א א א א א א א א

Size: px
Start display at page:

Download "א א א א א א א א"

Transcription

1 א א א W א א א א א א א א א

2 Chapter 6: CPU Scheduling Basic Concept CPU-I/O Burst Cycle CPU Scheduler Preemptive Scheduling Dispatcher Scheduling Criteria Scheduling Algorithms First-Come, First-Served Scheduling Shortest-Job-First Scheduling Priority Scheduling Round-Robin Scheduling Multilevel Queue Scheduling Multilevel Feedback Queue Scheduling Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation Deterministic Modeling Queuing Models Simulations Implementation Process Scheduling Models An Example: Solaris 2 An Example: Windows 2000 An Example: Linux 2

3 6.1 Basic Concepts Objective of multiprogramming is to have some process running at all times, in order to maximize CPU utilization. In a uniprocessor system, only one process may be running at a time. The idea of multiprogramming: o Several processes are kept in memory at one time. o A process executes until it must wait. o Operating system gives the CPU to another process CPU-I/O Burst Cycle Figure 6.1 Alternating sequence of CPU and I/O bursts Process execution consists of a cycle of CPU execution and I/O wait (Figure 6.1). Process execution begins with a CPU burst followed by I/O burst, then another CPU burst and so on. The last CPU burst will end with a system request to terminate execution. 3

4 Figure 6.2 Histogram of CPU-burst times The duration of CPU bursts have been measured (Figure 6.2). An I/O bound program has many very short CPU bursts. A CPU-bound program might have few very long CPU bursts. This distribution can help us select an appropriate CPU-Scheduling algorithm CPU Scheduler Whenever CPU becomes idle, the short-term scheduler (or CPU scheduler) must select one of the processes in the ready queue to be executed. Ready queue is not necessarily a first-in, first-out (FIFO) queue. It can be implemented as a FIFO queue, a priority queue, a tree, or an unordered linked list. Ready queue records process control blocks (PCBs) of the processes. 4

5 6.1.3 Preemptive Scheduling CPU scheduling decisions may take place when a process: o Switches from running to waiting state. o Switches from running to ready state. o Switches from waiting to ready state. o Terminates. Nonpreemptive scheduling scheme: o CPU scheduling takes place only under the first and last circumstances. o Once the CPU has been allocated to a process, the process keeps the CPU until it terminates or switch to the waiting state. Preemptive Scheduling Scheme: Dispatcher o CPU scheduling takes place under any of the four circumstances. The dispatcher is a module that gives control of the CPU to the process selected by the short-term scheduler. The function of dispatcher involves: o Switching context. o Switching to user mode. o Jumping to the proper location in the user program to restart that program. Dispatcher should be fast as it is invoked during every process switch. Dispatch latency: is the time it takes for the dispatcher to stop one process and start another running. 6.2 Scheduling Criteria Criteria for comparing CPU-scheduling algorithms include: o CPU utilization: keep the CPU as busy as possible. o Throughput: number of processes completed per time unit o Turnaround time: interval from time of submission of a process to the time of completion. o Waiting time: amount of time a process spends waiting in the ready queue. o Response time: amount of time it takes to start responding after submitting a request, but not the time it takes to output the response. CPU scheduling algorithms should maximize CPU utilization and throughput, and minimize turnaround time, waiting time, and response time. 5

6 6.3 Scheduling Algorithms CPU scheduling deals with the problem of deciding which of the processes in the ready queue it to be allocated the CPU First-Come, First-Served (FCFS) Scheduling The process that requests the CPU first is allocated the CPU first. The ready queue is implemented as a FIFO queue. When a process enters the ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to the process at the head of the queue. The running process is removed from the ready queue. Example: Process Burst Time P1 24 P2 3 P3 3 o Suppose that the processes arrive in the order: P1, P2, P3. o The Gantt Chart for the schedule is: P 1 P 2 P o Waiting time for P1 = 0, P2 = 24, P3 = 27 o Average waiting time: ( ) / 3 = 17 millisecond. FCFS scheduling is nonpreemptive. Advantage: o Code is simple to write and understand. Disadvantages: o Average waiting time is often quite long. o Troublesome for timesharing systems. o Convoy effect: occur when processes wait for one big process to get of the CPU. Results in lower CPU and device utilization. 6

7 6.3.2 Shortest-Job-First (SJF) Scheduling This algorithm associates with each process the length of its next CPU burst. When CPU is available, it is assigned to the process with smallest next CPU burst. If two processes have the same length of next CPU burst, FCFS scheduling is used. A more appropriate term shortest next CPU burst, because scheduling is done by examining the length of the next CPU burst of a process, rather than its total length. Two schemes: o Nonpreemptive: once CPU given to the process it cannot be preempted until it completes its CPU burst. o Preemptive: if a new process arrived at ready queue with CPU burst length less than remaining time of current executing process, the executing process is preempted. Preemptive Shortest-Job-First is knows as Shortest-Remaining-Time-First (SRTF). Example Process Arrival time Burst Time P P P P o Nonpreemptive SJF: P 1 P 3 P 2 P Average waiting time = ( ) / 4 = 4 millisecond o Preemptive SJF: P 1 P 2 P 3 P 2 P 4 P Average waiting time = ( ) / 4 = 3 7

8 SJF scheduling algorithm can be used in long-term scheduling in a batch system. We can use the process time limits specified by the user when submitting the job. Advantage: o SJF scheduling is optimal. It gives the minimum average waiting time. Disadvantage: o Cannot be implemented at the level of short term scheduling, because there is no way to know the length of the next CPU burst. The length of the next CPU burst can be predicted as an exponential average of the measured lengths of previous CPU bursts. Where: o 0 α 1 T n+1 = α t n + (1 α) T n o t n o T n o T n+1 represents length of the nth CPU burst. represents past history. represents predicted value for next CPU burst. Figure 6.3 prediction of the length of the next CPU burst (for.α = 1 / 2, T 0 = 10). 8

