesel generators, which we have a lot of experience with, are used as the standard design of ATMEA1 TM for emergency power source. On the other hand, gas turbine generators that contribute to reduce maintenance costs and building volume and that will be used for the MHI s latest foreign plants are under planning as an alternative design. (5) Digitalized I&C at the MCR Proven full digital technologies improve man-machine interfaces, achieve automatic operation, and reduce human error probability through advanced signal processing. 3.2 Superior operation performance ATMEA1 TM allows economical operation of the NPP through achievement of high thermal efficiency and plant availability. Also, ATMEA1 TM has sophisticated load-follow and frequency control capabilities, as well as flexible adaptation to utilities requirements such as long operation cycles and MOX (mixed oxide) fuel loading. (1) High thermal efficiency y As a standard design, ATMEA1 TM can achieve an electrical output of 1150 MWe (Net) and 37% thermal efficiency under a thermal output of 3150 MW. This high electrical output and efficiency are accomplished by a high steam pressure of 7.3 MPa through the optimization of the primary circuit temperature and flow rate, and introduction of a steam generator with axial economizer, as well as the latest turbine generator technologies. ATMEA1 TM offers 10% more electrical output with the same thermal output in comparison with operating NPPs. (2) High design availability ATMEA1 TM is designed to achieve a very high availability through 60-year total plant design life. To this end, the duration of normal refueling outage is 16 days or shorter by applying the following design features: (i) On-power maintenance ensured by redundant design of support systems Since the maintenance of the component cooling system, the essential service water system, and the emergency power source equipment becomes a critical path in the periodic inspection schedule, a design is introduced whereby, in addition to 3-train

4 configuration, 1 additional backup train (division X) will be activated in case of maintenance activities so that these systems can be serviced even during plant operation. Switching the load from the normal train to division X allows preventive and corrective maintenance during plant operation. (ii) Accessible reactor building design during plant operation In this design, the inside of the reactor building is divided into 2 areas. Allowing maintenance staff to access the operation floor and the outside area of the secondary shield wall enables pre- and post-outage work inside the reactor building. This design can reduce the duration of periodic inspection. Figure 2 shows accessible areas inside the reactor building during plant operation. 11 Figure 2 Accessible areas inside the reactor building during plant operation Maintenance staff can access the green areas (operation floor and outside of the secondary shield) during plant operation. (3) Flexible adaptation to operational and site conditions ATMEA1 TM can flexibly address the following operational and site conditions based on customer needs. The operation cycle can be set between 12 and 24 months. Sophisticated load-follow and frequency control capabilities can be achieved. Up to 100% (full) MOX fuel loading is acceptable. Grid frequencies of 50 and 60 Hz are acceptable. Various heat sink conditions are acceptable without drastic change in the plant design. The standard seismic design condition is 0.3g-SSE (based on the U.S. NRC Regulatory Guide), and the plant design can adapt to conditions of high-seismicity sites. The plant design can address hard, medium, and soft soil conditions. (The design is consistent with EUR (European Utilities Requirement.) 3.3 Top-level safety as Generation III+ plant The probability of core damage and large radiological release in ATMEA1 TM is 10 times lower than that in existing PWRs since the well-considered redundancy design and clear segregation of safety-related systems and components achieve higher plant safety and reliability. In addition, ATMEA1 TM can continuously ensure the integrity of the containment vessel for longer periods after a severe accident (core melt-down accident) or large commercial aircraft crash impact in response to the latest regulatory trends required for future plants mainly in the U.S. and European countries. As a result, ATMEA1 TM has the top-level safety in the world and provides a relief to residents around site areas. Listed below are typical safety features :

5 (1) Independent 3-train safety system configuration ATMEA1 TM is equipped with 3 independent ECCS train systems and 1 train alone can achieve the complete safe shutdown and residual heat removal. This system mainly consists of active components that can sufficiently mitigate accidents, complemented by passive systems, such as advanced accumulators and in-containment refueling water storage pits. Optimization of active and passive systems improves both reliability and economy. Moreover, a clear segregation design concept is applied between trains and between safety and operational systems. These design arrangements optimize reliability and economy. Figure 3 shows the system configuration of the ECCS. 12 Figure 3 Independent 3-train safety system configuration This figure shows independent safety system trains. (2) Advanced accumulator ATMEA1 TM uses advanced accumulators, similar to MHI s latest nuclear plants. The flow damper statically switches the injection flow rate from the accumulator. This design allows the accumulator to act as a low-pressure injection pump and, therefore, low-pressure injection pumps are removed to simplify the system. Since the injection time of the accumulator tank is prolonged to mitigate the requirements for startup time of the safety injection pump, it is possible to make the design requirements for EPS extensively less stringent. (3) Core catcher ATMEA1 TM is equipped with a core catcher that ensures the integrity of the containment vessel for a long period even in a severe accident. The core catcher consists of a heat-resistant floor and cooling water-supply system to keep the molten core stable and cool for a long period upon occurrence of a severe accident. This design concept is incorporated into AREVA s latest plants and is consistent with European regulations. Figure 4 shows a schematic figure of the core catcher. (4) Protection from large commercial aircraft crash accidents ATMEA1 TM is equipped with PCCV and features thicker walls to protect the components installed in the containment from large commercial aircraft crash accidents. Facilities necessary to ensure the safety functions located in surrounding buildings are designed to be protected from the impact of an aircraft crash by means of building wall increased thicknesses and a distance-based geographical segregation design concept. Figure 5 shows a schematic figure of the protective measures against aircraft crash accidents.

