Supplemental Information. Opportunities for Rechargeable. Solid-State Batteries Based. on Li-Intercalation Cathodes

Size: px
Start display at page:

Download "Supplemental Information. Opportunities for Rechargeable. Solid-State Batteries Based. on Li-Intercalation Cathodes"

Transcription

1 JOUL, Volume 2 Supplemental Information Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes Xabier Judez, Gebrekidan Gebresilassie Eshetu, Chunmei Li, Lide M. Rodriguez- Martinez, Heng Zhang, and Michel Armand

2 Supplemental Information Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes Xabier Judez, 1,3 Gebrekidan Gebresilassie Eshetu, 1,2,3 Chunmei Li, 1 Lide M. Rodriguez-Martinez, 1 Heng Zhang, 1, * and Michel Armand 1, * 1 CIC Energigune, Parque Tecnológico de Álava, Albert Einstein 48, Miñano, Álava, Spain. 2 Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Jägerstraße 17/19, Aachen, Germany 3 These authors contributed equally to the work. *Correspondence: hzhang@cicenergigune.com (H.Z); marmand@cicenergigune.com (M. A.) 1

3 Parameters for Figure 1 Table S1. Volumetric (Evl) and gravimetric (Egra) energy density of different cell configurations, based on literature and on the calculation results obtained in this work. [a] Battery technology Year Liquid electrolyte Polymer electrolyte Glassy electrolyte Ref. E vl / Wh L 1 E gra / Wh kg 1 E vl / Wh L 1 E gra / Wh kg 1 E vl / Wh L 1 E gra / Wh kg 1 Lead-Acid 1890s Ni-Cd 1960s Ni-MH 1990s Graphite-LCO 2000s Graphite-NCA 2000s Li -S 1990s Li -O 2/air >1500 >1700 4,5 Li -LFP 2010s This work Li -NCA 2010s This work Li -NMC s This work [a] For calculated values, the thickness of polymer and glassy electrolytes was fixed to 30 µm and the areal capacity was ranging from 2 to 4 mah cm 2. 2

4 Number of publications Research Tr in the Field of All Solid-State Lithium Metal Batteries The interest in all solid-state lithium metal batteries (ASSLMBs) has witnessed an explosive exponential growth in recent 10 years, e.g., 1146 publications (2017) vs. 104 publications (2007). As shown in Figure S1, ASSLMBs coupled with intercalation cathode (Li-IC + SE) received considerable attention in the recent five years, though the number of publications generated is lower than those in Li-S and Li-O2/air Li-IC + SE Li-S + SE Li-O 2 + SE LMBs + SE Year Figure S1. Research evolution on all solid-state Li-IC, Li-S, Li-O2/air and LMBs. Data is obtained from Scopus with the corresponding keywords in the leg. IC, LMBs and SE, tallying to the abbreviations of intercalation cathode, lithium metal batteries and solid electrolyte, respectively. (Data accessed on 20/06/2018). Calculations Realistic calculations of energy density were done based on the model previously developed by our group, 3,6 with the help of Scilab software, a free open source numerically oriented programming language. 7 Multiple calculations were done as a function of different parameters, such as active material, active material loading or electrolyte type and thickness. The scripts of Scilab files for the calculation could be accessed at the of the Supporting 3

5 Information (Pages 8 15). Parameters used for different electroactive materials are listed in Table S2. 8 Table S2. Properties of the different active materials used for calculations. Capacity /mah g 1 Discharge voltage / V vs. Liº/Li + Density / g cm 3 Lithium Graphite LiFePO 4 (LFP) LiNi 0.8Co 0.15Al 0.05O 2 (NCA) LiNi 0.33Mn 0.33Co 0.33O 2 (NMC111) LiNi 0.5Mn 0.3Co 0.2O 2 (NMC532) LiNi 0.8Mn 0.1Co 0.1O 2 (NMC811) LiCoO 2 (LCO) LiMn 2O 4 (LMO) LiNi 0.5Mn 1.5O 4 (LNMO) Li solid electrolyte IC configuration For simplicity, properties of solid electrolytes are taken from the most representative electrolytes in each family, i.e., poly(ethylene oxide)-based electrolytes for solid polymer electrolytes, Li2S-P2S5 for glassy electrolyte and Li6.55Ga0.15La3Zr2O12 for ceramic electrolytes. Those parameters are listed in Table S3 and Table S4. 8 In the cathode side, solid electrolytes simultaneously act as both binder and cathode-soaking electrolyte (i.e., catholyte). In the electrolyte compartment, solid electrolytes serve as both ionic conducting materials and electrode separators, without the need of an extra electronic insulating separator. Graphite (or Li ) liquid electrolyte IC configuration Properties of typical materials used in lithium-ion batteries were chosen for estimating the energy density of graphite (or Li ) liquid electrolyte IC configuration, e.g., ethylene carbonate/dimethyl carbonate solution as electrolyte, polyvinylidene fluoride as binder, and so on. Furthermore, it is essential to consider that a certain amount of liquid electrolyte is needed to penetrate and soak sufficiently cathode structure, thus forming ionic conducting networks within the cathode. Additionally, a polymeric separator membrane should be introduced for avoiding the physical contact between anode and cathode. Other specifications for electrode materials 4

