Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster

Size: px
Start display at page:

Download "Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster"

Transcription

1 Supporting Information for Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster Junyi Hu, Lijie Zhan, Guanyun Zhang, Qun Zhang, Lin Du, Chen-Ho Tung, Yifeng Wang *, Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering and Environment Research Institute, Shandong University, Ji Nan 5, People s Republic of China Table of contents. Summary of syntheses. Single crystal X-ray crystallographic data. UV-vis titration of {Ti. Powder X-ray diffraction of {TiML. 5. Fourier transform IR spectra 6. C NMR spectra and H NMR spectra 7. Band gap measurements 8. DFT calculations 9. UV-vis absorption spectra. The UV-vis titrations using [FeCp]BF. The ESR spectra and the simulated curves. The photocurrent measurements. Photoluminescence decay spectra S

2 . Summary of the syntheses Table S. Syntheses and characterization technique of compounds # Compound Precursors Appearance Yield(%, Elemental analysis Characterization based on technique Ti) Ti O 6(O i Pr) 6 5 g (7.6 mmol) TTIP, 6 μl (7.6 mmol) water Colorless block crystals 5% - C NMR, H NMR, FTIR Ti O (O i Pr) 8 5 g (7.6 mmol) TTIP, 88 g (.5 mmol) NaCl, 6 μl (7.6 mmol) water Colorless block crystals 5% - C NMR, H NMR, FTIR Ti O CoCl(O i Pr) 7 Ti O CoBr(O i Pr) 7 5 Ti O CoI(O i Pr ) 7 6 Ti O CoNO ( O i Pr) 7 7 Ti O NiCl(O i Pr) 7 8 Ti O NiBr(O i Pr) 7 9 Ti O NiI(O i Pr ) 7 5 g (7.6 mmol) TTIP,.5 g (.5 mmol) CoCl 6H O, 58 μl (8.8 mmol) water 5 g (7.6mmol) TTIP,. g (.5 mmol) CoBr, 6 μl (7.6 mmol) water 5 g (7.6 mmol) TTIP,.7 g (.5 mmol) CoI, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) Co(NO ) 6H O, 58 μl (8.8 mmol) water 5 g (7.6 mmol) of TTIP,.6 g (.5 mmol) NiCl 6H O, 58 μl (8.8 mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) NiBr, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,.7 g (.5 mmol) NiI, 6 μl (7.6 mmol) water Blue crystals Cyan crystals Green crystals Purple crystals Lilac crystals Violet crystals Brown crystals block block block block block block block S % Anal. Calcd for C 5H 9O ClCoTi : Ti, 8.8%; Co,.87%. Found: Ti,.9%; Co,.77%. 7% Anal. Calcd for C 5H 9O BrCoTi : Ti, 7.8%; Co,.%. Found: Ti, 8.9%; Co,.9%. 5% Anal. Calcd for C 5H 9O ICoTi : Ti, 7.%; Co,.7%. Found: Ti, 8.%; Co,.87%. % Anal. Calcd for C 5H 9O NCoTi : Ti, 8.8%; Co,.%. Found: Ti, 8.76%; Co,.99%. % Anal. Calcd for C 5H 9O ClNiTi : Ti, 8.9%; Ni,.75%. Found: Ti,.%; Ni,.%. 6% Anal. Calcd for C 5H 9O BrNiTi : Ti, 7.8%; Ni,.%. Found: Ti, 8.5%; Ni,.95%. % Anal. Calcd for C 5H 9O INiTi : Ti, 7.%; Ni,.5%. Found: Ti, 8.%; Ni,.75%. SXRD, PXRD, C NMR, FTIR SXRD, PXRD, C NMR, FTIR SXRD, PXRD, C NMR, FTIR SXRD, PXRD, C NMR, FTIR SXRD, PXRD, C NMR, FTIR SXRD, FTIR SXRD, FTIR PXRD, PXRD,

