Electrochemical Energy Storage in Metallic and Complex Hydrides

Size: px
Start display at page:

Download "Electrochemical Energy Storage in Metallic and Complex Hydrides"

Transcription

1 Electrochemical Energy Storage in Metallic and Complex Hydrides M. Latroche, M. Baricco, D. Blanchard, Y.W. Cho, F. Cuevas, B.C. Hauback, I. Jacob, T.R. Jensen, P.E. de Jongh, A. El Kharbachi, P. Ngene, D. Noréus; S.I. Orimo, D. B. Ravnsbæk, S. Sartori, V.A. Yartys

2 Task 32 : Hydrogen-based Energy Storage ( ) Operating Agent: Dr. M. Hirscher Task sub-topic : Electrochemical storage and conversion based on hydrogen (Group leader M. Latroche) From 2019 : Forthcoming new Task 40 : Energy storage and conversion based on hydrogen

3 Hydrogen-based Energy Storage Solid state hydrogen storage Sorption compressor systems Cryo-cooling Magneto-Caloric Effect (MCE) Heat storage and Electrochemical storage...!

4 Pressure (MPa) Electrochemical storage in alkaline medium : NiMH Solid gas route M + x / 2 H 2 MH x Electrochemical route M + x H 2 O + x e - MH x + xoh - ( P eq, C(x), T) ( E eq,q(x), T) Capacity (mah/g) , E-3 1E-4 Absorption Desorption 25 C E (V) vs Cd/Cd(OH) 2 0,00 0,05 0,10 0,15 0,20 0,25 0,30 1E Capacity (wt %) Q (mah.g -1 ) E eq MH x RT nf ln P H in V vs Hg/HgO

5 Successful commercial applications for NiMH Almost all HEV use NiMH batteries (millions of cars sold so far) Even used in H 2 cars for on-board balancing energy storage Mirai PEM FC 114 kw (155 CV); Two HP tanks 5 kg H 2, 70 MPa and a NiMH battery 1,6 kwh (29 kg) 245V

6 Successful commercial applications for NiMH Ferroamp using Nilar batteries for midsize solar power plant energy storage 30 kwh o The system stores energy collected from solar panels o The Nilar energy storage kicks in when the voltage drops. o The energy flux managed by Nilar Battery Management System (BMS) and Ferroamp Energy Storage Optimizer (ESO). o The two systems create the EnergyHub Full system foreseen for the Swedish solar panel manufacturer ETC Solpark in Katrineholm, Sweden up to 200 kwh.

7 On going research on MH alkaline anodes Compounds «LaNi 2» 0 [A 2 B 4 ] n Stacking [A 2 B 4 ].n[ab 5 ] LaNi 3 1 [A 2 B 4 ]. 1[AB 5 ] La 2 Ni 7 2 [A 2 B 4 ]. 2[AB 5 ] La 5 Ni 19 3 [A 2 B 4 ]. 3[AB 5 ] LaNi 5 [AB 5 ] RMgNi 4 RNi 5 RMgNi 4 RNi 5 RMgNi 4 Kohno, Jalcom 311 (2000); Hayakawa, Mater. Trans., 46 (2005); Crivello et al. J. Phys. Chem. C (2011) RNi 5 New stacking structures : 30% more capacity with Mg substitution Resistance to corrosion in alkaline medium Long term cycling Hybrid hydrogen batteries Rare earth-free, Mg-free alloys Alkaline-free electrolyte

8 New developments for metal and complex hydrides Metal hydrides as negative electrodes for Li-ion batteries Complex hydrides with super ionic conductivities as solid electrolyte for Li(Na)-ion batteries Practical solid state lithium battery for energy storage

9 Anodes : conversion reaction of hydrides with Li General conversion reaction MH x(s) + x Li + + xe - Thermodynamically favorable if G f (MH x )/x G f (LiH) Low potential : < 1 V vs Li + /Li Low polarization Huge volumetric and gravimetric capacities : M (s) + x LiH (s) Metal hydrides : MgH 2, TiH 2 C ~ 1500 mah g -1 Alanates : LiAlH 4, NaAlH 4 C ~ 2000 mah g -1 Amides : LiNH 2 C ~ 2300 mah g -1 IEA Review : S. Sartori, F. Cuevas, M. Latroche, Metal hydrides used as negative electrode materials for Li-ion batteries, Appl. Phys. A. 122 (2016) 135 Main drawbacks : Though all hydrides can easily be lithiated at room temperature, reversibility remains poor