9 6.3.3 Priority Scheduling A priority is associated with each process. CPU is allocated to the process with the highest priority. Equal-priority processes are scheduled in FCFS order. SJF algorithm is a special case of the general priority-scheduling algorithm. In SJF algorithm the largest the CPU burst the lower the priority. Priorities are represented by numbers. Lower numbers represent high priority. Priorities can be defined either: o Internally: use measurable quantities to compute the priority of a process. For example, time limits, memory requirements, the number of opened files, the ratio of average I/O burst to average CPU burst, etc. o Externally: set by criteria external to the operating system, such as importance of a process. Priority scheduling can be either preemptive or nonpreemptive. A problem with priority scheduling is starvation, and the solution is aging. Indefinite blocking (or starvation): low priority processes may never execute, because higher-priority processes can prevent them from ever getting the CPU. Aging: is a technique of gradually increasing the priority of processes that wait in the system for a long time. Example Process Burst time Priority P P P P P P 2 P 1 P 3 P 5 P o Average waiting time = ( ) / 5 = 8.2 milliseconds. 9

10 6.3.4 Round-Robin (RR) Scheduling Designed specially for timesharing systems. Similar to FCFS scheduling, but preemption is added to switch between processes. Time quantum (or time slice): a small unit of time. Ready queue is treated as a circular queue. CPU scheduler goes around the ready queue, allocating the CPU to each process for a time interval of up to 1 time quantum. Ready queue is implemented as a FIFO queue. New processes are added to the tail. How it works? Example o CPU scheduler: picks the first process from the ready queue Sets a timer to interrupt after 1 time quantum Dispatches the process. o Then, either: The process has a CPU burst less than 1 time quantum, so process itself releases the CPU after finishing its burst. The process has a CPU burst longer than 1 time quantum, so the timer will go off and cause an interrupt. A context switch is executed and the process is put at the tail of the ready queue. o The scheduler selects the next process in the ready queue. Process Burst time P 1 53 P 2 17 P 3 68 P 4 24 o Use a time quantum of 20 milliseconds. P 1 P 2 P 3 P 4 P 1 P 3 P 4 P 1 P 3 P Average waiting time = ( ) / 4 = 73 milliseconds. 10

11 RR scheduling algorithm is preemptive. Process is preempted and put back in ready queue if its CPU-burst exceeded 1 time quantum. If there are n processes in the ready queue and the time quantum is q, then each process gets 1 / n of the CPU time in chunks of at most q time units. A process must wait no longer than (n 1) x q time units until its next time quantum. Performance of RR algorithm depends heavily on the size of the time quantum: o If time quantum is very large, the RR Scheduling degenerates to FCFS policy. o If time quantum is very small, the RR approach is called processor sharing. Figure 6.4 Showing how a smaller time quantum increases context switches. For example, if the context-switch time is approximately 10 percent of the time quantum, then about 10 percent of the CPU time will be spent in context switch. Figure 6.5 Showing how turnaround time varies with the time quantum. 11

12 Turnaround time also depends on the size of time quantum (Figure 6.5). Average turnaround time of a set of processes does not necessarily improve as the time quantum size increases. Average turnaround time can be improved if most processes finish their next CPU burst in a single time quantum. Advantage: o Response time is short, at most (n-1)q. o Suitable for timesharing systems Disadvantage: o Average waiting time is often quite long Multilevel Queue Scheduling Figure 6.6 Multilevel queue scheduling. Ready queue is partitioned into several separate queues. For example, a queue for foreground (or interactive) processes, and another queue for background (or batch) processes. A process is permanently assigned to one queue, based on some property of it. Each queue has its own scheduling algorithm. For example RR for foreground queue and FCFS for background queue. Scheduling must be done between the queues themselves: 12

13 o Fixed-priority preemptive scheduling: Each queue has absolute priority over lower-priority queues. No process in a specific queue could run unless all above queues are empty. o Time slice between queues: each queue gets a certain amount of CPU time which it can schedule amongst its processes. For example, 80% for foreground queue and 20% for background queue Multilevel Feedback Queue Scheduling Allow a process to move between queues. If a process uses too much CPU time, it is moved to a lower-priority queue. A process that waits too long in a lower-priority queue may be moved to a higherpriority queue (aging). Figure 6.7 Multilevel feedback queues. A process entering ready queue is put in queue 0. A process in queue 0 is given a time quantum of 8 milliseconds. If does not finish within this time, it is moved to the tail of queue 1. If queue 0 is empty, the process at the head of queue 1 is given a time quantum of 16 milliseconds. If does not complete, it is preempted and is put into queue 2. Processes in queue 2 are run as FCFS, only when queue 0 and queue 1 are empty. Multilevel feedback queue scheduler is defined by the following parameters: 13

14 o Number of queues. o Scheduling algorithms for each queue o Method used to determine when to upgrade a process o Method used to determine when to demote a process o Method used to determine which queue a process will enter when that process needs service Multilevel versus Multilevel Feedback Queue Scheduling In multilevel queue processes do not move between queues (inflexible). In multilevel feedback queue processes can move between queues (flexible). Multilevel queue scheduling has lower scheduling overhead. Multilevel feedback scheduling is more complex. In multilevel queue scheduling processes may suffer from starvation. In multilevel feedback scheduling aging can be used. 14

Chapter 6: CPU Scheduling. Basic Concepts. Histogram of CPU-burst Times. CPU Scheduler. Dispatcher. Alternating Sequence of CPU And I/O Bursts

Chapter 6: CPU Scheduling. Basic Concepts. Histogram of CPU-burst Times. CPU Scheduler. Dispatcher. Alternating Sequence of CPU And I/O Bursts Chapter 6: CPU Scheduling Basic Concepts Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Algorithm Evaluation Maximum CPU utilization obtained

More information

CPU Scheduling. Basic Concepts Scheduling Criteria Scheduling Algorithms. Unix Scheduler

CPU Scheduling. Basic Concepts Scheduling Criteria Scheduling Algorithms. Unix Scheduler CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms FCFS SJF RR Priority Multilevel Queue Multilevel Queue with Feedback Unix Scheduler 1 Scheduling Processes can be in one of several

More information

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - V CPU Scheduling - I. University at Buffalo.

Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - V CPU Scheduling - I. University at Buffalo. CSE 421/521 - Operating Systems Fall 2011 Lecture - V CPU Scheduling - I Tevfik Koşar University at Buffalo September 13 th, 2011 1 Roadmap CPU Scheduling Basic Concepts Scheduling Criteria & Metrics Different

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 9-10 - CPU Scheduling Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

Roadmap. Tevfik Ko!ar. CSC Operating Systems Spring Lecture - V CPU Scheduling - I. Louisiana State University.

Roadmap. Tevfik Ko!ar. CSC Operating Systems Spring Lecture - V CPU Scheduling - I. Louisiana State University. CSC 4103 - Operating Systems Spring 2008 Lecture - V CPU Scheduling - I Tevfik Ko!ar Louisiana State University January 29 th, 2008 1 Roadmap CPU Scheduling Basic Concepts Scheduling Criteria Different

More information

Motivation. Types of Scheduling

Motivation. Types of Scheduling Motivation 5.1 Scheduling defines the strategies used to allocate the processor. Successful scheduling tries to meet particular objectives such as fast response time, high throughput and high process efficiency.

More information

Uniprocessor Scheduling

Uniprocessor Scheduling Chapter 9 Uniprocessor Scheduling In a multiprogramming system, multiple processes are kept in the main memory. Each process alternates between using the processor, and waiting for an I/O device or another

More information

Operating System 9 UNIPROCESSOR SCHEDULING

Operating System 9 UNIPROCESSOR SCHEDULING Operating System 9 UNIPROCESSOR SCHEDULING TYPES OF PROCESSOR SCHEDULING The aim of processor scheduling is to assign processes to be executed by the processor or processors over time, in a way that meets

More information

Advanced Types Of Scheduling

Advanced Types Of Scheduling Advanced Types Of Scheduling In the previous article I discussed about some of the basic types of scheduling algorithms. In this article I will discuss about some other advanced scheduling algorithms.

More information

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling

Scheduling I. Today. Next Time. ! Introduction to scheduling! Classical algorithms. ! Advanced topics on scheduling Scheduling I Today! Introduction to scheduling! Classical algorithms Next Time! Advanced topics on scheduling Scheduling out there! You are the manager of a supermarket (ok, things don t always turn out

More information

Lecture 11: CPU Scheduling

Lecture 11: CPU Scheduling CS 422/522 Design & Implementation of Operating Systems Lecture 11: CPU Scheduling Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions of

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 11: Scheduling Scheduling Overview Scheduler runs when we context switching among processes/threads on the ready queue What should it do? Does it

More information

Intro to O/S Scheduling. Intro to O/S Scheduling (continued)

Intro to O/S Scheduling. Intro to O/S Scheduling (continued) Intro to O/S Scheduling 1. Intro to O/S Scheduling 2. What is Scheduling? 3. Computer Systems Scheduling 4. O/S Scheduling Categories 5. O/S Scheduling and Process State 6. O/S Scheduling Layers 7. Scheduling

More information

A Paper on Modified Round Robin Algorithm

A Paper on Modified Round Robin Algorithm A Paper on Modified Round Robin Algorithm Neha Mittal 1, Khushbu Garg 2, Ashish Ameria 3 1,2 Arya College of Engineering & I.T, Jaipur, Rajasthan 3 JECRC UDML College of Engineering, Jaipur, Rajasthan

More information

CPU Scheduling. Disclaimer: some slides are adopted from book authors and Dr. Kulkarni s slides with permission

CPU Scheduling. Disclaimer: some slides are adopted from book authors and Dr. Kulkarni s slides with permission CPU Scheduling Disclaimer: some slides are adopted from book authors and Dr. Kulkarni s slides with permission 1 Recap Deadlock prevention Break any of four deadlock conditions Mutual exclusion, no preemption,

More information

CPU Scheduling. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu CPU Scheduling policy deciding which process to run next, given a set of runnable

More information

Journal of Global Research in Computer Science

Journal of Global Research in Computer Science Volume 2, No. 5, May 211 Journal of Global Research in Computer Science RESEARCH PAPER Available Online at www.jgrcs.info Weighted Mean Priority Based Scheduling for Interactive Systems H.S.Behera *1,

More information

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3044: Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) CPU Scheduling

More information

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

CPU Scheduling. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University CPU Scheduling Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Project 2 solution code

Project 2 solution code Project 2 solution code Project 2 solution code in files for project 3: Mutex solution in Synch.c But this code has several flaws! If you copied this, we will know! Producer/Consumer and Dining Philosophers

More information

Operating Systems Process Scheduling Prof. Dr. Armin Lehmann

Operating Systems Process Scheduling Prof. Dr. Armin Lehmann Operating Systems Process Scheduling Prof. Dr. Armin Lehmann lehmann@e-technik.org Fachbereich 2 Informatik und Ingenieurwissenschaften Wissen durch Praxis stärkt Seite 1 Datum 11.04.2017 Process Scheduling

More information

A COMPARATIVE ANALYSIS OF SCHEDULING ALGORITHMS

A COMPARATIVE ANALYSIS OF SCHEDULING ALGORITHMS IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN(E): 23218851; ISSN(P): 23474580 Vol. 3, Issue 1, Jan 2015, 121132 Impact Journals A COMPARATIVE