6 13 Figure 4 Core catcher (schematic) This figure shows the structural concept of the core catcher. Figure 6 Area separation design concept This figure shows the layout of each area in the safety system. Figure 5 Aircraft crash accident protection concept This figure shows the range where the wall thickness is increased to protect the reactor from an aircraft crash accident. 4. Layout Design of ATMEA1 TM The layout design of ATMEA1 TM is based on MHI s design through much experience in construction of PWRs, especially under high-seismicity like in Japan. To provide higher seismicity resistance, a rectangular shape is used for the buildings in which safety-related components are installed (reactor building, fuel-handling building, and safeguard building) so that the components can be easily installed on a common base-mat. The train in each safety system is arranged in a completely separated area. Each area is physically separated from other areas by means of walls and floors so that an internal event (such as fire) generated in an area will not spread to other areas. Figure 6 shows the area separation design concept. 5. Conclusion ATMEA1 TM is a 3-loop 1100 MWe-class Generation III+ PWR plant that features established reliability supported by proven technologies, higher thermal efficiency and availability, and top-level safety. It also offers flexible operability in response to customer needs, adapts to various site conditions, and assures high licensing certainty. ATMEA1 TM is being actively developed by ATMEA TM, a joint venture established by MHI and AREVA, both of which are world-leading nuclear plant suppliers. The basic design will be completed by the end of this year. MHI will strongly support the design certification, detailed design, and marketing activities so that ATMEA1 TM will be introduced in several countries over the world.

The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM. Roger Schène Director,Engineering Services

The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM. Roger Schène Director,Engineering Services The Westinghouse Advanced Passive Pressurized Water Reactor, AP1000 TM Roger Schène Director,Engineering Services 1 Background Late 80: USA Utilities under direction of EPRI and endorsed by NRC : Advanced

More information

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES

HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES HPR1000: ADVANCED PWR WITH ACTIVE AND PASSIVE SAFETY FEATURES D. SONG China Nuclear Power Engineering Co., Ltd. Beijing, China Email: songdy@cnpe.cc J. XING China Nuclear Power Engineering Co., Ltd. Beijing,

More information

Westinghouse SMR & Nuclear Fuel Overview

Westinghouse SMR & Nuclear Fuel Overview Westinghouse SMR & Nuclear Fuel Overview Carlos Leipner, Westinghouse VP Latin America Presented at LAS-ANS July 2014 Rio de Janeiro, Brasil 2014 Westinghouse Electric Company LLC, All Rights Reserved.

More information

APR1400 Safe, Reliable Technology

APR1400 Safe, Reliable Technology APR1400 Safe, Reliable Technology OECD/NEA Workshop on Innovations in Water-cooled Reactor Technology Paris, Feb 11 12, 2015 Presented by Shin Whan Kim Contents 1. Introduction 2. Major Safety Design Characteristics

More information

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors)

Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) Module 05 WWER/ VVER (Russian designed Pressurized Water Reactors) 1.3.2016 Prof.Dr. Böck Technical University Vienna Atominstitut Stadionallee 2, 1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at

More information

Post-Fukushima Assessment of the AP1000 Plant

Post-Fukushima Assessment of the AP1000 Plant ABSTRACT Post-Fukushima Assessment of the AP1000 Plant Ernesto Boronat de Ferrater Westinghouse Electric Company, LLC Padilla 17-3 Planta 28006, Madrid, Spain boronae@westinghouse.com Bryan N. Friedman,

More information

Westinghouse AP1000. Reactor

Westinghouse AP1000. Reactor Westinghouse AP1000 A Third Generation Nuclear Reactor International Council on Systems Engineering (INCOSE) September 18, 2013 Andrew Drake, PMP Director, AP1000 Engineering Completion Engineering, Equipment

More information

Olkiluoto Infrastructure

Olkiluoto Infrastructure OL3 Olkiluoto Infrastructure 2 30.9.2008 Arguments for a New Nuclear Plant Unit - Covers partly the additional electricity demand and replaces old power plants - Enables, together with renewables, the

More information

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events

Westinghouse Small Modular Reactor. Passive Safety System Response to Postulated Events Westinghouse Small Modular Reactor Passive Safety System Response to Postulated Events Matthew C. Smith Dr. Richard F. Wright Westinghouse Electric Company Westinghouse Electric Company 600 Cranberry Woods

