32 nd International Conference on Surface Modification Technologies

Size: px
Start display at page:

Download "32 nd International Conference on Surface Modification Technologies"

Transcription

1 32 nd International Conference on Surface Modification Technologies June 2018, San Sebastián (Spain) «A COMPARATIVE STUDY ON THE BEHAVIOR OF Zr, Ta, Nb and Hf COATINGS FOR ELECTRODE MATERIALS» C. Díaz, Asociación de la Industria Navarra, Pamplona, Spain

2 Index 1. Introduction 2. Materials and Methodology 3. Results and discussion 4. Conclusions June 2018, San Sebastián (Spain) 1/10

3 1. Introduction 32nd International Conference on Surface Modification Technologies (SMT32) One solution: Define a more efficient dewatering process (DS% 18 to DS% 30-35) using a new machine design which introduces electrodewatering technology giving savings up to 48% and an important reduction of energy comsuption and transport costs and a reduction on the impact of global warming. Large cost in transport of sludge Environmentally friently Large cost in energy comsuption and transport of sludge Environmentally no friently June 2018, San Sebastián (Spain) 2/10

4 1. Introduction Sludge INLET 5-10 DS% Moreover,... Sludge EXIT DS% DS% Stainless Steel: 304 or 316 ½ ELECTROOS. DEWATERING ½ MECHANICAL DEWATERING ANODE Substrate+Coating E CATHODE Stainless Steel Ionic species migrate by the action of the electric field, Particles in suspension migrate along with the electrolyte towards one of the electrical poles. This problem affect and other industries, so this type of machine might be well use in other sectors like a vegetables juice production such as, tomato juice, wine, olive oil, etc... 3/10

5 2. Materials and Methodology Requeriments of the anode coating: mechanical resistance, conductive material and high corrosion behavior. AIN AISI AISI 304 Ti-Zr AISI 304 Ti-Nb AISI 304 Ti-Ta AISI 304 Ti-Hf AISI AISI 316 Ti-Zr AISI 316 Ti-Nb AISI 316 Ti-Ta AISI 316 Ti-Hf Ti alloy - Ti alloy Ti-Zr Ti alloy Ti-Nb Ti alloy Ti-Ta Ti alloy Ti-Hf Ta, Nb, Hf, Zr coating Ti coating Substrate DLC CrNC Ti alloy AIN Ti alloy CrNC-DLC June 2018, San Sebastián (Spain) 4/10

6 2. Materials and Methodology Reference electrode: Pt Counter-electrode: Ag/AgCl Work electrode: coating 3 different electrolytes: compost, tomato, wine June 2018, San Sebastián (Spain) 5/10

7 Er (GPa) H (GPa) 32nd International Conference on Surface Modification Technologies (SMT32) 3. Results and discussion. Thickness and hardness Coating Ti layer (nm) Up layer (nm) 304/Ti+Zr 235 ± ± 6 316/Ti+Zr 282 ± ± 13 Ti/Ti+Zr 251 ± ± 1 304/Ti+Nb 286 ± ± /Ti+Nb 265 ± ± 166 Ti/Ti+Nb 256 ± ± /Ti+Ta 262 ± ± /Ti+Ta 215 ± ± 100 Ti/Ti+Ta 196 ± ± /Ti+Hf 229 ± ± /Ti+Hf 279 ± ± 100 Ti/Ti+Hf 244 ± ± 100 Coating CrNC (nm) DLC (nm) Ti/CrNC/DLC 330±37 980±75 0,25-0,35 µm 0,80-0,90 µm 1,20-1,50 µm 1,60-1,80 µm 1,00-1,20 µm mN 1mN 6/10