More information

Process Scheduling Course Notes in Operating Systems 1 (OPESYS1) Justin David Pineda

Process Scheduling Course Notes in Operating Systems 1 (OPESYS1) Justin David Pineda Process Scheduling Course Notes in Operating Systems 1 (OPESYS1) Justin David Pineda Faculty, Asia Pacific College November 2015 Introduction On the first half of the term, we discussed the conceptual

More information

Review of Round Robin (RR) CPU Scheduling Algorithm on Varying Time Quantum

Review of Round Robin (RR) CPU Scheduling Algorithm on Varying Time Quantum International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 6 Issue 8 August 2017 PP. 68-72 Review of Round Robin (RR) CPU Scheduling Algorithm on Varying

More information

ENGG4420 CHAPTER 4 LECTURE 3 GENERALIZED TASK SCHEDULER

ENGG4420 CHAPTER 4 LECTURE 3 GENERALIZED TASK SCHEDULER CHAPTER 4 By Radu Muresan University of Guelph Page 1 ENGG4420 CHAPTER 4 LECTURE 3 November 14 12 9:44 AM GENERALIZED TASK SCHEDULER In practical applications we need to be able to schedule a mixture of

More information

Pallab Banerjee, Probal Banerjee, Shweta Sonali Dhal

Pallab Banerjee, Probal Banerjee, Shweta Sonali Dhal Comparative Performance Analysis of Average Max Round Robin Scheduling Algorithm (AMRR) using Dynamic Time Quantum with Round Robin Scheduling Algorithm using static Time Quantum Pallab Banerjee, Probal

More information

LEAST-MEAN DIFFERENCE ROUND ROBIN (LMDRR) CPU SCHEDULING ALGORITHM

LEAST-MEAN DIFFERENCE ROUND ROBIN (LMDRR) CPU SCHEDULING ALGORITHM LEAST-MEAN DIFFERENCE ROUND ROBIN () CPU SCHEDULING ALGORITHM 1 D. ROHITH ROSHAN, 2 DR. K. SUBBA RAO 1 M.Tech (CSE) Student, Department of Computer Science and Engineering, KL University, India. 2 Professor,

More information

Recall: FCFS Scheduling (Cont.) Example continued: Suppose that processes arrive in order: P 2, P 3, P 1 Now, the Gantt chart for the schedule is:

Recall: FCFS Scheduling (Cont.) Example continued: Suppose that processes arrive in order: P 2, P 3, P 1 Now, the Gantt chart for the schedule is: CS162 Operating Systems and Systems Programming Lecture 10 Scheduling October 3 rd, 2016 Prof. Anthony D. Joseph http://cs162.eecs.berkeley.edu Recall: Scheduling Policy Goals/Criteria Minimize Response

More information

CS162 Operating Systems and Systems Programming Lecture 10. Tips for Handling Group Projects Thread Scheduling

CS162 Operating Systems and Systems Programming Lecture 10. Tips for Handling Group Projects Thread Scheduling CS162 Operating Systems and Systems Programming Lecture 10 Tips for Handling Group Projects Thread Scheduling October 3, 2005 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162 Review: Deadlock

More information

GENERALIZED TASK SCHEDULER

GENERALIZED TASK SCHEDULER CHAPTER 4 By Radu Muresan University of Guelph Page 1 ENGG4420 CHAPTER 4 LECTURE 4 November 12 09 2:49 PM GENERALIZED TASK SCHEDULER In practical applications we need to be able to schedule a mixture of

More information

SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING ALGORITHM

SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING ALGORITHM SELF OPTIMIZING KERNEL WITH HYBRID SCHEDULING ALGORITHM AMOL VENGURLEKAR 1, ANISH SHAH 2 & AVICHAL KARIA 3 1,2&3 Department of Electronics Engineering, D J. Sanghavi College of Engineering, Mumbai, India

More information

Scheduling II. To do. q Proportional-share scheduling q Multilevel-feedback queue q Multiprocessor scheduling q Next Time: Memory management

Scheduling II. To do. q Proportional-share scheduling q Multilevel-feedback queue q Multiprocessor scheduling q Next Time: Memory management Scheduling II To do q Proportional-share scheduling q Multilevel-feedback queue q Multiprocessor scheduling q Next Time: Memory management Scheduling with multiple goals What if you want both good turnaround

More information

Process Scheduling for John Russo generated Mon Nov 07 13:57:15 EST 2011

Process Scheduling for John Russo generated Mon Nov 07 13:57:15 EST 2011 1 of 8 11/7/2011 2:04 PM Process Scheduling for John Russo generated Mon Nov 07 13:57:15 EST 2011 Process Scheduling Simulator version 1.100L288 by S. Robbins supported by NSF grants DUE-9750953 and DUE-9752165.

More information

Lecture Note #4: Task Scheduling (1) EECS 571 Principles of Real-Time Embedded Systems. Kang G. Shin EECS Department University of Michigan

Lecture Note #4: Task Scheduling (1) EECS 571 Principles of Real-Time Embedded Systems. Kang G. Shin EECS Department University of Michigan Lecture Note #4: Task Scheduling (1) EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan 1 Reading Assignment Liu and Layland s paper Chapter 3 of the

More information

Job Scheduling in Cluster Computing: A Student Project

Job Scheduling in Cluster Computing: A Student Project Session 3620 Job Scheduling in Cluster Computing: A Student Project Hassan Rajaei, Mohammad B. Dadfar Department of Computer Science Bowling Green State University Bowling Green, Ohio 43403 Phone: (419)372-2337

More information

Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice

Efficient Round Robin Scheduling Algorithm with Dynamic Time Slice I.J. Education and Management Engineering, 2015, 2, 10-19 Published Online June 2015 in MECS (http://www.mecs-press.net) DOI: 10.5815/ijeme.2015.02.02 Available online at http://www.mecs-press.net/ijeme