6 In the case of Li anode, lithium foil is self-standing and does not need any additional binder or conductive material to form a self-standing electrode. However, for accessing a stable cycling of ASSLICBs, the capacity ratio of negative/positive (N/P) electrodes was set as high as 3. On the other side, a composite electrode comprised of graphite active material, binder, and a conductive carbon is required to get a self-standing graphite anode. However, due to stable solid electrolyte interphase formed on the graphite anode, a narrow N/P ratio can be applied (in this work, N/P = 1.05). Finally, aluminum foil is known to react with Li to form alloy at low potentials, so a copper current collector is necessary at the graphite anode side. Table S3. Properties of and lithium and graphite based anodes and intercalation cathodes for different electrolyte systems. Parameters Liº anode Graphite anode [a] Cathode [b] Current collector thickness / µm 4 [c] 10 [c] Current collector weight / mg cm Active material / vl% Binder / vl% 2 30/30/30/2 Binder density / g cm /1.95/5.15/1.76 Free electrolyte / vl% 28 0/0/0/28 Free electrolyte density / g cm /0/0/1.13 Carbon/ vl% 5 5 Carbon density / g cm Porosity / % /10/10/10 Areal capacity ratio of negative/positive electrode [a] Data used for calculating the liquid electrolytes. [b] The values separated by slash refer to those for polymer/glassy/ceramic/liquid electrolytes, respectively. [c] Double side coating of electrode is cosiderred. Table S4. Properties of the electrolytes selected for calculation. Parameters Polymer electrolyte Glassy electrolyte Ceramic electrolyte Liquid electrolyte Electrolyte density / g cm Electrolyte porosity /% Separator mass / mg cm Separator thickness / µm 25 5

7 Figure S2. Gravimetric and volumetric energy densities of Liº LFP intercalation cathode battery using polymer, glass and ceramic solid electrolytes (30 µm in thickness) and liquid electrolyte, paired with graphite or lithium-based anode electrolytes. This clearly reveals the improvement of energy density for all solid state electrolytes lies in the replacement of porous, low capacity graphite anode with high capacity, light weight Liº anode and exclusion of Cu current collector. ASSLICB Safe Liquid Li-ion 307 Wh kg Wh L -1 Liquid LICB 226 Wh kg Wh L Wh kg Wh L -1 Unsafe Figure S3. Schematic representation of the gravimetric and volumetric energy variation for LFP based batteries with three different configurations (i.e., graphite liquid electrolyte LFP for liquid Li-ion, Liº liquid electrolyte LFP for liquid LICB, Liº polymer electrolyte (30 µm) LFP for ASSLICB. Areal capcity: 2 mah cm 2. 6

8 Figure S4. Gravimetric and volumetric energy densities of Liº NMC811 intercalation cathode battery using polymer, glass and ceramic solid electrolytes (30 µm in thickness) in a wide areal capacity range up to 30 mah cm 2. References 1. Palacin, M.R. (2009). Recent advances in rechargeable battery materials: a chemist s perspective. Chem. Soc. Rev. 38, Judez, X., Zhang, H., Li, C., Eshetu, G.G, González-Marcos, J.A, Armand, M., and Rodriguez-Martinez, L.M. (2018). Review solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J. Electrochem. Soc. 165, A6008 A Zheng, JP., Liang, RY., Hrickson, M., and Plichta, E.J. (2008). Theoretical energy density of Li air batteries. J. Electrochem. Soc. 155, A432 A Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., and Wilcke, W. (2010). Lithium air battery: promise and challenges. J. Phys. Chem. Lett. 1, Li, C., Zhang, H., Otaegui, L., Singh, G., Armand, M., and Rodriguez-Martinez, L.M. (2016). Estimation of energy density of Li-S batteries with liquid and solid electrolytes. J. Power Sources 326, Wu, J., Liu, P., Hu, Y. and Li., H. (2016). Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries. Energy Storage Sci. Technol. 5,