8 3. Results and discussion. Adherence. 32nd International Conference on Surface Modification Technologies (SMT32) (304/Ti+Zr) F=25N (304/Ti+Nb) F=32N (304/Ti+Ta) F=25N (304/Ti+Hf) F=28N (316/Ti+Zr) F=30N (316/Ti+Nb) F=32N (316/Ti+Ta) F=28N (316/Ti+Hf) F=35N (Ti/CrNC+DLC) F=63N (Ti/Ti+Zr) F=33N (Ti/Ti+Nb) F=34N (Ti/Ti+Ta) F=30N (Ti/Ti+Hf) F=30N

9 3. Results and discussion. Corrosion Sludge 32nd International Conference on Surface Modification Technologies (SMT32) 0, ref 304-Ti-Zr 304-Ti-Nb 304-Ti-Ta 304-Ti-Hf AISI Ti-Hf Ti alloy Ti-Ti-Zr Electrolyte: Compost -0,0020 1E-171E-161E-151E-141E-131E-121E-111E-10 1E-9 1E-8 1E ref 316-Ti-Zr 316-Ti-Nb 316-Ti-Ta 316-Ti-Hf i (A/cm 2 ) AISI 316 0, Ti-ref Ti-Ti-Zr Ti-Ti-Nb Ti-Ti-Ta Ti-Ti-Hf - - 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 i (A/cm 2 ) 316-Ti-Zr ,0020 1E-17 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 i (A/cm 2 )

10 3. Results and discussion. Corrosion Sludge Electrolyte: Sludge Sludge AISI 304 Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 176,3 13,4 24,7 0,2 0,2 Ecorr (mv) -390,0-600,2-597,6-402,6-148,8 Rp (mm/year) 4,2x10-4 3,0x10-5 5,1x10-5 4,6x10-7 3,0x10-7 Sludge AISI 316 Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 82,7 5,5 0,3 62,9 168,0 Ecorr (mv) -342,0-481,0-357,1-162,1-166,0 Rp (mm/year) 3,7x ,3x10-6 8,7x10-7 2,0x10-4 3,5x10-4 Sludge Ti Alloy Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 30,4 0,5 27,9 1,5* ,0 Ecorr (mv) -410,6-158,0-392,0-420,0-526,0 Rp (mm/year) 1,3x10-4 0,8x10-6 7,2x10-5 3,9x10-4 6,8x10-5 Sludge Ti Alloy CrNC-DLC Icorr (na) 30,40 65,7 Ecorr (mv) ,0 Rp (mm/year) 1,3x10-4 3x10-3

11 3. Results and discussion. Corrosion Tomato ref 304-Ti-Zr 304-Ti-Nb 304-Ti-Ta 304-Ti-Hf Ref Ti-Hf AISI 304 AISI 316 Ti Alloy - Electrolyte: Tomato juice - 1E-171E-161E-151E-141E-131E-121E-1 1E-101E-9 1E-8 1E-7 1E-6 1E-5 0, ref 316-Ti-Zr 316-Ti-Nb 316-Ti-Ta 316-Ti-Hf i (A/cm 2 ) Ti-ref Ti-Ti-Zr Ti-Ti-Nb Ti-Ti-Ta Ti-Ti-Hf E-161E-151E-141E-131E-121E-111E-10 1E-9 1E-8 1E-7 1E-6 1E-5 i (A/cm 2 ) - 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 i (A/cm 2 )

12 3. Results and discussion. Corrosion Tomato Electrolyte: Tomato juice Tomato AISI 304 Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 41,7 10,1 36,7 134,3 0,1 Ecorr (mv) -322,0-721,6-358,0-134,5-14,3 Rp (mm/year) 1,0x10-3 6,8x10-8 1x x10-3 3x10-7 Tomato AISI 316 Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 13,2* ,9 35,2* ,0 5,9 Ecorr (mv) -198,3-360,0-363,3-430,0-444,0 Rp (mm/year) 3,3x10-2 2,1x10-4 7,5x ,0x10-3 2,5x10-6 Tomato Ti Alloy Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 2,9 3,1* ,2*10 3 1,9 48,6*10-3 Ecorr (mv) -456,0-129,0-124,3-5,0-6,3 Rp (mm/year) 6,8x10-6 6,9x10-3 4,9x10-2 4,8x10-6 1,2x10-7 Tomato Ti Alloy CrNC-DLC Icorr (na) 2,9 538,0 Ecorr (mv) -456,0-130 Rp (mm/year) 6,8x10-6 1,2x10-1

