Electricity from the Sun (photovoltaics)

Size: px
Start display at page:

Download "Electricity from the Sun (photovoltaics)"

Transcription

1 Electricity from the Sun (photovoltaics) 0.4 TW US Electricity Consumption square kilometers of solar cells could produce all the electricity for the US. But they are still too costly.

2 The required area of solar cells 1 kw/m 2 (Incident solar power) 1/4 (Fraction of useful daylight) 0.16 (Efficiency of a solar cell 16%) m 2 ( km 2 ) = kw (Electric power generation in the US)

3 The Efficiency of Solar Cells Keeps Growing Slowly Can that be accelerated? Where is the energy lost? How fast are the carriers lost? Where do they get trapped?

4 Price Reduction with Increasing Volume % Learning Curve : Module price decreases by 20% for every doubling of cumulative production Silicon Wafer Technologies % Slow x 1/3 power law, not an exponential like Moore s Law

5 Efficiency Demands a Price Goal 1 $/W x 0.4 TW = = 0.4 Trillion $ Low end High end (US electric power consumption) Crabtree and Lewis, Physics Today 60, March 2007, p. 37

6 Semiconductor Solar Cells CBM E F ev open E F VBM Contact Contact + Electron and hole are pulled apart by the electric field between the p- and n-doped regions. Voltage builds up until bands flatten. Avoid losing carriers on their way out. Single crystal semiconductors are good at that but expensive. Polycrystalline thin film materials lose carriers at grain boundaries. Passivate!

7 Molecular Solar Cells LUMO E F ev open E F HOMO Contact Acceptor Dye Donor Contact + Control the sequence of energy levels to separate electron and hole. A large drop in energy facilitates carrier separation, but also reduces the voltage (and energy) output. 4 molecular levels as control parameters (only 2 for a semiconductor).

8 Dye-sensitized Solar Cells Grätzel, Nature 414, 338 (2001) and J. Phys. Chem. C 112 (2008) Split water

9 Efficiency Limits Semiconductors: 30% 70% single junction (Shockley-Queisser limit) multiple junctions Molecules: 20% dye-sensitized, single junction Snaith, Adv. Funct. Mater. 19, 1 (2009) Track down the losses systematically and eliminate them one by one.

10 The Shockley-Queisser Limit Lose excess photon energy beyond the band gap. Photons below the band gap are not absorbed.

11 Nanostructured Solar Cells Better design: Regular array of nanorods Use nanostructured fractal structures to minimize the path of excitons, electrons, holes, to the nearest electrode. Avoid losses.

12 ZnO Nanorods as Electrode Growth time increases from left to right. (a)-(c) side view (500 nm bar), (d)-(f) top view (100 nm bar). Baxter et al., Nanotechnology 17, S304 (2006) and Appl. Phys. Lett. 86, (2005).

13 Nanorods Coated with Nanocrystals CdSe nanodots (3 nm) replace the dye. Absorption spectrum tunable by quantum confinement (dot size). Robust against radiation damage. Leschkies et al., Nano Letters 7, 1793 (2007).

14 Polymer Solar Cells Polymer chain with a diffusing polaron (electron + distorted polymer), surrounded by fullerene molecules as acceptors. A fullerene can accept up to six electrons in its LUMO (nanotubes also).

15 How Does Nature Do it? Next slide Plants convert solar energy into chemical energy (e.g. sugar). Less than 2% of the solar energy gets converted. But the initial part of the conversion is very efficient.

16 Light-harvesting proteins Chlorophyll Next slide

17 The Oxygen Evolving Complex 4 Mn + 1 Ca Instead of rare Pt (5d), Rh (4d), nature uses plentiful Mn (3d), Fe (3d), Ca(3d) as catalysts. Can we do that in artificial photosynthesis? What does it take? (3D cage?)

Solar Cells. Mike McGehee Materials Science and Engineering

Solar Cells. Mike McGehee Materials Science and Engineering Solar Cells Mike McGehee Materials Science and Engineering Why solar cells are likely to provide a significant fraction of our power We need ~ 30 TW of power, the sun gives us 120,000 TW. Solar cells are

More information

Photoelectrochemical Cells for a Sustainable Energy

Photoelectrochemical Cells for a Sustainable Energy Photoelectrochemical Cells for a Sustainable Energy Dewmi Ekanayake Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States With the increasing demand of the energy, researches

More information

Advanced Analytical Chemistry Lecture 9. Chem 4631

Advanced Analytical Chemistry Lecture 9. Chem 4631 Advanced Analytical Chemistry Lecture 9 Chem 4631 Solar Cell Research Solar Cell Research Solar Cell Research Solar Cell Research Thin film technologies Candidates for thin-film solar cells: Crystalline

More information

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. SOLAR ENERGY Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs. What is Photovoltaics? Photovoltaics is a high-technology

More information

Organic-based light harvesting electronic devices

Organic-based light harvesting electronic devices Organic-based light harvesting electronic devices Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 15-18th, 2011 Organic-based light harvesting devices From signal

More information

Nanotechnology for Next Generation Photovoltaics

Nanotechnology for Next Generation Photovoltaics 340 Nanotechnology for Next Generation Photovoltaics NARASIMHA RAO MAVILLA 1,2, CHETAN SINGH SOLANKI 1,3, JUZER VASI 1,2 * 1 National Centre for Photovoltaic Research & Education, IIT Bombay, Mumbai 400076,