More information

ANTICIPATED ANALYSIS OF FLAMANVILLE 3 EPR OPERATING LICENSE - STATUS AND INSIGHTS FROM LEVEL 1 PSA REVIEW

ANTICIPATED ANALYSIS OF FLAMANVILLE 3 EPR OPERATING LICENSE - STATUS AND INSIGHTS FROM LEVEL 1 PSA REVIEW ANTICIPATED ANALYSIS OF FLAMANVILLE 3 EPR OPERATING LICENSE - STATUS AND INSIGHTS FROM LEVEL 1 PSA REVIEW Gabriel Georgescu, Patricia Dupuy and Francois Corenwinder Institute for Radiological Protection

More information

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Modified

More information

CFD on Small Flow Injection of Advanced Accumulator in APWR

CFD on Small Flow Injection of Advanced Accumulator in APWR 54 CFD on Small Flow Injection of Advanced Accumulator in APWR TOMOSHIGE TAKATA TAKAFUMI OGINO TAKASHI ISHIBASHI TADASHI SHIRAISHI The advanced accumulator in the advanced pressurized-water reactor is

More information

Enhancement of Nuclear Safety

Enhancement of Nuclear Safety Enhancement of Nuclear Safety Soon Heung Chang Handong Global University May 6, 2015 Contents 1 2 3 4 Importance of Energy Fundamentals of Nuclear Safety How to Enhance Nuclear Safety Closing Remarks 2

More information

The ESBWR an advanced Passive LWR

The ESBWR an advanced Passive LWR 1 IAEA PC-Based Simulators Workshop Politecnico di Milano, 3-14 October 2011 The ES an advanced Passive LWR Prof. George Yadigaroglu, em. ETH-Zurich and ASCOMP yadi@ethz.ch 2 Removal of decay heat from

More information

SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND

SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND SEVERE ACCIDENT FEATURES OF THE ALTERNATIVE PLANT DESIGNS FOR NEW NUCLEAR POWER PLANTS IN FINLAND Risto Sairanen Radiation and Nuclear Safety Authority (STUK) Nuclear Reactor Regulation P.O.Box 14, FI-00881

More information

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION

DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION DESIGN AND SAFETY PRINCIPLES LEONTI CHALOYAN DEPUTY CHIEF ENGINEER ON MODERNIZATION VIENNA OKTOBER 3-6, 2016 1 ANPP * ANPP is located in the western part of Ararat valley 30 km west of Yerevan close to

More information

NuScale SMR Technology

NuScale SMR Technology NuScale SMR Technology UK IN SMR; SMR IN UK Conference - Manchester, UK Tom Mundy, EVP Program Development September 25, 2014 Acknowledgement & Disclaimer This material is based upon work supported by

More information

SAFETY GUIDES. Deterministic Safety Assessment РР - 5/2010 ÀÃÅÍÖÈß ÇÀ ßÄÐÅÍÎ ÐÅÃÓËÈÐÀÍÅ BULGARIAN NUCLEAR REGULATORY AGENCY

SAFETY GUIDES. Deterministic Safety Assessment РР - 5/2010 ÀÃÅÍÖÈß ÇÀ ßÄÐÅÍÎ ÐÅÃÓËÈÐÀÍÅ BULGARIAN NUCLEAR REGULATORY AGENCY S ON IMPLEMENTATION OF THE LEGAL REQUIREMENTS Deterministic Safety Assessment РР - 5/2010 ÀÃÅÍÖÈß ÇÀ ßÄÐÅÍÎ ÐÅÃÓËÈÐÀÍÅ BULGARIAN NUCLEAR REGULATORY AGENCY TABLE OF CONTENTS 1. GENERAL PROVISIONS...2 LEGAL

More information

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen

NUCLEAR ENERGY MATERIALS AND REACTORS - Vol. II - Advanced Gas Cooled Reactors - Tim McKeen ADVANCED GAS COOLED REACTORS Tim McKeen ADI Limited, Fredericton, Canada Keywords: Advanced Gas Cooled Reactors, Reactor Core, Fuel Elements, Control Rods Contents 1. Introduction 1.1. Magnox Reactors

More information

BN-1200 Reactor Power Unit Design Development

BN-1200 Reactor Power Unit Design Development International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13) BN-1200 Reactor Power Unit Design Development B.A. Vasilyev a, S.F. Shepelev a, M.R.

More information

Small Modular Reactors: A Call for Action

Small Modular Reactors: A Call for Action Small Modular Reactors: A Call for Action Overview of Five SMR Designs by Dr. Regis A. Matzie Executive Consultant Adapted May 2015 for the Hoover Institution's Reinventing Nuclear Power project from a

More information

Westinghouse s plant for the Nuclear Renaissance : AP1000. AP1000 Advanced Passive Plant

Westinghouse s plant for the Nuclear Renaissance : AP1000. AP1000 Advanced Passive Plant Westinghouse s plant for the Nuclear Renaissance : AP000 Fernando Naredo Milan, January 30, 006 AP000 Advanced Passive Plant Designed to compete with other sources in deregulated power markets - Two loop,

More information

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

Nuclear Power Reactors. Kaleem Ahmad

Nuclear Power Reactors. Kaleem Ahmad Nuclear Power Reactors Kaleem Ahmad Outline Significance of Nuclear Energy Nuclear Fission Nuclear Fuel Cycle Nuclear Power Reactors Conclusions Kaleem Ahmad, Sustainable Energy Technologies Center Key