9 Scilab for Liquid Graphite-Based Li-Ion Batteries //Xabier Júdez //CIC Energigue energy cooperative research centre //Estimation of energy density of Li-ion batteries with liquid and solid electrolytes, and different active materials clc, clear tic() //AMvec=["LFP" "NCA" "NMC111" "NMC523" "NMC811" "LCO" "LMO" "LNMO"] //Vavevec=[ ] //V vs. graphite. //Cgvec=[ ] //rhoamvec=[ ] //g/cm3. Active material s AMvec=["LFP"] //To extract data from one active material delete others and introduce only one Vavevec=[3.3] //V vs. Li Cgvec=[160] // mah/g rhoamvec=[3.65] //g/cm3. Active material s //Current collector for cathode mcc= 2.7*10^-3 //g/cm2. Current collector mass vcc=10*10^-4 // cm3/cm2. Current collector thickness //Graphite anode properties NP= 1.05 //Negative/positivie capacity ratio. Cgra= 372 // mah/g. Graphite theoretical capacity rhogra=2.2 //g/cm3. Lithium density rhoca=2.2 ///g/cm3. Carbon density mcca= 3.58*10^-3 //g/cm2. Current collector mass vcca= 4*10^-4 // cm3/cm2. deps on thickness GravpercA=0.65; CvpercA=0.05; BvpercA=0.02; ElecvpercA= 0.28 //volume percentage anode rhoba=1.76 //PVdF Anodeporosity=0.1 //Anode porosity. //Gravimetric energy function [Eg]=GravimetricEnergy(Ca) AMperc=(AMvperc*rhoAM)/(AMvperc*rhoAM+Cvperc*rhoC+Bvperc*rhoB+Elecvperc*rh oelec); //From volume fraction to mass fraction. Active material 8

10 GrapercA=(GravpercA*rhogra)/(GravpercA*rhogra+CvpercA*rhoCA+BvpercA*rhoBA+Ele cvperca*rhoelec); //From volume fraction to mass fraction. Graphite mam=ca/cg //gs/cm2 Sulfur active mass mcatho=mam/amperc //g/cm2. Total cathode mass mano= Ca*NP/Cgra/GrapercA //g/cm2. Anode mass Wtot=mcc+mcatho+mAno+msep+melec //g/cm2. Total mass Eg=Vave*Ca/Wtot //Wh/kg function ////Volumetric Energy function [Ev]=VolumetricEnergy(Ca) mam=ca/cg //gs/cm2 Sulfur active mass vcatho=(mam/rhoam/amvperc)/(1-cathoporosity) //cm3/cm2. Cathode volume vano=ca*np/cgra/rhogra/gravperca/(1-anodeporosity) //cm3/cm2. Anode volume vtot=vcc+vcatho+vano+vsep+velec //cm3/cm2. Total volume Ev=Vave*Ca/vtot //Wh/l function //////////////////////////CALCULATIONS FOR LIQUIDS///////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// AMvperc=0.65; Cvperc=0.05; Bvperc=0.02; Elecvperc=0.28 //Volumetric percentage rhoc=2.2; rhob=1.76 //PVdF binder Cavector=(0:0.2:50) //Different areal loadings. [a b]=size(amvec) for i=1:b Vave=Vavevec(i) Cg=Cgvec(i) rhoam=rhoamvec(i) ///////////////////////////////////////////////////////////////////// cathoporosity=0.1 //Cathode porosity. msep=1.2*10^-3 //g cm-2. Cellgard s properties vsep=25*10^-4 //cm3/cm2. Separator thickness rhoelec=1.13 //g cm-3 Electrolyte density for k=1:length(cavector) Ca=Cavector(k) 9