More information

Mixed Round Robin Scheduling for Real Time Systems

Mixed Round Robin Scheduling for Real Time Systems Mixed Round Robin Scheduling for Real Systems Pallab Banerjee 1, Biresh Kumar 2, Probal Banerjee 3 1,2,3 Assistant Professor 1,2 Department of Computer Science and Engineering. 3 Department of Electronics

More information

Analysis of Adaptive Round Robin Algorithm and Proposed Round Robin Remaining Time Algorithm

Analysis of Adaptive Round Robin Algorithm and Proposed Round Robin Remaining Time Algorithm Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 12, December 2015,

More information

Queue based Job Scheduling algorithm for Cloud computing

Queue based Job Scheduling algorithm for Cloud computing International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 2251-838X / Vol, 4 (11): 3785-3790 Science Explorer Publications Queue based Job Scheduling algorithm

More information

Real-Time and Embedded Systems (M) Lecture 4

Real-Time and Embedded Systems (M) Lecture 4 Clock-Driven Scheduling Real-Time and Embedded Systems (M) Lecture 4 Lecture Outline Assumptions and notation for clock-driven scheduling Handling periodic jobs Static, clock-driven schedules and the cyclic

More information

Clock-Driven Scheduling

Clock-Driven Scheduling Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 85 C H A P T E R 5 Clock-Driven Scheduling The previous chapter gave a skeletal description of clock-driven scheduling.

More information

SCHEDULING AND CONTROLLING PRODUCTION ACTIVITIES

SCHEDULING AND CONTROLLING PRODUCTION ACTIVITIES SCHEDULING AND CONTROLLING PRODUCTION ACTIVITIES Al-Naimi Assistant Professor Industrial Engineering Branch Department of Production Engineering and Metallurgy University of Technology Baghdad - Iraq dr.mahmoudalnaimi@uotechnology.edu.iq

More information

Scheduling: Introduction

Scheduling: Introduction 7 Scheduling: Introduction By now low-level mechanisms of running processes (e.g., context switching) should be clear; if they are not, go back a chapter or two, and read the description of how that stuff

More information

Motivating Examples of the Power of Analytical Modeling

Motivating Examples of the Power of Analytical Modeling Chapter 1 Motivating Examples of the Power of Analytical Modeling 1.1 What is Queueing Theory? Queueing theory is the theory behind what happens when you have lots of jobs, scarce resources, and subsequently

More information

3. Scheduling issues. Common approaches /2. Common approaches /1. Common approaches / /17 UniPD / T. Vardanega 06/03/2017

3. Scheduling issues. Common approaches /2. Common approaches /1. Common approaches / /17 UniPD / T. Vardanega 06/03/2017 Common approaches /2 3. Scheduling issues Weighted round-robin scheduling With basic round-robin All ready jobs are placed in a FIFO queue The job at head of queue is allowed to execute for one time slice

More information

Lecture 6: Scheduling. Michael O Boyle Embedded Software

Lecture 6: Scheduling. Michael O Boyle Embedded Software Lecture 6: Scheduling Michael O Boyle Embedded Software Overview Definitions of real time scheduling Classification Aperiodic no dependence No preemption EDD Preemption EDF Least Laxity Periodic Rate Monotonic

More information

OPERATING SYSTEMS. Systems and Models. CS 3502 Spring Chapter 03

OPERATING SYSTEMS. Systems and Models. CS 3502 Spring Chapter 03 OPERATING SYSTEMS CS 3502 Spring 2018 Systems and Models Chapter 03 Systems and Models A system is the part of the real world under study. It is composed of a set of entities interacting among themselves

More information

Gang Scheduling Performance on a Cluster of Non-Dedicated Workstations

Gang Scheduling Performance on a Cluster of Non-Dedicated Workstations Gang Scheduling Performance on a Cluster of Non-Dedicated Workstations Helen D. Karatza Department of Informatics Aristotle University of Thessaloniki 54006 Thessaloniki, Greece karatza@csd.auth.gr Abstract

More information

Limited-preemptive Earliest Deadline First Scheduling of Real-time Tasks on Multiprocessors

Limited-preemptive Earliest Deadline First Scheduling of Real-time Tasks on Multiprocessors Limited-preemptive Earliest Deadline First Scheduling of Real-time Tasks on Multiprocessors Mälardalen University School of Innovation, Design and Technology Kaiqian Zhu Master Thesis 5/27/15 Examiner:

More information

Comparative Study of Parallel Scheduling Algorithm for Parallel Job

Comparative Study of Parallel Scheduling Algorithm for Parallel Job Comparative Study of Parallel Scheduling Algorithm for Parallel Job Priya Singh M.Tech (CSE) Institute of Technology & Management Zafruddin Quadri Al- Barkaat College of Graduate Studies Anuj Kumar M.Tech

More information

Smarter Round Robin Scheduling Algorithm for Cloud Computing and Big Data

Smarter Round Robin Scheduling Algorithm for Cloud Computing and Big Data Smarter Round Robin Scheduling Algorithm for Cloud Computing and Big Data Hicham Gibet Tani, Chaker El Amrani To cite this version: Hicham Gibet Tani, Chaker El Amrani. Smarter Round Robin Scheduling Algorithm

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 11: Page Replacement Ryan Huang Memory Management Final lecture on memory management: Goals of memory management - To provide a convenient abstraction

More information

DEADLINE MONOTONIC ALGORITHM (DMA)

DEADLINE MONOTONIC ALGORITHM (DMA) CHAPTER 4 By Radu Muresan University of Guelph Page 1 ENGG4420 CHAPTER 4 LECTURE 5 November 19 12 12:07 PM DEADLINE MONOTONIC ALGORITHM (DMA) RMA no longer remains an optimal scheduling algorithm for periodic

More information

CHAPTER 4 CONTENT October :10 PM

CHAPTER 4 CONTENT October :10 PM CHAPTER 4 By Radu Muresan University of Guelph Page 1 CHAPTER 4 CONTENT October 30 09 4:10 PM UNIPROCESSOR SCHEDULING Real Time Task Model Concepts Types of Real Time Tasks and Their Characteristics Task

More information

IJRASET: All Rights are Reserved

IJRASET: All Rights are Reserved Enhanced Efficient Dynamic Round Robin CPU Scheduling Algorithm Er. Meenakshi Saini 1, Er. Sheetal Panjeta 2, Dr. Sima 3 1,2,3 Deptt.of Computer Science & Application, DAV College for Girls Yamunanagar,

More information

Priority-Driven Scheduling of Periodic Tasks. Why Focus on Uniprocessor Scheduling?