More information

In April 1986, unit 4 of the Chernobyl nuclear

In April 1986, unit 4 of the Chernobyl nuclear Safety of RBMK reactors: Setting the technical framework The IAEA's co-operative programme is consolidating the technical basis for further upgrading the safety of Chernobyl-type reactors by Luis Lederman

More information

CAREM: AN INNOVATIVE-INTEGRATED PWR

CAREM: AN INNOVATIVE-INTEGRATED PWR 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 2005 SMiRT18-S01-2 CAREM: AN INNOVATIVE-INTEGRATED PWR Rubén MAZZI INVAP Nuclear Projects

More information

AP1000 European 19. Probabilistic Risk Assessment Design Control Document

AP1000 European 19. Probabilistic Risk Assessment Design Control Document 19.39 In-Vessel Retention of Molten Core Debris 19.39.1 Introduction In-vessel retention of molten core debris through water cooling of the external surface of the reactor vessel is a severe accident management

More information

OPG Proprietary Report

OPG Proprietary Report N/A R001 2 of 114 Table of Contents Page List of Tables and Figures... 5 Revision Summary... 6 Executive Summary... 7 1.0 INTRODUCTION... 9 1.1 Objectives... 10 1.2 Scope... 10 1.3 Organization of Summary...

More information

Power Generation. Ronaldo Jenkins Electrical Engineering Branch Chief Office of New Reactors (NRO)

Power Generation. Ronaldo Jenkins Electrical Engineering Branch Chief Office of New Reactors (NRO) Power Generation Ronaldo Jenkins Electrical Engineering Branch Chief Office of New Reactors (NRO) Agenda Overview Design Considerations 10 Code of Federal Regulations (CFR) 50 10 CFR 50, General Design

More information

Reactor Technology: Materials, Fuel and Safety. Dr. Tony Williams

Reactor Technology: Materials, Fuel and Safety. Dr. Tony Williams Reactor Technology: Materials, Fuel and Safety Dr. Tony Williams Course Structure Unit 1: Reactor materials Unit 2. Reactor types Unit 3: Health physics, Dosimetry Unit 4: Reactor safety Unit 5: Nuclear

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types

Nuclear Reactor Types. An Environment & Energy FactFile provided by the IEE. Nuclear Reactor Types Nuclear Reactor Types An Environment & Energy FactFile provided by the IEE Nuclear Reactor Types Published by The Institution of Electrical Engineers Savoy Place London WC2R 0BL November 1993 This edition

More information

PLUTONIUM UTILIZATION IN REACTOR FUEL

PLUTONIUM UTILIZATION IN REACTOR FUEL Second Moscow International Nonproliferation Conference PLUTONIUM UTILIZATION IN REACTOR FUEL A. Zrodnikov Director General State Scientific Center of the Russian Federation Institute for Physics and Power

More information

CAREM Prototype Construction and Licensing Status

CAREM Prototype Construction and Licensing Status IAEA-CN-164-5S01 CAREM Prototype Construction and Licensing Status H. Boado Magan a, D. F. Delmastro b, M. Markiewicz b, E. Lopasso b, F. Diez, M. Giménez b, A. Rauschert b, S. Halpert a, M. Chocrón c,

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

NEW POWER REACTOR DESIGNS

NEW POWER REACTOR DESIGNS NUCLEAR ENERGY RENAISSANCE: ADDRESSING THE CHALLENGES OF CLIMATE CHANGE AND SUSTAINABILITY NCSR DEMOKRITOS Athens May 8, 2008 NEW POWER REACTOR DESIGNS Dimitrios Cokinos Brookhaven National Laboratory

More information

DOE Small Modular Reactor Licensing Technical Support Program Overview for National Conference of State Legislatures June 19, 2014

DOE Small Modular Reactor Licensing Technical Support Program Overview for National Conference of State Legislatures June 19, 2014 DOE Small Modular Reactor Licensing Technical Support Program Overview for National Conference of State Legislatures June 19, 2014 Tim Beville Office of Nuclear Energy U.S. Department of Energy Administration

More information

Nuclear Reactor Types

Nuclear Reactor Types http://www.theiet.org/cpd Nuclear Reactor Types This Factfile summarises the main designs for nuclear reactors around the world. www.theiet.org/factfiles Nuclear Reactor Types Many different reactor systems

More information

INL/EXT Key Design Requirements for the High Temperature Gascooled Reactor Nuclear Heat Supply System

INL/EXT Key Design Requirements for the High Temperature Gascooled Reactor Nuclear Heat Supply System INL/EXT-10-19887 Key Design Requirements for the High Temperature Gascooled Reactor Nuclear Heat Supply System September 2010 DISCLAIMER This information was prepared as an account of work sponsored by

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

Controlled management of a severe accident

Controlled management of a severe accident July 2015 Considerations concerning the strategy of corium retention in the reactor vessel Foreword Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents.

