Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information From Mono-to Tris-1,2,3-triazole-Stabilized Gold Nanoparticles and their Compared Catalytic Efficiency in 4-Nitrophenol Reduction Changlong Wang, Lionel Salmon, Qian Li, María Echeverría Igartua, Sergio Moya, Roberto Ciganda, Jaime Ruiz and Didier Astruc* Table of contents 1. Synthesis and characterizations of the compounds..s 2 2. UV-vis. characterizations.s 8 3. TEM images and size distributions S Reduction of 4-NP by NaBH 4..S References.... S 32 1

2 1. Synthesis and characterizations of the compounds Synthesis of 1,3-di(1H-1,2,3-triazol-1-yl)propane The synthesis of 1,3-di(1H-1,2,3-triazol-1-yl)propane, 2, followed the published procedures. S1 Scheme 1. Synthesis of 1,3-di(1H-1,2,3-triazol-1-yl)propane, 2. 2

3 Figure S1. 1 H NMR (CDCl 3, 300 MHz) spectrum of 1,3-di(1H-1,2,3-triazol-1-yl)propane, 2. (δ ppm =7.68 (2H), 7.63 (2H), (2H), (2H)). 3

4 2. UV-vis. characterizations Figure S2. UV-vis. absorption spectrum of AuNP-2 (1trz per AuNP). 4

5 Figure S3. UV-vis. absorption spectrum of AuNP-2 (3trz per AuNP). 5

6 Figure S4. UV-vis. absorption spectrum of AuNP-3 (44 monomer units per AuNP). 6

7 Figure S5. UV-vis. absorption spectrum of AuNP-6. 7

8 Figure S6. UV-vis. absorption spectrum of the AuNP-5-THT. 8

9 Figure S7. UV-vis. absorption spectrum of AuNP

10 3. TEM images and size distributions Figure S8. TEM images of AuNP-1. 1trz per AuNP. 10

11 Figure S9. TEM and size distributions of AuNP-2. 1 trz per AuNP (top), and 3 trz per AuNP (bottom). 11

12 Figure S10. Size distribution of AuNP-3. 12

13 Figure S11. Size distribution of AuNP-4. 13

14 Figure S12. Size distribution of AuNP-6. 14

15 Figure S13. TEM and size distribution of AuNP-5-THT. 15

16 Figure S14. TEM and size distribution of AuNP

17 4. Reduction of 4-NP by NaBH 4 (at 20 ºC) Scheme S2. Catalytic reduction of 4-NP by NaBH 4. 17

18 UV-vis. spectra of the 4-NP reduction and reaction rate (k app ) Figure S15. UV-vis. spectra of the 4-NP reduction by NaBH 4 catalyzed by AuNP-2 (1trz per Au) (top); consumption rate of 4-NP: -ln(c t /C 0 ) vs. reaction time (bottom). 18

19 Figure S16. UV-vis. spectra of the 4-NP reduction by NaBH 4 catalyzed by AuNP-2 (3trz per Au) (top); consumption rate of 4-NP: -ln(c t /C 0 ) vs. reaction time (bottom). 19

20 Figure S17. UV-vis. spectra of the 4-NP reduction by NaBH 4 catalyzed by AuNP-3 (44 monomer units per Au) (top); consumption rate of 4-NP: -ln(c t /C 0 ) vs. reaction time (bottom, R 2 = ). 20

21 Figure S18. UV-vis. spectra of the 4-NP reduction by NaBH 4 catalyzed by AuNP-6 (44 monomer unit per Au) (top); consumption rate of 4-NP: -ln(c t /C 0 ) vs. reaction time (bottom, R 2 = ). 21

22 Figure S19. UV-vis. spectra of the 4-NP reduction by NaBH 4 catalyzed by AuNP-5-THT (3trz per Au) (top); consumption rate of 4-NP: -ln(c t /C 0 ) vs. reaction time (bottom, R 2 = ). 22

23 Figure S20. UV-vis. spectra of the 4-NP reduction by NaBH 4 catalyzed by AuNP-5-0 (3trz per Au) (top); consumption rate of 4-NP: -ln(c t /C 0 ) vs. reaction time (bottom, R 2 = ). 23

24 Table S1. Comparison of 4-NP reduction by various AuNPs catalysts from the literature. Catalysts Stabilizer Catalysts amount (mol%) NaBH 4 (equiv.) K app (S -1 ) Ref. AuNPs DMF AuNPs CTAB AuNPs PEO-b-PAA AuNPs Triazoletemini PEO AuNPs PVP AuNPs Cyclodextrin AuNPs Polyaniline AuNPs Methyl-imidazolium-ba sed ionic polymer AuNPs PAMAM AuNPs PPI AuNPs dendritic 1,2,3-triazoles terminated with PEG 2000 AuNPs Fc + -trz-cl AuNPs Mono-trz-PEG AuNPs Nona-PEG AuNPs Polymer trz-peg AuNPs NaBH AuNPs Abroma augusta Linn bark extract AuNPs 1,4-bis(terpyridine-4-yl Not Given )benzene (0.5 mg catalyst) AuNPs GO@NH AuNPs Fe 2 O 3 GO

25 5. References S1 (a) LoCoco, M. D.; Zhang, X.; Jordan, R. F. J. Am. Chem. Soc. 2004, 126, (b) Khan, S. S.; Liebscher, J. Synthesis. 2010, 15, S2 Yamamoto, H.; Yano, H.; Kouchi, H.; Obora, Y.; Arakawa, R.; Kawasaki, H. Nanoscale. 2012, 4, S3 Fenger, R.; Fertitta, E.; Kirmse, H.; Thunemann, A. F.; Rademann, K. Phys. Chem.Chem. Phys. 2012, 14, S4 Seo, E.; Kim, J.; Hong, Y.; Kim, Y. S.; Lee, D.; Kim, B. S. J. Phys. Chem. C 2013, 117, S5 Reference 10a in the manuscript. S6 Xiao, C.; Chen, S.; Zhang, L.; Zhou, S.; Wu, W. Chem. Commun. 2012, 48, S7 Huang, T.; Meng, F.; Qi, L. J. Phys. Chem. C, 2009, 113, S8 Han, J.; Li, L.; Guo, R. Macromolecules 2010, 43, S9 Biondi, I.; Laurenczy, G.; Dyson, P. J. Inorg. Chem. 2011, 50, S10 Esumi, K.; Miyamoto, K.; Yoshimura, T. J. Colloid Interface Sci. 2003, 268, S11 Hayakawa, K.; Yoshimura, T.; Esumi, K. Langmuir 2003, 19, S12 Reference 10b in the manuscript. S13 Li, N.; Echeverría, M.; Moya, S.; Ruiz, J.; Astruc, D. Inorg. Chem. 2014, 53, S14 Reference 11 in the manuscript. S15 Deraedt, C.; Salmon, L.; Gatard, S.; Ciganda, R.; Hernandez, R.; Ruiz, J.; Astruc, D. Chem. Commun. 2014, 50, S16 Das, S.; Bag, B. G.; Basu, R. Appl. Nanosci. 2015, 5, S17 Majouga, A. G.; Beloglazkina, E. K.; Manzheliy, E. A.; Denisov, D. A.; Evtushenko, E. G.; Maslakov, K. I.; Golubina, E. V.; Zyk, N. V. Appl. Surf. Sci., 2015, 325, S18 Ju, Y.; Li, X.; Feng, J.; Ma, Y.; Hu, J.; Chen, X. Appl. Surf. Sci., 2014, 316, S19 Woo, H.; Kim, J. W.; Kim, M.; Park, S.; Park, K. H. RSC Adv. 2015, 5,