10 Anodes : solving poor cycling of MgH 2 hydride Samples prepared by ball milling with different conductive carbon sources and H 2 treatments. Conductivity has negligible impact on cycling Insignificant build up of SEI Particle growth limits the Mg-LiH surface contact Mg diffusion may be an issue Huen and Ravnsbæk, J. Electrochem. Soc. 164 (2017) A3138

11 Anodes : solving poor cycling of MgH 2 hydride Samples prepared as compacted layers of a MgH 2 electrode-solid electrolyte (SE) composite on a dendritic Cu current collector. Solid electrolyte : Li(BH 4 ) 0.75 I (Li 2 S) 0.8 (P 2 S 5 ) 0.2 Loss of contacts between the active phases Improved reversibility with RT SE compared to liquid

12 Anodes : solving poor cycling of MgH 2 hydride Samples prepared as a thin film MgH 2 MgH 2 ~1 μm Cross-section TEM for non-, half-, fully and partially de-lithiated ~16 μm Cu No detachment from the substrate from V No loss of e - conductivity Insulating LiH balanced by metallic phase Mass transport (Mg) limitations Non litiathed 9 mm Half lithiathed Fully lithiathed Partially delithiated

13 Anodes : solving poor cycling of MgH2 hydride MgH2 infiltrated in mesoporous carbon scaffolds 5nm particle size; up to 70wt.% loading in HSAG As prepared : rapid loss of electronic contact with C Ball milled : improved reversibility (500 mah g-1) Stable nanoparticle size distribution upon cycling

14 Anodes : solving poor cycling of NaAlH 4 hydride NaAlH 4 melt infiltrated in mesoporous carbon scaffolds Nanoconfinement of electrode material Improves reversibility of hydrides Improves reaction kinetics Still short cycling stability Intercalation of Li in carbon scaffold

15 New developments for metal and complex hydrides Metal hydrides as negative electrodes for Li-ion batteries Complex hydrides with super ionic conductivities as solid electrolyte for Li(Na)-ion batteries Practical solid state lithium battery for energy storage

16 Solid electrolyte : solving poor ionic conductivity at RT Conductivity (S cm -1 ) 0.01 Ionic conductivity in LiBH T ( C) HT : σ = 10-3 S/cm 1E-3 High ionic conductivity above 120 C Low electronic conductivity Good thermal and chemical stability Compatible with Li and some electrode materials 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 Bulk LiBH /K (K -1 ) LT : σ = 10-8 S/cm

17 Solid electrolyte : solving poor ionic conductivity at RT Nanoconfined LiBH 2 as a fast Li-ion conductor High RT ionic conductivity (10-4 S cm 1 ) Lower solid solid phase transition temperature Cooperative interface between SiO 2 and LiBH 4 close to pore walls

18 Solid electrolyte : solving poor ionic conductivity at RT Pseudo-binary system LiBH 4 + P 2 S 5 pentasulfide Best results for 90LiBH 4 +10P 2 S 5 High Li-ionic conductivity at 300 K Low activation energy E a = 0.38 ev Stable up to 473 K Wide potential window of 0 5 V (A) 90LiBH 4 :10P 2 S 5 (E) Li 10 GeP 2 S 12 (B) LiBH 4 (F) Li 7 P 3 S 11 (C) Li 4 (BH 4 ) 3 I (G) Li Ge 0.25 P 0.75 S 4 (D) 33LiBH 4 +67(Li 2 S+P 2 S 5 glass) (H) Li 0.34 La 0.51 TiO 2.94 (I) Li 7 La 3 Zr 2O12

19 Solid electrolyte : solving poor ionic conductivity at RT Conductivity (S/cm) LiBH 4 Substitutions of [BH 4 ] in LiBH 4 by other anions : amide [NH 2 ] and iodide [I] Best results for 6LiBH 4 : 1LiNH 2 : 3LiI (10-2 S cm 80 C) Formation of Li 3 I(NH 2 ) 2 + Li 4 (BH 4 ) 3 I + LiI Thermally stable Electrochemically unstable; reaction at ~0,7 V Not working with Li but might be suitable with Li-In alloy E-3 1E-4 1E-5 1E-6 1E-7 1E-8 LiNH LiBH 4 Temperature ( o C) 1E /K (K -1 ) LiI