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Reactor D&D: AREVA French and German Latest Experiences - 14458 (1) Stephan Krüger, AREVA GmbH, Kaiserleistr. 29, 63067 Offenbach, Germany; stephan.krueger@areva.com (2) Xavier de Brimont, AREVA NC, 1

More information

OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants

OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants 2016 OperatiOn and safety report Of MOchOvce and BOhunice v2 nuclear power plants The company is certified according to three management systems: Certificate stn en iso 9001:2008 Quality management system

More information

Country Presentation. Ukraine

Country Presentation. Ukraine Country Presentation. Ukraine 25th Meeting of the IAEA Technical Working Group on Nuclear Power Plant Instrumеntation and Control (TWG -NPPIC) May 27-29, 2015,, Austria Vladimir Sklyar, RPC Radiy TOP5

More information

Chapter 2 The Advanced Accumulator: A New Passive ECCS Component of the APWR

Chapter 2 The Advanced Accumulator: A New Passive ECCS Component of the APWR Chapter The Advanced Accumulator: A New Passive ECCS Component of the APWR Tadashi Shiraishi With the increased requirement for nuclear power generation as an effective countermeasure against global warming,

More information

Next and Last Generation of Nuclear Power Plants Paul Howarth

Next and Last Generation of Nuclear Power Plants Paul Howarth Next and Last Generation of Nuclear Power Plants Paul Howarth Exec Director, Dalton Nuclear Institute IMechE Branch Meeting Jan 2009 Order of Service Introduction to status of advanced systems The 3 contending

More information

DEVELOPMENT AND APPLICATION OF PROBABILISTIC SAFETY ASSESSMENT PSA IN DAYA BAY NUCLEAR POWER STATION

DEVELOPMENT AND APPLICATION OF PROBABILISTIC SAFETY ASSESSMENT PSA IN DAYA BAY NUCLEAR POWER STATION 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 2005 SMiRT18-A01-2 DEVELOPMENT AND APPLICATION OF PROBABILISTIC SAFETY ASSESSMENT PSA

More information

NUCLEAR. Nuclear Reactor Pressure Vessel Seals

NUCLEAR. Nuclear Reactor Pressure Vessel Seals NUCLEAR Nuclear Reactor Pressure Vessel Seals SEALING CONCEPT Technetics Group is the world s leading manufacturer of Nuclear Reactor Pressure Vessel (RPV) Closure Head Seals. In addition, Technetics Group

More information

Lessons Learned from Fukushima Daiichi Nuclear Power Station Accident and Consequent Safety Improvements

Lessons Learned from Fukushima Daiichi Nuclear Power Station Accident and Consequent Safety Improvements Hitachi Review Vol. 62 (2013), No. 1 75 Lessons Learned from Fukushima Daiichi Nuclear Power Station Accident and Consequent Safety Improvements Masayoshi Matsuura Kohei Hisamochi Shinichiro Sato Kumiaki

More information

EUR volume 3 AES 92 subset

EUR volume 3 AES 92 subset European Utility Requirements for LWR nuclear power plants EUR volume 3 AES 92 subset Yury ERMAKOV, RosEnergoAtom Olivier ROUSSELOT, EDF EUR seminar 2005 13/12/2005 key points of the presentation ❽ Presentation

More information

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S)

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S) Loss of Ultimate Heat Sink ANS AESJ AESJ Fukushima Symposium, March h4, 2012 Hisashi Ninokata, Tokyo Institute of Technology Available ultimate heat sinks at 1F1~3 1F1 (Fukushima Dai ichi Unit 1) Sea water

More information

IAEA Generic Review for UK HSE of New Reactor Designs against IAEA Safety Standards EPR

IAEA Generic Review for UK HSE of New Reactor Designs against IAEA Safety Standards EPR IAEA Generic Review for UK HSE of New Reactor Designs against IAEA Safety Standards EPR IAEA Generic Review for UK HSE of New Reactor Designs against IAEA Safety Standards EPR 3.1 3.7 Graded Approach 3.2

More information

CNE Cernavoda Response to Fukushima Event/EU Stress Test Requirements

CNE Cernavoda Response to Fukushima Event/EU Stress Test Requirements CNE Cernavoda Response to Fukushima Event/EU Stress Test Requirements Sorin Holostencu IAEA Technical Meeting on Operational Experience with Implementation of Post-Fukushima Actions in Nuclear Power Plants,

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

PRESS CONFERENCE. 3 September Jean-Bernard LÉVY Chairman and CEO. Xavier URSAT Group Senior Executive VP - New Nuclear Projects and Engineering

PRESS CONFERENCE. 3 September Jean-Bernard LÉVY Chairman and CEO. Xavier URSAT Group Senior Executive VP - New Nuclear Projects and Engineering PRESS CONFERENCE 3 September 2015 Jean-Bernard LÉVY Chairman and CEO Xavier URSAT Group Senior Executive VP - New Nuclear Projects and Engineering EDF, A RESPONSIBLE ELECTRICITY COMPANY, A CHAMPION OF

More information

1 Introduction and object of the statement Request of advice of the BMU Consultations Assessment basis Statement...

1 Introduction and object of the statement Request of advice of the BMU Consultations Assessment basis Statement... Note: This is a translation of the statement entitled Anforderungen an bestrahlte Brennelemente aus entsorgungstechnischer Sicht. In case of discrepancies between the English translation and the German

More information

OPG Proprietary Report

OPG Proprietary Report N/A R001 2 of 121 Table of Contents Page List of Tables and Figures... 5 Revision Summary... 6 Executive Summary... 7 1.0 INTRODUCTION... 9 1.1 Objectives... 10 1.2 Scope... 10 1.3 Organization of Summary...