3 Ti O MgCl(O i Pr) 7 Ti O MgBr(O i Pr) 7 Ti O CaCl(O i Pr) 7(HO i Pr) Ti O CaBr(O i Pr) 7(HO i Pr) Ti O ZnCl(O i Pr) 7 5 Ti O ZnBr(O i Pr) 7 6 Ti O CdCl(O i Pr) 7 7 Ti O CdBr(O i Pr) 7 5 g (7.6 mmol) of TTIP,. g (.5 mmol) MgCl 6H O, 58 μl (8.8 mmol) water 5 g (7.6 mmol) of TTIP,.8 g (.5 mmol) MgBr, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,.7 g (.5 mmol) CaCl, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) CaBr, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) ZnCl, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) ZnBr, 6 μl (7.6 mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) CdCl.5H O, 76 μl (5. mmol) water 5 g (7.6 mmol) of TTIP,. g (.5 mmol) CdBr, 6 μl (7.6 mmol) water Colorless block crystals Colorless block crystals Colorless block crystals Colorless block crystals Colorless block crystals Colorless block crystals Colorless block crystals Colorless block crystals % Anal. Calcd for C 5H 9O ClMgTi : Ti, 9.%; Mg,.%. Found: Ti,.8%; Mg,.9%. 6% Anal. Calcd for C 5H 9O BrMgTi : Ti, 8.%; Mg,.%. Found: Ti, 9.5%; Mg,.%. 8% Anal. Calcd for C 5H 7O ClCaTi : Ti, 7.86%; Ca,.%. Found: 9.6%; Ca,.9%. % Anal. Calcd for C 57H 5O BrCaTi : Ti, 6.%; Ca,.%. Found: 7.%; Ca,.59%. % Anal. Calcd for C 5H 9O ClZnTi : Ti, 8.8%; Zn,.56%. Found: Ti,.7%; Zn,.7%. 8% Anal. Calcd for C 5H 9O BrZnTi : Ti, 7.7%; Zn,.%. Found: Ti, 9.%; Zn,.89%. % Anal. Calcd for C 5H 9O ClCdTi : Ti, 7.68%; Cd, 5.99%. Found: Ti, 8.9%; Cd, 5.76%. 8% Anal. Calcd for C 5H 9O BrCdTi : Ti, 7.5%; Cd, 5.77%. Found: Ti, 8.6%; Cd, 5.6%. SXRD, PXRD, C NMR, FTIR SXRD, FTIR SXRD, FTIR PXRD, PXRD, SXRD, PXRD, C NMR, FTIR SXRD, PXRD, C NMR, FTIR SXRD, PXRD, C NMR, FTIR SXRD, FTIR SXRD, FTIR PXRD, PXRD,. Single crystal X-ray crystallographic data Table Sa. Single crystal X-ray crystallographic data S

4 {Ti CoCl CoBr CoI Co(NO ) Formula C 8H O Ti C 5H 6O Ti C 5H 9ClCoO Ti C 5H 9BrCoO Ti C 5H 9ICoO Ti C H 8N Co O 68Ti Formula weight Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic Space group P / c P / n P n P n P n P c Temperature/K a (Å).9() 6.() 5.7() 5.66(6) 5.66() 6.95(7) b (Å).95(7).9().99().9().958().65(7) c (Å) 6.95() 9.79(5).9(5).85().98(5) 6.6() α ( ) β ( ).56(7) 9.56() 9.() 9 9.7() γ ( ) V (Å) 95 () 67.() 78.(7) 7.(8) 99.() 888(8) Z Dcalc (g/cm) Abs. Coeff. T (mm - ) Total reflections Min-max θ ( ). to to 5 5. to to to to 7.5 Unique reflections Calculated reflection (I > σ) R[I>=σ]c wr(all data)d Rint Goodness of fit on F Parameters Restraints Largest diff..6/-.7.9/-.79.6/-.7.8/-.5.9/-.5.56/-.8 S

5 peak/hole (e Å) Table Sb. Single crystal X-ray crystallographic data NiCl NiBr NiI MgCl MgBr CaCl Formula C 5H 7ClNiO Ti C 5H 9BrNiO Ti C 5H 9INiO Ti C 5H 9ClMgO Ti C 5H 9BrMgO Ti C 57H 5ClCaO Ti Formula weight Crystal system monoclinic monoclinic monoclinic monoclinic monoclinic monoclinic Space group P n P n P n P c P n P / c Temperature/K a (Å) 5.69(9) 5.8() 5.(5) 5.5(8) 5.() 5.6() b (Å).997(9).98().959().86(8).7() 5.6() c (Å).99().887(5).885(6) 5.66().7(5) 9.98() α ( ) β ( ) 9 95() 9.() 5.86() 9.() 9.9() γ ( ) V (Å) 89.(5) 95.(7).() () 5.8(7) 99() Z Dcalc (g/cm ) Abs. Coeff. T (mm - ) Total reflections Min-max θ ( ) 5. to to to to to to 5.97 Unique reflections Calculated reflection (I > σ) R [I>=σ]c wr (all data)d Rint S5

6 Goodness of fit on F Parameters Restraints Largest diff. peak/hole (e Å ).9/-../-.6.77/-.56./ /-../-.59 Table Sc. Single crystal X-ray crystallographic data CaBr ZnCl ZnBr CdCl CdBr Formula C 6H BrCaO Ti C 5H 7ClZnO Ti C 5H 9BrZnO Ti C 5H 9ClCdO Ti C 5H 9BrCdO Ti Formula weight Crystal system orthorhombic monoclinic monoclinic monoclinic monoclinic Space group P ca P n P n P n P n Temperature/K a (Å) 6.67(9) 5.() 5.68().979(9) 5.8() b (Å).9(6).9().957(5).9(6).95() c (Å).86().85(5).8997(6) 5.(6).959(5) α ( ) β ( ) 9 9() γ ( ) V (Å ) 96.9(6) 67() 9.() 6().(8) Z Dcalc (g/cm ) Abs. Coeff. T (mm - ) Total reflections Min-max θ ( ) 5. to to to to to 55.7 Unique reflections Calculated reflection (I > σ) R [I>=σ]c S6