Priority-Driven Scheduling of Periodic Tasks. Why Focus on Uniprocessor Scheduling? Priority-Driven Scheduling of Periodic asks Priority-driven vs. clock-driven scheduling: clock-driven: cyclic schedule executive processor tasks a priori! priority-driven: priority queue processor tasks

More information

System. Figure 1: An Abstract System. If we observed such an abstract system we might measure the following quantities:

System. Figure 1: An Abstract System. If we observed such an abstract system we might measure the following quantities: 2 Operational Laws 2.1 Introduction Operational laws are simple equations which may be used as an abstract representation or model of the average behaviour of almost any system. One of the advantages of

More information

A Survey of Resource Scheduling Algorithms in Green Computing

A Survey of Resource Scheduling Algorithms in Green Computing A Survey of Resource Scheduling Algorithms in Green Computing Arshjot Kaur, Supriya Kinger Department of Computer Science and Engineering, SGGSWU, Fatehgarh Sahib, Punjab, India (140406) Abstract-Cloud

More information

EFFECT OF CROSS OVER OPERATOR IN GENETIC ALGORITHMS ON ANTICIPATORY SCHEDULING

EFFECT OF CROSS OVER OPERATOR IN GENETIC ALGORITHMS ON ANTICIPATORY SCHEDULING 24th International Symposium on on Automation & Robotics in in Construction (ISARC 2007) Construction Automation Group, I.I.T. Madras EFFECT OF CROSS OVER OPERATOR IN GENETIC ALGORITHMS ON ANTICIPATORY

More information

The BEST Desktop Soft Real-Time Scheduler

The BEST Desktop Soft Real-Time Scheduler The BEST Desktop Soft Real-Time Scheduler Scott Banachowski and Scott Brandt sbanacho@cs.ucsc.edu Background/Motivation Best-effort Scheduling PROS: Simple, easy, flexible, no a priori information CONS:

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Page Replacement Policies 2 Review: Page-Fault Handler (OS) (cheap) (cheap) (depends) (expensive) (cheap) (cheap) (cheap) PFN = FindFreePage()

More information

Application the Queuing Theory in the Warehouse Optimization Jaroslav Masek, Juraj Camaj, Eva Nedeliakova

Application the Queuing Theory in the Warehouse Optimization Jaroslav Masek, Juraj Camaj, Eva Nedeliakova Application the Queuing Theory in the Warehouse Optimization Jaroslav Masek, Juraj Camaj, Eva Nedeliakova Abstract The aim of optimization of store management is not only designing the situation of store

More information

Dependency-aware and Resourceefficient Scheduling for Heterogeneous Jobs in Clouds

Dependency-aware and Resourceefficient Scheduling for Heterogeneous Jobs in Clouds Dependency-aware and Resourceefficient Scheduling for Heterogeneous Jobs in Clouds Jinwei Liu* and Haiying Shen *Dept. of Electrical and Computer Engineering, Clemson University, SC, USA Dept. of Computer

More information

SINGLE MACHINE SEQUENCING. ISE480 Sequencing and Scheduling Fall semestre

SINGLE MACHINE SEQUENCING. ISE480 Sequencing and Scheduling Fall semestre SINGLE MACHINE SEQUENCING 2011 2012 Fall semestre INTRODUCTION The pure sequencing problem is a specialized scheduling problem in which an ordering of the jobs completely determines a schedule. Moreover,

More information

Real-time System Overheads: a Literature Overview

Real-time System Overheads: a Literature Overview Real-time System Overheads: a Literature Overview Mike Holenderski October 16, 2008 Abstract In most contemporary systems there are several jobs concurrently competing for shared resources, such as a processor,

More information

General Terms Measurement, Performance, Design, Theory. Keywords Dynamic load balancing, Load sharing, Pareto distribution, 1.

General Terms Measurement, Performance, Design, Theory. Keywords Dynamic load balancing, Load sharing, Pareto distribution, 1. A Dynamic Load Distribution Strategy for Systems Under High Tas Variation and Heavy Traffic Bin Fu Zahir Tari School of Computer Science and Information and Technology Melbourne, Australia {b fu,zahirt}@cs.rmit.edu.au

More information

Real-Time Scheduling Theory and Ada

Real-Time Scheduling Theory and Ada Technical Report CMU/SEI-88-TR-033 ESD-TR-88-034 Real-Time Scheduling Theory and Ada Lui Sha John B. Goodenough November 1988 Technical Report CMU/SEI-88-TR-033 ESD-TR-88-034 November 1988 Real-Time Scheduling

More information

Dynamic Fractional Resource Scheduling for HPC Workloads

Dynamic Fractional Resource Scheduling for HPC Workloads Dynamic Fractional Resource Scheduling for HPC Workloads Mark Stillwell 1 Frédéric Vivien 2 Henri Casanova 1 1 Department of Information and Computer Sciences University of Hawai i at Mānoa 2 INRIA, France