13 3. Results and discussion. Corrosion Wine ref 304-Ti-Zr 304-Ti-Nb 304-Ti-Ta 304-Ti-Hf AISI 304 AISI 316 Ti Alloy - -0,0020 Electrolyte: Wine 1E-17 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 0, , ref 316-Ti-Zr 316-Ti-Nb 316-Ti-Ta 316-Ti-Hf i (A/cm 2 ) 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E Ti-Hf 316-Ti-Nb Ti-Ti-Hf Ti-ref Ti-Ti-Zr Ti-Ti-Nb Ti-Ti-Ta Ti-Ti-Hf - 1E-16 1E-15 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 i (A/cm 2 )

14 3. Results and discussion. Corrosion Wine Electrolyte: Wine Wine AISI 304 Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 305,3 578,0 983,1 70,6*10-3 0,9 Ecorr (mv) -16,2-28,1-388,2-360,2 6,7 Rp (mm/year) 6,8x10-4 0,9x10-3 2,0x10-6 2,3x10-7 2,1x10-6 Wine AISI 316 Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 239,1 2,2* ,3 9,4 5,5 Ecorr (mv) -86,0-10,3-315,1-36,0-432 Rp (mm/year) 5,6x10-4 4,7x10-3 6,8x ,0x ,2x10-6 Wine Ti Alloy Ti-Zr Ti-Nb Ti-Ta Ti-Hf Icorr (na) 5,2 47,2 435,3 97,4 384,0 Ecorr (mv) -405,0 21,4 17,2 31,4-2,4 Rp (mm/year) 12,1x10-6 4,3x10-3 1,4x10-3 2,5x10-4 8,9x10-7 Wine Ti Alloy CrNC-DLC Icorr (na) 5,2 90,7 Ecorr (mv) -405,0 181,8 Rp (mm/year) 12,1x10-6 2x10-4

15 4. Conclusions 32nd International Conference on Surface Modification Technologies (SMT32) Different coatings, base on pure Ti coating firstly, following of Zr, Nb, Ta and Hf coating have been deposited on AISI 304 and AISI 316 and Ti Alloy substrate to study corrosion behavior. All of them, have been compared with a good mechanical property DLC coating of similar thickness deposited on Ti alloy substrate. The technology used was magnetron sputtering PVD technology. In general, coatings show good mechanical properties for dewatering use: hardness reached 20GPa in the best cases similar to DLC coating. However, adherence properties was reduced to half the DLC coating adherence measurement. Finally, in relation to corrosion behavior, all studied coatings improve or not get worse corrosion resistance in comparison to uncoated substrates. Coating made of Ti-Hf was the coating per excellence for all the materials and all the electrolytes in studying. Moreover, coatings of Ti-Zr was successful for AISI 316 and Ti Alloy substrates in sludge electrolyte, coatings of Ti-Zr and Ti-Ta were interesting in AISI 304 and Ti Alloys respectively using tomato like an electrolite, and coating of Ti-Ta and Ti-Nb were relevant in AISI 304 and AISI 316 using wine like an electrolyte June 2018, San Sebastián (Spain) 10/10

16 Acknowledgements SludgetreatProjectno ,cofundedbytheEuropeanCommissionwithinFP7( ) MarieCurieActions Industry- AcademiaPartnershipsandPathways(IAPP) BIOPLASMA Project. MAT C4. Retos investigación, Ministerio de Ciencia de la Innovación y Universidades, Spain. Cristina Díaz: cdiaz@ain.es June 2018, San Sebastián (Spain) 16