20 Solid electrolyte : solving poor ionic conductivity at RT Dodecaborane, decaborane, carborane with Li and Na anions Li + and Na + superionic conductors Liquid-like cationic conductivities ( 0.03 S cm 1 ) for LiCB 9 H 10 and NaCB 9 H 10 in their disordered hexagonal phases near or at RT W. S. Tang et al., Adv. Energy Mater. 2016, 6,

21 New developments for metal and complex hydrides Metal hydrides as negative electrodes for Li-ion batteries Complex hydrides with super ionic conductivities as solid electrolyte for Li(Na)-ion batteries Practical solid state lithium battery for energy storage

22 Hydride-based all solid state batteries ASSBs Cathode : TiS 2 (+SE) SE : 90LiBH 4 +10P 2 S 5 Anode : InLi alloy Working temperature : RT (300K) Charge rate C/10 Poor capacity (200 mahg -1 ) related to TiS 2 Limited number of cycles

23 Hydride-based all solid state batteries ASSBs Cathode : S/Li x S (+KB+AC+PVDF+SE) SE : Nanoconfined LiBH 2 Anode : Metallic Lithium Working temperature : 55 C (328K) High capacity (1200 mahg -1 ) Working voltage 2V Charge rate C/33 Some capacity fading on cycling (up to 40)

24 Hydride-based all solid state batteries ASSBs SE : LiBH4 Anode : 0.8MgH2+0.2TiH2 (+C65+ LiBH4) Working temperature : 120 C (393K) High capacity (900 mahg-1) Working voltage range 1.8 to 2.2V Charge rate up to C/10 Cell potential Cathode : S/LixS (+KB+ LiBH4) Some capacity fading on cycling (up to 25c.)

25 Full-cell hydride-based solid-state Li batteries for energy storage Cathode Conductor/Binder Electrolyte Anode E - E + Current density Rate T 1 st disch. Reversibitity Cycling CE Reference (V) (V) C mahg -1 mahg -1 Cyc. % LiCoO 2 Li 3 PO 4 coating LiBH 4 Li µacm - ² Takahashi Li 4 Ti 5 O 12 C65+PVDF Li(BH 4 ) 0.81 I 0.19 Li µacm - ² Sveinbjörnsson TiS 2 none Li(BH 4 ) 0.75 I (Li 2 S) 0.75 (P 2 S 5 ) 0.25 Li µacm - ² C/100 C/ El Kharbachi TiS 2 none LiBH 4 Li µacm - ² C/ Unemoto TiS 2 none LiCB 11 H 12 Li µacm - ² C/ Tang TiS 2 none Li 2 B 12 H 12 Li mag -1 C/ Kim TiS 2 none Li(BH 4 ) (P 2 S 5 ) 0.10 Li-In 1 2,4 114 µacm - ² C/ Unemoto Sulfur KB + AC +PVDF LiBH SiO 2 Li µacm - ² C/ Das Sulfur KB + AC Li(BH 4 ) x I 1-x Li C/ MH2018 Kisu Sulfur Maxsorb + KB LiBH 4 Li µacm - ² C/ Unemoto Sulfur Maxsorb + KB LiBH 4 + LiCl Li µacm - ² C/ Unemoto Sulfur KB 600 LiCe(BH 4 ) 3 Cl Li-In µacm - ² C/ Nguyen Sulfur C65 LiBH 4 MgH 2 +TiH ,5 112 µacm - ² C/50 C/20 C/ López IEA Review Paper : M. Latroche; D. Blanchard; F. Cuevas; A. El Kharbachi; B. C. Hauback; T. R. Jensen; P. E. de Jongh; S. Kim; N. S. Nazer; P. Ngene; S.-I. Orimo; D. B. Ravnsbæk; V. A. Yartys, Full-cell hydride-based solid-state Li batteries for energy storage, Int. J. Hydrogen Energy, Submitted (2018)

26 Acknowledgments to Task 32 partners M. Baricco, D. Blanchard, Y. W. Cho B. Hauback, I. Jacob, T.R. Jensen P.E. de Jongh, M. Latroche, D. Noreus, S.-I. Orimo, S. Sartori, T. Udovic, V. Yartys, R. Zidan DEPARTMENT OF CHEMISTRY UNIVERSITY OF TURIN

27 Task 32 meeting, San Servolo, April 2018 Thank you for your attention