7 wr(all data)d Rint Goodness of fit on F Parameters Restraints Largest diff. peak/hole (e Å ).57/-.58.6/-.7.6/-.9.7/-.5./-.6 S7

8 . UV-vis titration of For a monolacunary Keggin polyoxometalate, using X-ray diffraction to determine the structure of the lacunary site is difficult because of disorder. Introducing a heteroatom at the defect site can partially solve the problem. For example, to determine the structure of K 9AlW O 9, it was reacted with one equivalent of VOSO (and subsequently Br ) to give K 6AlVW O derivative whose structure was resolved by X-ray diffraction. On the other hand, using different ligands to stabilize the monolacunary core to constrain the disorder of the lacunary site, can also provide the needed structural information. Previously, Klemperer et al. used the X-ray structure of Ti O (O i Pr) (OEt) 5 derivative for Ti O (O i Pr) 8. Herein, in order to understand the monolacunary feature of Ti O (O i Pr) 8, which is synthesized and crystalized by the optimized protocol in this study (i.e., using alkali halide salt to promote the crystallization and enhance the yield), UV-vis titration of Ti O (O i Pr) 8 is performed, in addition with the X-ray diffraction and the spectroscopic studies like C NMR and FTIR. For this, to a. mm in isopropanol, anhydrous CoCl is incrementally added, and UV-vis spectra are measured. Reaction of Ti O (O i Pr) 8 gives Ti O CoCl(O i Pr) 7 and i PrCl, as indicated by IR and GC-MS (eq S). Due to the different spectra of Ti O CoCl(O i Pr) 7 and CoCl (Figure SA), plotting the absorbance of the solution (at 675 nm) as a function of added CoCl reveals a : complexation reaction (Figure SB). Ti O (O i Pr) 8 + CoCl Ti O CoCl(O i Pr) 7 + i PrCl (S) A.8 B added [CoCl ] (mm) Absorbance. {TiCoCl CoCl Absorbance Wavelength (nm) Equivalents Figure S. UV-vis titration of (. mm) with CoCl : (A) spectra of CoCl and CoCl in isopropanol and (B) absorbance (at 675 nm) of the mixture as functions of added equivalents of CoCl.. Weinstock, I. A.; Cowan, J. J.; Barbuzzi, E. M. G.; Zeng, H. D.; Hill, C. L., Equilibria between a and b Isomers of Keggin Heteropolytungstates. J. Am. Chem. Soc. 999,, Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Park, C. W., Dodecatitanates: A New Family of Stable Polyoxotitanates. J. Am. Chem. Soc. 99, 5, (8), S8

9 . Powder X-ray diffraction of ML. {Ti simulated CoCl CoBr CoI CoNO S9

10 NiCl NiBr NiI MgCl MgBr S

11 CaCl CaBr ZnCl ZnBr CdCl CdBr Figure S. Powder XRD of ML. 5. Fourier transform IR spectra S

12 {Ti CoCl CoBr CoI Co(NO ) 5 5 Wavenumber (cm - ) {Ti NiCl NiBr NiI 5 5 Wavenumber (cm - ) {Ti MgCl MgBr CaCl CaBr 5 5 Wavenumber (cm - ) S

13 {Ti ZnCl ZnBr CdCl CdBr 5 5 Wavenumber (cm - ) Figure S. IR spectra of {Ti, and ML in solid form. 6. C NMR spectra and H NMR spectra S

14 S

15 S5

16 S6

17 S7

18 S8

19 Figure S. C NMR and H NMR spectra. 7. Band gap measurements S9

20 5 ( h ) / (cm - ev) CoCl CoCl.8 ev ev ( h ) / (cm - ev) CoBr CoBr.8 ev ev ( h ) / (cm - ev) CoI ( h ) / /(cm - ev) / CoI.6 ev ev ( h ) / (cm - ev) 5 5 Co(NO ) Co(NO ).88 ev ev S

21 8 ( h ) / (cm - ev) 6 NiCl Ti NiCl. ev ev ( h ) / (cm - ev) NiBr NiBr ev.7 ev ( h ) / (cm - ev) NiI NiI. ev ev ( h ) / (cm - ev) 6 MgCl MgCl.7 ev ev 5 S

