(SAD): coupling all major components of an accelerator driven system (ADS) for nuclear waste incineration

Size: px
Start display at page:

Download "(SAD): coupling all major components of an accelerator driven system (ADS) for nuclear waste incineration"

Transcription

1 The subcritical assembly at DubnaD (SAD): coupling all major components of an accelerator driven system (ADS) for nuclear waste incineration V.N.Shvetsov 1), C. Broeders 2), I.S. Golovnin 3), E.Gonzalez 4), W. Gudowski 5), F. Mellier 6), B.I. Ryabov 7), A. Stanculescu 8) I.T. Tretyakov 9), M.T. Vorontsov 10) 8), 1) FLNP, , Joliot-Curie 6, Dubna, RU 2) FZK Postfach 3640, Karlsruhe, DE 3) VNIINM, , P.B. 369, Moscow, RU 4) CIEMAT, 28040, Avda. Complutense 22 Edif. 17., Madrid, ES 5) KTH, Nuclear and Reactor Physics, 10044, Lindstedtsv. 24, Stockholm, olm, SE 6) CEA Cadarache, 13108, DEN/DER/SPEx/LPE bat. 242, St. Paul les Durance, FR 7) Industrial Association Mayak, , Lenin 31, Ozersk, RU 8) IAEA, Nuclear Power Division, Nuclear Power Technology Development Section 9) NIKIET, , P.B. 788, Moscow, RU 10) GSPI, , Novoryazanskaya 8a, Moscow, Russia

2 SAD Project Objectives Coupling all major components of ADS; Core design, safety assessment, licensing; k eff control and monitoring; Shielding from high energy neutrons; Experiments on core neutronics, reactivity feedbacks, transmutation reaction rates

3 SAD Basic Data k eff Fuel loading Fission power Cooling Core Coolant flow rate, G velocity, v Presure,, P (inlet) Temperature, T (inlet, outlet) Target (Pb) Coolant flow rate, G Velocity, v Pressure, P (inlet) Temperature, T (inlet, outlet) ~0,95 < 420 kg 27,6 kw air ~ 0,6 kg/s 10 m/s 0,12-0,135 0,135 MPa 50/96 ºC ~ 0,0067 kg/s 50 m/s 0,12-0,135 0,135 MPa 50/125 ºC

4 Subcritical Blanket/calculations Number of cells for FAs 141 Number of loaded FAs 134 Number of loaded Pb prisms 7 fuel loading (UO 2 -PuO 2 ) 396,9 kg density of fuel 10,2 g/сm 3 PuO 2 content in fuel 29,5 % (w.)( U enrichment 0,7 % ( 235 U) Height of fuel 58 cm

5 Subcritical Blanket/calculations Neutron flux density, n/cm 2 *s Channel 4, Σ=1,469E+12 n/cm 2 *s Channel 1, Σ=2,433E+12 n/cm 2 *s Channel 5, Σ=1,145E+12 n/cm 2 *s Channel 2, Σ=2,206E+12 n/cm 2 *s Channel 6, Σ=8,956E+11 n/cm 2 *s Channel 3, Σ=1,848E+12 n/cm 2 *s Energy, MeV

6 Subcritical Blanket/ neutronics Calculated K eff Neutron lifetime s Fission power 27.6 kw Averaged neutron flux /( Peak factor of heat generation (height) 1.21 Heat generation in SAD parts: Fuel kw Target (neutron and photon from fissions) 97.3 W Core cladding W Side Pb reflector W B 4 C W Concrete W Pu decay ~250 W Fuel 18 W/cm 3 Max power density Max flux of fast neutrons (Е> 0,1 MeV) /(cm 2 s) Max fluence of fast neutrons /cm 2 /(сm2 s)

7 Subcritical Blanket/design Top cover Exp. Chan. Lead Target AC cooling Lower support frame Target cooling Lower reflector

8 Target/design Lead Prisms Air Channels Beam Input

9 Energy Beam power Target/neutronics Proton beam neutron generation Target total neutron leakage from target side neutron leakage from target total energy of leakage neutrons total heat generation 660 MeV 1 kw n/p n/p n/p MeV/p 840 W neutron source for blanket n/s