More information

A COMPARATIVE ANALYSIS OF SCHEDULING POLICIES IN A DISTRIBUTED SYSTEM USING SIMULATION

A COMPARATIVE ANALYSIS OF SCHEDULING POLICIES IN A DISTRIBUTED SYSTEM USING SIMULATION H. KARATZA: COMPARATIVE AALYSIS A COMPARATIVE AALYSIS OF SCHEDULIG POLICIES I A DISTRIBUTED SYSTEM USIG SIMULATIO HELE D. KARATZA Department of Informatics Aristotle University of Thessaloniki 46 Thessaloniki,

More information

Energy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors

Energy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors Energy-Efficient Scheduling of Interactive Services on Heterogeneous Multicore Processors Shaolei Ren, Yuxiong He, Sameh Elnikety University of California, Los Angeles, CA Microsoft Research, Redmond,

More information

Job Scheduling Challenges of Different Size Organizations

Job Scheduling Challenges of Different Size Organizations Job Scheduling Challenges of Different Size Organizations NetworkComputer White Paper 2560 Mission College Blvd., Suite 130 Santa Clara, CA 95054 (408) 492-0940 Introduction Every semiconductor design

More information

LOADING AND SEQUENCING JOBS WITH A FASTEST MACHINE AMONG OTHERS

LOADING AND SEQUENCING JOBS WITH A FASTEST MACHINE AMONG OTHERS Advances in Production Engineering & Management 4 (2009) 3, 127-138 ISSN 1854-6250 Scientific paper LOADING AND SEQUENCING JOBS WITH A FASTEST MACHINE AMONG OTHERS Ahmad, I. * & Al-aney, K.I.M. ** *Department

More information

Production Job Scheduling for Parallel Shared Memory Systems

Production Job Scheduling for Parallel Shared Memory Systems Proc. International Parallel and Distributed Processing Symp. 1, San Francisco, Apr. 1. Production Job Scheduling for Parallel Shared Memory Systems Su-Hui Chiang Mary K. Vernon suhui@cs.wisc.edu vernon@cs.wisc.edu

More information

The Gang Scheduler - Timesharing on a Cray T3D

The Gang Scheduler - Timesharing on a Cray T3D The Gang Scheduler - sharing on a Cray T3D Morris Jette, David Storch, and Emily Yim, Lawrence Livermore National Laboratory, Livermore, California, USA ABSTRACT: The Gang Scheduler, under development

More information

10/1/2013 BOINC. Volunteer Computing - Scheduling in BOINC 5 BOINC. Challenges of Volunteer Computing. BOINC Challenge: Resource availability

10/1/2013 BOINC. Volunteer Computing - Scheduling in BOINC 5 BOINC. Challenges of Volunteer Computing. BOINC Challenge: Resource availability Volunteer Computing - Scheduling in BOINC BOINC The Berkley Open Infrastructure for Network Computing Ryan Stern stern@cs.colostate.edu Department of Computer Science Colorado State University A middleware

More information

On-line Multi-threaded Scheduling

On-line Multi-threaded Scheduling Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Tesis de Licenciatura On-line Multi-threaded Scheduling por Marcelo Mydlarz L.U.: 290/93 Director Dr. Esteban

More information

Real-Time Systems. Modeling Real-Time Systems

Real-Time Systems. Modeling Real-Time Systems Real-Time Systems Modeling Real-Time Systems Hermann Härtig WS 2013/14 Models purpose of models describe: certain properties derive: knowledge about (same or other) properties (using tools) neglect: details

More information

Comparative Analysis of Scheduling Algorithms of Cloudsim in Cloud Computing

Comparative Analysis of Scheduling Algorithms of Cloudsim in Cloud Computing International Journal of Computer Applications (975 8887) Comparative Analysis of Scheduling Algorithms of Cloudsim in Cloud Computing Himani Department of CSE Guru Nanak Dev University, India Harmanbir

More information

Node Allocation In Grid Computing Using Optimal Resouce Constraint (ORC) Scheduling

Node Allocation In Grid Computing Using Optimal Resouce Constraint (ORC) Scheduling IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.6, June 2008 309 Node Allocation In Grid Computing Using Optimal Resouce Constraint (ORC) Scheduling K.Somasundaram 1, S.Radhakrishnan

More information

Stride Scheduling. Robert Grimm New York University

Stride Scheduling. Robert Grimm New York University Stride Scheduling Robert Grimm New York University The Three Questions What is the problem? What is new or different? What are the contributions and limitations? Motivation Scheduling of scarce computer

More information

Discrete Event Simulation

Discrete Event Simulation Chapter 2 Discrete Event Simulation The majority of modern computer simulation tools (simulators) implement a paradigm, called discrete-event simulation (DES). This paradigm is so general and powerful

More information

Resource Allocation Strategies in a 2-level Hierarchical Grid System

Resource Allocation Strategies in a 2-level Hierarchical Grid System st Annual Simulation Symposium Resource Allocation Strategies in a -level Hierarchical Grid System Stylianos Zikos and Helen D. Karatza Department of Informatics Aristotle University of Thessaloniki 5

More information

OPTIMAL ALLOCATION OF WORK IN A TWO-STEP PRODUCTION PROCESS USING CIRCULATING PALLETS. Arne Thesen

OPTIMAL ALLOCATION OF WORK IN A TWO-STEP PRODUCTION PROCESS USING CIRCULATING PALLETS. Arne Thesen Arne Thesen: Optimal allocation of work... /3/98 :5 PM Page OPTIMAL ALLOCATION OF WORK IN A TWO-STEP PRODUCTION PROCESS USING CIRCULATING PALLETS. Arne Thesen Department of Industrial Engineering, University

More information

Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition

Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition Björn Andersson and Jan Jonsson Department of Computer Engineering Chalmers University of Technology SE 412 96 Göteborg,