More information

ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS

ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS ACR-1000: ENHANCED RESPONSE TO SEVERE ACCIDENTS Popov, N.K., Santamaura, P., Shapiro, H. and Snell, V.G Atomic Energy of Canada Limited 2251 Speakman Drive, Mississauga, Ontario, Canada L5K 1B2 1. INTRODUCTION

More information

SYSTEMATIC AND DESIGN SAFETY IMPROVEMENTS OF NPPS IN CZECH REPUBLIC

SYSTEMATIC AND DESIGN SAFETY IMPROVEMENTS OF NPPS IN CZECH REPUBLIC SYSTEMATIC AND DESIGN SAFETY IMPROVEMENTS OF NPPS IN CZECH REPUBLIC 3.10.2016 ČEZ, a. s. Meeting at IAEA Vienna Overview of topics ČEZ nuclear fleet (basic features) Systematic measures targeted to improve

More information

WM2015 Conference, March 15-19, 2015, Phoenix, Arizona, USA

WM2015 Conference, March 15-19, 2015, Phoenix, Arizona, USA An Integrated Equipment for Massive Segmentation and Packaging of Control Rod Guide Tubes 15161 Joseph Boucau*, Patrick Gobert** Sébastien Bonne *** * Westinghouse Electric Company, 43 rue de l Industrie,

More information

Global Perspectives on SMRs Developing Countries Expectations

Global Perspectives on SMRs Developing Countries Expectations Global Perspectives on SMRs Developing Countries Expectations Dr Atam Rao Head Nuclear Power Technology Development Jun 18, 2010 The 4 th Annual Asia-Pacific Nuclear Energy Forum on Small and Medium Reactors

More information

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018

DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM. Yujie DONG INET, Tsinghua University, China January 24, 2018 DESIGN, SAFETY FEATURES & PROGRESS OF HTR-PM Yujie DONG INET, Tsinghua University, China January 24, 2018 Meet the Presenter Dr. Dong is a Professor in Nuclear Engineering at the Tsinghua University, Beijing,

More information

Risks Associated with Shutdown in PWRs

Risks Associated with Shutdown in PWRs International Conference Nuclear Option in Countries with Small and Mi Opatija, Croatia, 1996 Risks Associated with Shutdown in PWRs Igor Grlicarev Slovenian Nuclear Safety Administration Vojkova 59, 1113

More information

The Evolution of System Safety in the Canadian Nuclear Industry

The Evolution of System Safety in the Canadian Nuclear Industry Canadian Nuclear Safety Commission Commission canadienne de sûreté nucléaire The Evolution of System Safety in the Canadian Nuclear Industry System Safety Society, Eastern Canada Chapter, June 18, 2009

More information

Regulatory Approach to Radiation Protection in new NPPs in Finland

Regulatory Approach to Radiation Protection in new NPPs in Finland Regulatory Approach to Radiation Protection in new NPPs in Finland ISOE European Workshop in Prague 20.-22. 6. 2012 Veli Riihiluoma Radiation and Nuclear Safety Authority (STUK) RADIATION AND NUCLEAR SAFETY

More information

SASOR Canada Ltd. Tetra Tech Inc. 4S reactor applications - Economic case studies. May 2009

SASOR Canada Ltd. Tetra Tech Inc. 4S reactor applications - Economic case studies. May 2009 SASOR Canada Ltd Tetra Tech Inc. 4S reactor applications - Economic case studies May 2009 Agenda Roles of Tetra Tech and SASOR Canada Why the 4S Reactor and not others Size Production and Cost Environmental

More information

Ensuring Spent Fuel Pool Safety

Ensuring Spent Fuel Pool Safety Ensuring Spent Fuel Pool Safety Michael Weber Deputy Executive Director for Operations U.S. Nuclear Regulatory Commission American Nuclear Society Meeting June 28, 2011 1 Insights from Fukushima Nuclear

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Integrity Study of Spent PWR Fuel under Dry Storage Conditions 14236 Jongwon Choi *, Young-Chul Choi *, Dong-Hak Kook * * Korea Atomic Energy Research Institute ABSTRACT Technical issues related to long-term

More information

The risk of reactor pressure vessel material degradation Doel-3/Tihange-2

The risk of reactor pressure vessel material degradation Doel-3/Tihange-2 The risk of reactor pressure vessel material degradation Doel-3/Tihange-2 Ilse Tweer NURIS 2015, Vienna, 16-17 April 2015 Reactor pressure vessel structural integrity The reactor pressure vessel (RPV)

More information

The Characteristics and Irradiation Capabilities of MARIA research reactor in NCBJ Świerk