10 Phasotron Accelerator Charged particles accelerated Accelerator Type (linac, circular) Main accelerator sections and type of structures Source type Source Extraction voltage RF system (amplifier characteristics) Magnet system (type, size, rigidity, homogeneity) Magnet Power Supply characteristics (current, stability, ramping, ) Total Power consumption Cooling System Protons Circular (Phasotron) 180degree Dee Internal, PIG type Dee RF Voltage,40kV Autogenerator, MHz, 300kW H-type, 6m pole diameter, 4spiral magnetic field 1.2T(r=0m) 1.63T(r=2.7m) average field, 0.3T(r=2.7m) 4 th harmonic 4000A, 0.05%stability 700kW Distilled water cooling

11 Beam Characteristics RF structure (RF frequency, phase width) Macro pulse structure (filling of RF pulses) Long duration Beam Pulse characteristics (duty cycle, ) 14.4MHz, 50degree 250Hz rate, 20 mks FWHM 0.5%duty Final beam energy 659MeV Beam energy spread and stability 3.1MeV Final beam intensity (average, peak) Beam intensity stability About 2% Beam emittance at the high energy end 3.2 mka average, about 1mA peak 5.1pi*cm*mrad (horizontal), 3.4pi*cm*mrad (vertical) Possibility to shorten the pulse width down to 1 mks is under investigation

12 Phasotron Accelerator

13 Proton Beamline OM-1 1 deflecting magnet (900 kg, 30 kw) 9 C- deflecting magnet (1200 kg, 30 kw) 2 Correcting magnet (150 kg, 4.5 kw) 6 ML-3 3 quadruple lens (340 kg, 35 kw) 9 Vertical bending magnet (50 t, 15 kw) 2 Beam diagnostics Inductive sensor 6 Profilemeters 12 Monitor ionization chambers 2 Beam line length 37.6 m

14 FE design

15 Mass share of U and Pu sum, %, not less 239 Pu conditional mass in Pu dioxide,, %, not less 235 U conditional mass in U dioxide,, % not more Pu conditional mass share to U and Pu sum,, % Oxygen ratio Density, g/sm 3 Impurities mass share,, %, not more Aluminium Calcium Magnesium Iron Silicon Nickel Chromium Nitrogen Carbon Fluorine + Chlorine Grain size, µm, not more ± ± Fuel pellet

16 Pellets parameters control

17 Pu distribution homogeneity study α-radiography Pu zones less than 100 mkm in diameter No Pu zones observed here Pu zones area less than 10% of microsection area

18 Grain and pore dimensions Microscopy study of the microsections processed in HNO 3 and HF acids Grain diameter should be < 50 mkm ( for that sample) Pores diameter < 100 mkm and area less than 10% of microsection area

19 General Layout

20 General Layout

21 Parameter General Layout Value Site area, m Total area, m Building volume, m Bulk concrete volume, m Steel shielding, ton 290 Bulk heavy concrete volume, m 3 25 Soil shielding volume, m Excavated soil volume, m Concrete retaining wall necessary to dismount, m 3 350

22 International Symposium on Utilization of Accelerators 5 9 June 2005 Dubrovnik, Croatia

23

24 International Symposium on Utilization of Accelerators 5 9 June 2005 Dubrovnik, Croatia

25 Experimental Program Qualification of subcriticality monitoring, experiments with PNG; Validation of the core power/beam current ratio; Tests and calibrations of the actual spallation target; Post-irradiation and on-line spallation products yields investigation; Transmutation reactions rates, integral cross sections and spectral indices measurements; Interpretation and validation of experimental data, codes validation, benchmarking;

26 Project Status Technical project of the subcritical blanket: completed; Technical project of the beam line: completed; Technical project of the fuel element: completed; Fuel pellets manufacturing technology: developed; Preproduction batch of the fuel pellets: manufactured; General engineering project: completed; Safety assessment: in progress; Licensing started some project documents already approved by Rostechnadzor (former Gosatomnadzor)

27 Project Timeline BFS based SAD modelling

28 Conclusion It s possible to create in 4 years first ADS at non- zero power Wide experimental program is planned for the design stage and operation stage Proposals on experiments at SAD facility are kindly wlecome, book of proposals is forming now