More information

Author's personal copy

Author's personal copy J. Parallel Distrib. Comput. 71 (2011) 963 973 Contents lists available at ScienceDirect J. Parallel Distrib. Comput. journal homepage: www.elsevier.com/locate/jpdc Online algorithms for advance resource

More information

Integrated Scheduling: The Best of Both Worlds

Integrated Scheduling: The Best of Both Worlds Integrated Scheduling: The Best of Both Worlds Jon B. Weissman, Lakshman Rao Abburi, and Darin England Department of Computer Science and Engineering University of Minnesota, Twin Cities Minneapolis, MN

More information

Addressing UNIX and NT server performance

Addressing UNIX and NT server performance IBM Global Services Addressing UNIX and NT server performance Key Topics Evaluating server performance Determining responsibilities and skills Resolving existing performance problems Assessing data for

More information

Job Scheduling based on Size to Hadoop

Job Scheduling based on Size to Hadoop I J C T A, 9(25), 2016, pp. 845-852 International Science Press Job Scheduling based on Size to Hadoop Shahbaz Hussain and R. Vidhya ABSTRACT Job scheduling based on size with aging has been recognized

More information

On the Comparison of CPLEX-Computed Job Schedules with the Self-Tuning dynp Job Scheduler

On the Comparison of CPLEX-Computed Job Schedules with the Self-Tuning dynp Job Scheduler On the Comparison of CPLEX-Computed Job Schedules with the Self-Tuning dynp Job Scheduler Sven Grothklags 1 and Achim Streit 2 1 Faculty of Computer Science, Electrical Engineering and Mathematics, Institute

More information

Mathematical Modeling and Analysis of Finite Queueing System with Unreliable Single Server

Mathematical Modeling and Analysis of Finite Queueing System with Unreliable Single Server IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 3 Ver. VII (May. - Jun. 2016), PP 08-14 www.iosrjournals.org Mathematical Modeling and Analysis of Finite Queueing

More information

Common Tool for Intelligent Scheduling / Critical Chain Project Management for US Navy & Contractor Shipyards

Common Tool for Intelligent Scheduling / Critical Chain Project Management for US Navy & Contractor Shipyards Common Tool for Intelligent Scheduling / Critical Chain Project Management for US Navy & Contractor Shipyards Rob Richards, Ph.D. April 20, 2016 Planning, Production Processes & Facilities Panel (PPP&F)

More information

Hadoop Fair Scheduler Design Document

Hadoop Fair Scheduler Design Document Hadoop Fair Scheduler Design Document August 15, 2009 Contents 1 Introduction The Hadoop Fair Scheduler started as a simple means to share MapReduce clusters. Over time, it has grown in functionality to

More information

CMS readiness for multi-core workload scheduling

CMS readiness for multi-core workload scheduling CMS readiness for multi-core workload scheduling Antonio Pérez-Calero Yzquierdo, on behalf of the CMS Collaboration, Computing and Offline, Submission Infrastructure Group CHEP 2016 San Francisco, USA

More information

EPOCH TASK SCHEDULING IN DISTRIBUTED SERVER SYSTEMS

EPOCH TASK SCHEDULING IN DISTRIBUTED SERVER SYSTEMS EPOCH TASK SCHEDULING IN DISTRIBUTED SERVER SYSTEMS Helen D. Karatza Department of Informatics Aristotle University of Thessaloniki 5424 Thessaloniki, Greece Email: karatza@csd.auth.gr KEYWORDS Simulation,

More information

Decentralized Preemptive Scheduling Across Heterogeneous Multi-core Grid Resources

Decentralized Preemptive Scheduling Across Heterogeneous Multi-core Grid Resources Decentralized Preemptive Scheduling Across Heterogeneous Multi-core Grid Resources Arun Balasubramanian 1(B), Alan Sussman 2, and Norman Sadeh 1 1 Institute for Software Research, Carnegie Mellon University,

More information

Stergios V. Anastasiadis and Kenneth C. Sevcik. Computer Systems Research Institute. University of Toronto.

Stergios V. Anastasiadis and Kenneth C. Sevcik. Computer Systems Research Institute. University of Toronto. Parallel Application Scheduling on Networks of Workstations Stergios V. Anastasiadis and Kenneth C. Sevcik Computer Systems Research Institute University of Toronto {stergios,kcs}@cs.toronto.edu Abstract

More information

Preference-Oriented Fixed-Priority Scheduling for Real-Time Systems

Preference-Oriented Fixed-Priority Scheduling for Real-Time Systems Preference-Oriented Fixed-Priority Scheduling for Real-Time Systems Rehana Begam, Dakai Zhu University of Texas at San Antonio San Antonio, TX, 7829 rehan.sheta@gmail.com, dakai.zhu@utsa.edu Hakan Aydin

More information

Job Scheduling for the BlueGene/L System

Job Scheduling for the BlueGene/L System Job Scheduling for the BlueGene/L System Elie Krevat, José G. Castaños, and José E. Moreira krevat@mit.edu Massachusetts Institute of Technology Cambridge, MA 219-47 castanos,jmoreira @us.ibm.com IBM T.

More information

SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms

SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms : A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms Maxime Chéramy, Pierre-Emmanuel Hladik and Anne-Marie Déplanche maxime.cheramy@laas.fr July 8, 2014 5th International Workshop

More information

Utilization and Predictability in Scheduling. the IBM SP2 with Backlling. The Hebrew University of Jerusalem.

Utilization and Predictability in Scheduling. the IBM SP2 with Backlling. The Hebrew University of Jerusalem. Utilization and Predictability in Scheduling the IBM SP2 with Backlling Dror G. Feitelson Ahuva Mu'alem Weil Institute of Computer Science The Hebrew University of Jerusalem 91904 Jerusalem, Israel ffeit,ahumug@cs.huji.ac.il

More information