Supporting information. Probing the Dynamics of Layered Double Hydroxides by Solid-State 27 Al NMR Spectroscopy

Size: px
Start display at page:

Download "Supporting information. Probing the Dynamics of Layered Double Hydroxides by Solid-State 27 Al NMR Spectroscopy"

Transcription

1 Supporting information Probing the Dynamics of Layered Double Hydroxides by Solid-State 27 Al NMR Spectroscopy Arnaud Di Bitetto,, Erwan André, Cédric Carteret, *, Pierrick Durand, Gwendal Kervern, * France. - -Nancy, - -Nancy, France. gwendal.kervern@univ-lorraine.fr ; cedric.carteret@univ-lorraine.fr 1- Composition of materials The general formula and the label of the synthesized materials are given below: [M II (1-x)M III x(oh) 2 ] x+ [A n- x/n, zh 2 O] x- MgAl 1-y Ga y -x-a n- with M II = Mg II and M III = Al III, Ga III We can also define the metal ratio R as: Then the general formula is [Mg R Al 1-y Ga y (OH) 2(1+R) ] + [(A n- ) 1/n, z H 2 O] - The metal ratios, x and y were measured by Induced Couple Plasma Atomic Emission Spectroscopy (ULTIMA-Horiba Jobin-Yvon). 10 mg of LDH were dissolved into 1% nitric acid. Two rays were used for each element ( nm and nm for aluminum, nm and nm for magnesium, nm and nm for gallium). S1

2 The amount of water in the samples was determined by weighting the samples before and after degassing 15 hours under vacuum (10-4 Pa). Table S1. Composition of 100%Al LDHs. x zh Label 2 O Theoretical Formula (± 0.01) (± 0.2) Mg 2 Al(OH) 6 (CO 3 ) 0.5, z H 2 O MgAl-0.33-CO Mg 3 Al(OH) 8 (CO 3 ) 0.5, z H 2 O MgAl-0.25-CO Mg 4 Al(OH) 10 (CO 3 ) 0.5, z H 2 O MgAl-0.20-CO Mg 2 Al(OH) 6 (Cl) 1.0, z H 2 O MgAl-0.33-Cl Mg 3 Al(OH) 8 (Cl) 1.0, z H 2 O MgAl-0.25-Cl Mg 4 Al(OH) 10 (Cl) 1.0, z H 2 O MgAl-0.20-Cl Table S2. Composition of Ga/Al LDHs. Theoretical Formula Label Mg 2 Al(OH) 6 (CO 3 ) 0.5, z H 2 O MgAl-0.33-CO 3 Mg 2 Al 0.75 Ga 0.25 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.75 Ga CO 3 Mg 2 Al 0.5 Ga 0.5 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.5 Ga CO 3 Mg 2 Al 0.25 Ga 0.75 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.25 Ga CO 3 Mg 2 Al 0.1 Ga 0.9 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.1 Ga CO 3 Mg 2 Ga(OH) 6 (CO 3 ) 0.5, z H 2 O MgGa-0.33-CO 3 Mg 3 Al(OH) 8 (CO 3 ) 0.5, z H 2 O MgAl-0.25-CO 3 Mg 3 Al 0.75 Ga 0.25 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.75 Ga CO 3 Mg 3 Al 0.5 Ga 0.5 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.5 Ga CO 3 Mg 3 Al 0.25 Ga 0.75 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.25 Ga CO 3 Mg 3 Al 0.1 Ga 0.9 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.1 Ga CO 3 Mg 3 Ga(OH) 8 (CO 3 ) 0.5, z H 2 O MgGa-0.25-CO 3 Mg 4 Al(OH) 10 (CO 3 ) 0.5, z H 2 O MgAl-0.20-CO 3 Mg 4 Al 0.75 Ga 0.25 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.75 Ga CO 3 Mg 4 Al 0.5 Ga 0.5 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.5 Ga CO 3 Mg 4 Al 0.25 Ga 0.75 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.25 Ga CO 3 Mg 4 Al 0.1 Ga 0.9 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.1 Ga CO 3 Mg 4 Ga(OH) 10 (CO 3 ) 0.5, z H 2 O MgGa-0.20-CO 3 x (± 0.01) %Al (1-y) (± 2 %) %Ga (y) (± 2 %) S2