11 velec=0 //Electrolyte fills the pores of separator, so it does not need additional volume melec=vsep*rhoelec //Electrolyte amount: liquid electrolyte in the volume of the separator (volume*density) //Electrolyte on separator, not on cathode or anode EgLiq(k)=GravimetricEnergy(Ca) // [j,k]=[thickness,ca] EvLiq(k)=VolumetricEnergy(Ca) 10

12 Scilab for Liquid Lithium Metal Batteries //Xabier Júdez //CIC Energigue energy cooperative research centre //Estimation of energy density of Li-ion batteries with liquid and solid electrolytes, and different active materials clc, clear // //AMvec=["LFP" "NCA" "NMC111" "NMC523" "NMC811" "LCO" "LMO" "LNMO"] //Vavevec=[ ] //V vs. Li //Cgvec=[ ] // mah/g //rhoamvec=[ ] //g/cm3. Active material s AMvec=["LFP"] //To extract data from one active material delete others and introduce only one Vavevec=[3.4] //V vs. Li Cgvec=[160] // mah/g rhoamvec=[3.65] //g/cm3. Active material s mcc= 2.7*10^-3 //g/cm2. Current collector mass vcc=10*10^-4 // cm3/cm2. Current collector thickness NP= 3 //Negative/positivie capacity ratio. CLi= 3861 // mah/g. Lithium theoretical capacity rholi=0.53 //g/cm3. Lithium density rhoc=2.2 ///g/cm3. Carbon density //Gravimetric energy function [Eg]=GravimetricEnergy(Ca) AMperc=(AMvperc*rhoAM)/(AMvperc*rhoAM+Cvperc*rhoC+Bvperc*rhoB+Elecvperc*rh oelec); //From volume fraction to mass fraction. Active material mam=ca/cg //gs/cm2 Sulfur active mass mcatho=mam/amperc //g/cm2. Total cathode mass mli= Ca*NP/CLi //g/cm2. Li mass Wtot=mcc+mcatho+mLi+msep+melec //g/cm2. Total mass Eg=Vave*Ca/Wtot //Wh/kg function ////Volumetric Energy function [Ev]=VolumetricEnergy(Ca) mam=ca/cg //gs/cm2 Sulfur active mass 11

13 vcatho=(mam/rhoam/amvperc)/(1-cathoporosity) //cm3/cm2. Cathode volume vli=ca*np/cli/rholi //cm3/cm2. Lithium volume vtot=vcc+vcatho+vli+vsep+velec //cm3/cm2. Total volume Ev=Vave*Ca/vtot //Wh/l function //////////////////////////CALCULATIONS FOR LIQUIDS///////////////////////////////////// /////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// AMvperc=0.65; Cvperc=0.05; Bvperc=0.02; Elecvperc=0.28 //Volumetric percentage rhob=1.76 //PVdF binder Cavector=(0:0.2:50) //Different areal loadings [a b]=size(amvec) for i=1:b Vave=Vavevec(i) Cg=Cgvec(i) rhoam=rhoamvec(i) ///////////////////////////////////////////////////////////////////// cathoporosity=0.1 //Cathode porosity. msep=1.2*10^-3 //g cm-2 Cellgard s properties vsep=25*10^-4 //cm3/cm2 Separator thickness rhoelec=1.13 //g cm-3 Electrolyte density for k=1:length(cavector) Ca=Cavector(k) velec=0 //Electrolyte fills the pores of separator, so it does not need additional volume melec=vsep*rhoelec //Electrolyte fills the pores of separator, so it does not need additional volume EgLiq(k)=GravimetricEnergy(Ca) // [j,k]=[thickness,ca] EvLiq(k)=VolumetricEnergy(Ca) 12