22 ( h ) / (cm - ev) 8 MgBr 6.6 ev {Ti MgBr. ev 5 8 ( h ) / (cm - ev) 6 CaCl CaCl.6 ev ev 5 ( h ) / (cm - ev) 8 6 CaBr CaBr.6 ev ev 5 ( h ) / (cm - ev) 8 6 ZnCl ZnCl.6 ev ev 5 S

23 ( h ) / (cm - ev) 8 6 ZnBr ZnBr.6 ev ev 5 8 ( h ) / (cm - ev) 6 CdCl CdCl.6 ev ev 5 8 ( h ) / (cm - ev) 6 CdBr CdBr.67 ev ev 5 ( h ) / (cm - ev) 8 6 {Ti {Ti.67 ev ev 5 S

24 8 ( h ) / (cm - ev) 6.5 ev ev 5 Figure S5. Calculations of direct band gap and indirect band gap values based on diffuse reflectance spectra. 8. DFT calculations The projected BLYP density of states (DOS) of {Ti and CoL are shown below: a b {Ti CoBr TDOS Ti -O O i Pr Co Br I NO OPDOS Density of States c CoI d CoNO Energy (ev) Figure S6. Density of states diagrams of (a) {Ti, (b) CoBr, (c) CoI and (d) Co(NO ). 9. UV-vis absorption spectra S

25 .... min min min 6 min 9 min {Ti min min min 6 min 9 min Wavelength (nm) Wavelength (nm)..8. min min min 6 min 9 min MgCl min min min 6 min 9 min CaCl Wavelength (nm) Wavelength (nm)..8. min min min 6 min 9 min ZnCl... min min min 6 min 9 min CoCl Wavelength (nm) Wavelength (nm) min min min 6 min 9 min NiCl Wavelength (nm) Figure S7. The UV-vis absorption spectral change of the various solutions (in isopropanol and of the same concentrations) upon illumination with UV under anaerobic conditions. S5

26 . The UV-vis titrations using [FeCp ]BF For UV-vis titration, to a cuvette containing.5 ml of the POT solution, certain amounts of [FeCp ]BF (in isopropanol) was added incrementally. This caused the absorbance of the POT solutions (with Ti III ) to decrease. Then the absorbance at 7 nm was plotted against the added amounts of [FeCp ]BF. The extinction coefficient of the reduced POT was then calculated according to the slope of the linear portion of the plot {Ti {Ti.6.. {Ti y= x Wavelength (nm) 6 9 Volume ( L).x -.x - 6.x - 8.x - Concentration (mol / L) y=6.5x Wavelength (nm) 6 Volume ( L).x -.x - 6.x - 8.x - Concentration (mol / L) MgCl Wavelength (nm) MgCl 6 Volume ( L) MgCl y=89.8x.x -.x - 6.x - 8.x - Concentration (mol / L).5..5 CaCl..8. CaCl CaCl y=9.788x Wavelength (nm) 6 8 Volume ( L).x - 6.x - 9.x -.x - Concentration (mol / L) S6

27 ZnCl.9.6. ZnCl ZnCl y=.56x Wavelength (nm) Volume ( L).x -.x - 6.x - Concentration (mol / L) Figure S8. (Left) The UV-vis absorbance spectrum of {Ti, and ML titrated by [FeCp ]BF ; (middle) the absorbance at 7 nm for {Ti, and ML with the addition of [FeCp ]BF ; (right) the absorbance at 7 nm for {Ti, and ML as functions of the concentrations of Ti III.. The ESR spectra and the simulated curves g value g value g value {Ti solution solution MgCl solution 6 8 Field (G) 6 8 Field (G) Field (G) g value g value ZnCl solution CdCl solution Field (G) Field (G) Figure S9a. The ESR spectra and the simulated curves of {Ti, and ML solutions in isopropanol under anaerobic conditions. S7

28 g value g value g value {Ti MgCl Field (G) Field (G) Field (G) Figure S9b. The ESR spectra and simulated curves of DMPO-OOH. Conditions: isopropanol solutions and under O.. The photocurrent measurements Photocurrent / A 5 {Ti V. V.7 V 8 6 Time / sec Photocurrent A / 8 6 V. V.7 V 8 6 Time / sec 5 CoCl V. V.7 V 6 MgCl V. V.7 V Photocurrent / A 5 Photocurrent A / Time / sec 5 5 Time / sec S8

29 Photocurrent / A 8 6 CaCl V. V.7 V Photocurrent A / 5 ZnCl V. V.7 V Time / sec 5 5 Time / sec Figure S. Time-resolved photocurrent of the {Ti, and ML in response to several UV on/off cycles.. Photoluminescence decay spectra Normalized counts CaCl ZnCl CdCl 6 8 Time (ns) Figure S. Photoluminescence decay spectra of CaCl, ZnCl and CdCl at 68 nm. S9