3 Structure of Materials Figure S1. Examples of possible arrangements of Mg 2+ (in green) and Al 3+ (in gray) cations in LDH sheets cc wh ch q y 3+ to be surrounded by M 2+ as nearest neighbours i.e. assuming no Al O Al bond. The supercells are represented as red quadrilaterals. Circles represent the coordination shells of Mg 2+ /Al 3+ octahedral around Al 3+ : in black only Al 3+ in the coordination shell, in turquoise only Mg 2+ in the coordination shell, in orange a mix of Mg 2+ and Al 3+ in the coordination shell. (a) The ordered, honeycomb arrangement, is the only possible configuration for x = 0.33 (Mg/Al = 2) sample, corresponding to a rhombohedral superlattice with sides of length a. (b) For x = 0.25 (Mg/Al = 3) there are various possible arrangements, from top to bottom: in an orthorhombic supercell with sides 2a, in a hexagonal supercell with sides 2a, and in a disordered configuration. (c) x = 0.20 (Mg/Al = 4), an example of a disordered configuration. S3

4 Intensity (a.u.) Intensity (a.u.) Intensity (a.u.) 3- Powder X-Ray Diffraction experiments and results Powder XRD patterns were recorded with a Panalytical X Pro MPD diffractometer in reflection m y Kα1 (λ = 1. Å). D w c c f m f y mp w h sample holder spinner and continuous rotation of sample to improve statistical representation of the sample. The exp θ w b tween 5 and 70 at a speed of 1 /min. (a) x = 0.33 x = 0.25 x = ( ) (b) x = 0.33 x = 0.25 x = ( ) Figure S2. Powder X-Ray Diffraction patterns for hydrated (a) MgAl-x-CO 3 ; (b) MgAl-x-Cl -. (a) y = 0.9 y = 0.5 y = ( ) S4

5 Intensity (a.u.) Intensity (a.u.) (b) y = 0.9 y = 0.5 y = ( ) (c) y = 0.9 y = 0.5 y = ( ) Figure S3. Powder X-Ray Diffraction patterns for hydrated MgAl 1-y Ga y -x-co 3 as a result of Al substitution by Ga: (a) MgAl 1-y Ga y CO 3 ; (b) MgAl 1-y Ga y CO 3 ; (c) MgAl 1-y Ga y CO 3. S5

6 a parameter (Å) Table S3. Lattice parameters extracted from cell refinements of the LDH phases (RH 30%). Sample Formula label Mg 2 Al(OH) 6 (CO 3 ) 0.5, z H 2 O MgAl-0.33-CO 3 Mg 3 Al(OH) 8 (CO 3 ) 0.5, z H 2 O MgAl-0.25-CO 3 Mg 4 Al(OH) 10 (CO 3 ) 0.5, z H 2 O MgAl-0.20-CO 3 x layer a (Å) c (Å) (± 0.01) (± Å) (± 0.01 Å) Mg 2 Al(OH) 6 (Cl) 1.0, z H 2 O MgAl-0.33-Cl Mg 3 Al(OH) 8 (Cl) 1.0, z H 2 O MgAl-0.25-Cl Mg 4 Al(OH) 10 (Cl) 1.0, z H 2 O MgAl-0.20-Cl Mg 2 Al 0.75 Ga 0.25 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.75 Ga CO 3 Mg 2 Al 0.5 Ga 0.5 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.5 Ga CO 3 Mg 2 Al 0.25 Ga 0.75 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.25 Ga CO 3 Mg 2 Al 0.1 Ga 0.9 (OH) 6 (CO 3 ) 0.5, z H 2 O MgAl 0.1 Ga CO 3 Mg 2 Ga(OH) 6 (CO 3 ) 0.5, z H 2 O MgGa-0.33-CO 3 Mg 3 Al 0.75 Ga 0.25 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.75 Ga CO 3 Mg 3 Al 0.5 Ga 0.5 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.5 Ga CO 3 Mg 3 Al 0.25 Ga 0.75 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.25 Ga CO 3 Mg 3 Al 0.1 Ga 0.9 (OH) 8 (CO 3 ) 0.5, z H 2 O MgAl 0.1 Ga CO 3 Mg 3 Ga(OH) 8 (CO 3 ) 0.5, z H 2 O MgGa-0.25-CO 3 Mg 4 Al 0.75 Ga 0.25 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.75 Ga CO 3 Mg 4 Al 0.5 Ga 0.5 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.5 Ga CO 3 Mg 4 Al 0.25 Ga 0.75 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.25 Ga CO 3 Mg 4 Al 0.1 Ga 0.9 (OH) 10 (CO 3 ) 0.5, z H 2 O MgAl 0.1 Ga CO 3 Mg 4 Ga(OH) 10 (CO 3 ) 0.5, z H 2 O MgGa-0.20-CO x = 0.20 x = 0.25 x = y (Ga substitution) Figure S4. Evolution of the a cell parameter as a function of Ga substitution for hydrated MgAl 1-y Ga y -x-co 3. S6