The Characteristics and Irradiation Capabilities of MARIA research reactor in NCBJ Świerk National Centre for Nuclear Research Department of Nuclear Energy ul. A. Sołtana 7, 05-400 Otwock, Poland The Characteristics and Irradiation Capabilities of MARIA research reactor in NCBJ Świerk Grzegorz

More information

RESULTS OF THE GRADUAL UPGRADING AT BOHUNICE WWER - 440/230 NPP

RESULTS OF THE GRADUAL UPGRADING AT BOHUNICE WWER - 440/230 NPP RESULTS OF THE GRADUAL UPGRADING AT BOHUNICE WWER - 440/230 NPP P. Krupa Ingeneer, e-mail: Krupa_Peter@ebo.seas.sk Bohunice NPPs Introduction The centre of upgrading activities in VVER NPP is clearly in

More information

Risks of Nuclear Ageing

Risks of Nuclear Ageing Risks of Nuclear Ageing Technical characteristics of ageing processes and their possible impacts on nuclear safety in Spain S. Mohr, S. Kurth Greenpeace, Valencia, November 2014 Age of European NPPs (grid

More information

Current Status and Future Challenges of Innovative Reactors Development in Japan

Current Status and Future Challenges of Innovative Reactors Development in Japan Innovation for Cool Earth Forum 2017, Tokyo, Japan, October 4-5, 2017 Current Status and Future Challenges of Innovative Reactors Development in Japan 5 October, 2017 Yutaka Sagayama Assistant to the President

More information

Nuclear Energy in France Current Trends and Impact on the Bilateral Ties with Japan

Nuclear Energy in France Current Trends and Impact on the Bilateral Ties with Japan 1 Nuclear Energy in France Current Trends and Impact on the Bilateral Ties with Japan Dr Sunil Félix Nuclear Counsellor French Embassy in Tokyo Seminar on Nuclear Power Industry and WNE April 25, 2017

More information

Secondary Systems: Steam System

Secondary Systems: Steam System Secondary Systems: Steam System K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 10 Table of Contents 1 SECONDARY SYSTEM

More information

The MIT Research Reactor as a National User Facility for Advanced Materials and Fuel Research

The MIT Research Reactor as a National User Facility for Advanced Materials and Fuel Research The MIT Research Reactor as a National User Facility for Advanced Materials and Fuel Research Lin-wen Hu John Bernard IGORR-TRTR Joint Meeting September 12-16, 2005 Gaithersburg, MD Overview of the The

More information

Belgian Stress Test Nuclear Power Plants (BEST)

Belgian Stress Test Nuclear Power Plants (BEST) Belgian Stress Test Nuclear Power Plants (BEST) 2013-08-26 TM IAEA: Belgian Stress Tests Stress Test Specifications Technical scope Initiating events Earthquake Flooding Other extreme natural events (extreme

More information

Regulatory Guide Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

Regulatory Guide Monitoring the Effectiveness of Maintenance at Nuclear Power Plants Regulatory Guide 1.160 Revision 2 Page 1 of 14 Revision 2 March 1997 Regulatory Guide 1.160 Monitoring the Effectiveness of Maintenance at Nuclear Power Plants Publication Information (Draft issued as

More information

System Analysis of Pb-Bi Cooled Fast Reactor PEACER

System Analysis of Pb-Bi Cooled Fast Reactor PEACER OE-INES-1 International Symposium on Innovative Nuclear Energy Systems for Sustainable Development of the World Tokyo, Japan, October 31 - November 4, 2004 System Analysis of Pb-Bi ooled Fast Reactor PEAER

More information

German contribution on the safety assessment of research reactors

German contribution on the safety assessment of research reactors German contribution on the safety assessment of research reactors S. Langenbuch J. Rodríguez Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mh. Schwertnergasse 1, D-50667 Köln, Federal Republic

More information

Appendix B. Aging Management Programs and Activities

Appendix B. Aging Management Programs and Activities Appendix B Aging Management Programs and Activities This page is intentionally blank. TABLE OF CONTENTS Table of Contents...i Appendix B: Aging Management Programs and Activities... B.1-1 B.1 INTRODUCTION...

More information

Project AES

Project AES Project AES-2006 Project AES-2006 2014 Contents I. Introduction...................................................................... 4 II. AES-2006 design concept (described by the example of Leningrad

More information

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C SAFETY EVALUATION REPORT

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C SAFETY EVALUATION REPORT UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 SAFETY EVALUATION REPORT Docket No. 72-1040 HI-STORM UMAX Canister Storage System Holtec International, Inc. Certificate of Compliance

More information

GE solutions for NOx compliance and increased availability for WtE / Biomass plants

GE solutions for NOx compliance and increased availability for WtE / Biomass plants GE solutions for NOx compliance and increased availability for WtE / Biomass plants Gerhard Heinz Panndagarna 6 April 2017 GE Power Global technology provider with strong roots in Sweden GE Power: Alstom

More information

Up-to-date issues of VVER Technology Development

Up-to-date issues of VVER Technology Development Up-to-date issues of VVER Technology Development 10 th International Scientific and Technical Conference Safety, Efficiency and Economics of Nuclear Power industry JSC Concern Rosenergoatom May 25-27,