14 Scilab for Solid Li Metal Batteries //Xabier Júdez //CIC Energigue energy cooperative research centre //Estimation of energy density of Li-ion batteries with liquid and solid electrolytes, and different active materials clc, clear tic() //AMvec=["LFP" "NCA" "NMC111" "NMC523" "NMC811" "LCO" "LMO" "LNMO"] //Vavevec=[ ] //V. //Cgvec=[ ] //rhoamvec=[ ] //g/cm3. Active material s AMvec=["LFP"] //To extract data from one active material delete others and introduce only one Vavevec=[3.4] //V vs. Li Cgvec=[160] // mah/g rhoamvec=[3.65] //g/cm3. Active material s mcc= 2.7*10^-3 //g/cm2. Current collector mass vcc=10*10^-4 // cm3/cm2. deps on thickness NP= 3 //Negative/positivie capacity ratio. CLi= 3861 // mah/g. Lithium theoretical capacity rholi=0.53 //g/cm3. Lithium density rhoc=2.2 ///g/cm3. Carbon density //Gravimetric energy function [Eg]=GravimetricEnergy(Ca) AMperc=(AMvperc*rhoAM)/(AMvperc*rhoAM+Cvperc*rhoC+Bvperc*rhoB); volume fraction to mass fraction. Active material mam=ca/cg //gs/cm2 Sulfur active mass mcatho=mam/amperc //g/cm2. Total cathode mass mli= Ca*NP/CLi //g/cm2. Li mass Wtot=mcc+mcatho+mLi+msep+melec //g/cm2. Total mass Eg=Vave*Ca/Wtot //Wh/kg function //From ////Volumetric Energy function [Ev]=VolumetricEnergy(Ca) mam=ca/cg //gs/cm2 Sulfur active mass vcatho=(mam/rhoam/amvperc)/(1-cathoporosity) //cm3/cm2. Cathode volume 13

15 vli=ca*np/cli/rholi //cm3/cm2. Lithium volume vtot=vcc+vcatho+vli+vsep+velec //cm3/cm2. Total volume Ev=Vave*Ca/vtot //Wh/l function ////////CALCULATIONS FOR SOLIDS/////////////// /////////////////////////////////////////////// AMvperc=0.65; Cvperc=0.05; Bvperc=0.3 //Volumetric percentage Cavector=(0:0.2:50) //Different areal loadings Thickvector=[10:10:100] //Different thickness [a b]=size(amvec) for i=1:b Vave=Vavevec(i) Cg=Cgvec(i) rhoam=rhoamvec(i) //Polymer system///////////////////////////////////////////////////////////////////// rhopoly=1.20 // g/cm3. Polymer membrane density epoly=0.2 // Poly membrane porosity cathoporosity=0.2 //Cathode porosity. rhob=rhopoly ///g/cm3. Binder density msep=0;vsep=0 //g/cm2. No separator and no cellgard for j=1:length(thickvector) for k=1:length(cavector) Ca=Cavector(k) Thick=Thickvector(j) rhoelec=rhopoly eelec=epoly melec=thick/10000*rhoelec*(1-eelec) //Electrolyte amount velec=thick/10000 EgPoly(j,k)=GravimetricEnergy(Ca) // [j,k]=[thickness,ca] EvPoly(j,k)=VolumetricEnergy(Ca) //////Ceramic, Garnet////////////////////////////////////////////////////////////////////////////////// rhocera=5.15 // g/cm3. Glassy membrane density ecera=0 // Cera membrane porosity cathoporosity=0.1 //Cathode porosity. 14

16 rhob=rhocera ///g/cm3. Binder density msep=0;vsep=0 //g/cm2. No separator and no cellgard for j=1:length(thickvector) for k=1:length(cavector) Ca=Cavector(k) Thick=Thickvector(j) rhoelec=rhocera eelec=ecera melec=thick/10000*rhoelec*(1-eelec) //g/cm2. Electrolyte amount velec=thick/10000 //cm3/cm2. Electrolyte volume EgCera(j,k)=GravimetricEnergy(Ca) // [j,k]=[thickness,ca] EvCera(j,k)=VolumetricEnergy(Ca) //////Ceramic, Glass////////////////////////////////////////////////////////////////////////////////// rhoglass=1.95 // Ceramic electrolyte density eglass=0 // Cera membrane porosity cathoporosity=0.1 //Cathode porosity. rhob=rhoglass ///g/cm3. Binder density msep=0;vsep=0 //g/cm2. No separator and no cellgard for j=1:length(thickvector) for k=1:length(cavector) Ca=Cavector(k) Thick=Thickvector(j) rhoelec=rhoglass eelec=eglass melec=thick/10000*rhoelec*(1-eelec) //g/cm2. Electrolyte amount velec=thick/10000 //cm3/cm2. Electrolyte volume EgGlass(j,k)=GravimetricEnergy(Ca) // [j,k]=[thickness,ca] EvGlass(j,k)=VolumetricEnergy(Ca) 15