7 4- NMR spectra simulations Figure S5. Simulated and experimental spectra (T sample = 311 K) for hydrated MgAl-x-CO 3 (a) x = 0.33 ; (b) x = 0.25 ; (c) x = S7

8 Figure S6. Simulated and experimental spectra (T sample = 311 K) for hydrated MgAl-x-Cl - (a) x = 0.33 ; (b) x = 0.25 ; (c) x = S8

9 Figure S7. Simulated and experimental spectra (T sample = 311 K) for hydrated MgAl 1-y Ga y -x-co 3 (a) y = 0.0 ; (b) y = 0.5 ; (c) y = 0.9. S9

10 Table S4. Quadrupolar parameters extracted from simulations on D. f w D for hydrated MgAl-x-CO 3 and MgAl-x-Cl - (n.c. = not converged). T sample (K) Parameters CO 3 x = 0.33 x = 0.25 x = 0.20 x = 0.33 x = 0.25 x = 0.20 C Q (MHz) ~1.40 η Q ~0,15 C Q (MHz) ~1.40 η Q ~0,15 C Q (MHz) ~1.40 η Q ~0,15 C Q (MHz) n.c. η Q C Q (MHz) η Q C Q (MHz) η Q C Q (MHz) η Q C Q (MHz) η Q C Q (MHz) η Q C Q (MHz) n.c η Q n.c C Q (MHz) n.c η Q n.c n.c. n.c. n.c. Cl - Table S5. Quadrupolar parameters extracted from simulations on D. f w D for hydrated MgAl 1-y Ga y -x-co 3. T sample (K) 311 Parameters CO 3 y = 0.0 x = 0.5 x = 0.90 C Q (MHz) η Q S10

11 5- NMR complementary results Figure S8. Zoom on a satellite sideband (satellite at -98 khz, T sample = 311 K) for (a) MgAl-x-CO 3 hydrated ; (b) MgAl 1-y Ga y CO 3 hydrated ; (c) MgAl-x-Cl - hydrated ; (d) MgAl-x-CO 3 dehydrated ; (e) MgAl-x-Cl - dehydrated. S11

12 Figure S9. Evolution of the 27 Al MAS-NMR spectra (T sample = 311 K) of hydrated MgAl 1-y Ga y -x-co 3 LDHs as a result of Al substitution by Ga: (a) MgAl 1-y Ga y CO 3 ; (b) MgAl 1-y Ga y CO 3 ; (c) MgAl 1-y Ga y CO 3. S12

13 Figure S10. Temperature dependence (range T sample = 260 K K) of a 27 Al satellite transition (at -98 khz) for (a) MgAl-0.20-CO 3 hydrated ; (b) MgAl-0.33-Cl - hydrated. S13

14 Figure S11. Temperature dependence (range T sample = 210 K 250 K) of a 27 Al satellite transition (at -98 khz) for MgAl-0.33-Cl - hydrated. S14