More information

Full MOX Core Design in ABWR

Full MOX Core Design in ABWR GENES4/ANP3, Sep. -9, 3, Kyoto, JAPAN Paper 8 Full MOX Core Design in ABWR Toshiteru Ihara *, Takaaki Mochida, Sadayuki Izutsu 3 and Shingo Fujimaki 3 Nuclear Power Department, Electric Power Development

More information

Design Safety Considerations for Water-cooled Small Modular Reactors As reported in IAEA-TECDOC-1785, published in March 2016

Design Safety Considerations for Water-cooled Small Modular Reactors As reported in IAEA-TECDOC-1785, published in March 2016 International Conference on Topical Issues in Nuclear Installation Safety, Safety Demonstration of Advanced Water Cooled Nuclear Power Plants 6 9 June 2017 Design Safety Considerations for Water-cooled

More information

Evolution of Nuclear Energy Systems

Evolution of Nuclear Energy Systems ALLEGRO Project 2 Evolution of Nuclear Energy Systems 3 General objectives Gas cooled fast reactors (GFR) represent one of the three European candidate fast reactor types. Allegro Gas Fast Reactor (GFR)

More information

13. PLANT MODIFICATIONS

13. PLANT MODIFICATIONS 13. PLANT MODIFICATIONS This Section summarises the major safety related modifications that have been implemented in the Ignalina NPP. This encompasses the important structural and procedural modifications

More information

Caroline Schlaseman. MPR Associates Inc.

Caroline Schlaseman. MPR Associates Inc. Small Modular Reactors Caroline Schlaseman Facilitator MPR Associates Inc. HI-SMUR 140: A Safe, Secure, Economic Small Modular Reactor Joy Russell Director, Corporate Business Development Holtec International

More information

The EnBW Strategyfor Decommissioningand DismantlingofNuclearPower Plants»

The EnBW Strategyfor Decommissioningand DismantlingofNuclearPower Plants» The EnBW Strategyfor Decommissioningand DismantlingofNuclearPower Plants» 40 th MPA-Seminar Stuttgart, 6 th & 7 th October2014 Peter Daiß, EnBW Kernkraft GmbH Content 1. Introduction and Company Profile

More information

INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320

INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320 International Conference 12th Symposium of AER, Sunny Beach, pp.99-105, 22-28 September, 2002. INVESTIGATION OF CRITICAL SAFETY FUNCTION INTEGRITY IN CASE OF STEAM LINE BREAK ACCIDENT FOR VVER 1000/V320

More information

Thermal Hydraulic Simulations of the Angra 2 PWR

Thermal Hydraulic Simulations of the Angra 2 PWR Thermal Hydraulic Simulations of the Angra 2 PWR Javier González-Mantecón, Antonella Lombardi Costa, Maria Auxiliadora Fortini Veloso, Claubia Pereira, Patrícia Amélia de Lima Reis, Adolfo Romero Hamers,

More information

The "Réacteur Jules Horowitz" : The preliminary design

The Réacteur Jules Horowitz : The preliminary design The "Réacteur Jules Horowitz" : The preliminary design A. BALLAGNY - S. FRACHET CEA Direction des Réacteurs Nucléaires 31, 33 Rue de la Fédération 75752 PARIS Cédex 15 J.L. MINGUET - C. LEYDIER TECHNICATOME

More information

EPR: Steam Generator Tube Rupture analysis in Finland and in France

EPR: Steam Generator Tube Rupture analysis in Finland and in France EPR: Steam Generator Tube Rupture analysis in Finland and in France S. ISRAEL Institut de Radioprotection et de Sureté Nucléaire BP 17 92262 Fontenay-aux-Roses Cedex, France Abstract: Different requirements

More information

Simulation of Fatigue relevant thermal Loads of Components in Piping Networks

Simulation of Fatigue relevant thermal Loads of Components in Piping Networks Simulation of Fatigue relevant thermal Loads of Components in Piping Networks Dr. Jan Leilich Dr. Gerhard Schlicht NSSS Primary Circuit and Ageing Management Dresden, Oct. 15 th, 2014 Thermal Loads in

More information

Background. Introduction. Overview of vendor design review process

Background. Introduction. Overview of vendor design review process Executive Summary A pre-licensing review of a new nuclear power plant (NPP), also referred to as a vendor design review (VDR), provides an opportunity for CNSC staff to assess a design prior to any licensing

More information

Energie. Erzeugung - Netze - Nutzung

Energie. Erzeugung - Netze - Nutzung Energie Erzeugung - Netze - Nutzung Vorträge auf der DPG-Frühjahrstagung in Berlin 2015 Nuclear Fission Energy: New Build, Operation, Fuel Cycle and Decommissioning in the International Perspective Stefan

More information

Belgian stress tests. National report on nuclear power plants. Man-made events

Belgian stress tests. National report on nuclear power plants. Man-made events Belgian stress tests National report on nuclear power plants Man-made events This national report is issued by the Belgian regulatory body as part of the the programme of stress tests carried out on Belgian

More information