More information

Efficiency Enhancement of Bulk-Heterojunction

Efficiency Enhancement of Bulk-Heterojunction Efficiency Enhancement of Bulk-Heterojunction Hybrid Solar Cells Michael Krüger, Yunfei Zhou, Michael Eck Freiburg Materials Research Centre (FMF), University of Freiburg, Germany Institute for Microsystems

More information

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP im- PHYSICSOF SOLARCELLS Jenny Nelson Imperial College, UK ICP Imperial College Press Contents Preface v Chapter 1 Introduction 1 1.1. Photons In, Electrons Out: The Photovoltaic Effect 1 1.2. Brief History

More information

Solar Photovoltaic Technologies: Past, Present and Future

Solar Photovoltaic Technologies: Past, Present and Future Solar Photovoltaic Technologies: Past, Present and Future Xihua Wang, Ph.D., P.Eng. Assistant Professor of Electrical & Computer Engineering University of Alberta April 18, 2018 Outline History of photovoltaic

More information

Designing New Materials for Solar Energy Conversion

Designing New Materials for Solar Energy Conversion Designing New Materials for Solar Energy Conversion Global outlook on clean energy, including economics Using X-rays to tailor the energy levels in solar cells A dream: Follow the fate of charge carriers

More information

Organic Solar Cells. Green River Project

Organic Solar Cells. Green River Project Organic Solar Cells Green River Project Silicon Cells Silicon semiconductors Advantages: Efficiencies Lifetimes Disadvantages: High manufacturing costs Inflexible http://en.wikipedia.org Organic semiconductors

More information

Latest Solar Technologies

Latest Solar Technologies Latest Solar Technologies Mrs. Jothy.M. Saji Mrs. Sarika. A. Korade Lecturer Lecturer IE Dept, V.P.M s Polytechnic, Thane IE Dept, V.P.M s Polytechnic, Thane Mob no. : 9892430301 Mob no. : 9960196179 Email:

More information

Where will our energy come from? Ch. 16. All from the Sun

Where will our energy come from? Ch. 16. All from the Sun Where will our energy come from? Ch. 16 All from the Sun A problem: Dependence on imported oil Cost to the economy: 350 billion dollars per year (2011 prices) Transferred to foreign (hostile) oil producers,

More information

Introduction to Solar Cell Materials-I

Introduction to Solar Cell Materials-I Introduction to Solar Cell Materials-I 23 July 2012 P.Ravindran, Elective course on Solar Rnergy and its Applications Auguest 2012 Introduction to Solar Cell Materials-I Photovoltaic cell: short history

More information

Solar Energy Utilization

Solar Energy Utilization Solar Energy Utilization H 2 O O 2 CO 2 QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. sugar natural photosynthesis 50-200 C space, water heating 500-3000 C heat engines

More information

Thin Film Solar Cells Fabrication, Characterization and Applications

Thin Film Solar Cells Fabrication, Characterization and Applications Thin Film Solar Cells Fabrication, Characterization and Applications Edited by Jef Poortmans and Vladimir Arkhipov IMEC, Leuven, Belgium John Wiley & Sons, Ltd Contents Series Preface Preface xiii xv 1

More information

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates. ET3034TUx - 5.2.1 - Thin film silicon PV technology 1 Last week we have discussed the dominant PV technology in the current market, the PV technology based on c-si wafers. Now we will discuss a different

More information

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University

Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Dye-Sensitized Solar Cells Carl C. Wamser Portland State University Nanomaterials Course - June 28, 2006 Energy & Global Warming M.I. Hoffert et al., Nature,, 1998, 395,, p 881 Energy Implications of Future

More information

Research seminar Solar energy harvesting with the application of nanotechnology

Research seminar Solar energy harvesting with the application of nanotechnology Research seminar Solar energy harvesting with the application of nanotechnology By B.GOLDVIN SUGIRTHA DHAS, AP/EEE SNS COLLEGE OF ENGINEERING, Coimbatore Objective By 2050 30 TW The fossil fuels will exhausted

More information

Nanotechnologies. National Institute for Materials Science (NIMS)

Nanotechnologies. National Institute for Materials Science (NIMS) Dye-Sensitized Solar Cells with Nanotechnologies Liyuan Han Advanced Photovoltaics Center National Institute for Materials Science (NIMS) Expectations to PV market 12,000 World mark ket scale (MW) 10,000

More information

Materials, Electronics and Renewable Energy

Materials, Electronics and Renewable Energy Materials, Electronics and Renewable Energy Neil Greenham ncg11@cam.ac.uk Inorganic semiconductor solar cells Current-Voltage characteristic for photovoltaic semiconductor electrodes light Must specify

More information

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21

Basics of Solar Photovoltaics. Photovoltaics (PV) Lecture-21 Lecture-21 Basics of Solar Photovoltaics Photovoltaics (PV) Photovoltaics (PV) comprise the technology to convert sunlight directly into electricity. The term photo means light and voltaic, electricity.

More information

The next thin-film PV technology we will discuss today is based on CIGS.

The next thin-film PV technology we will discuss today is based on CIGS. ET3034TUx - 5.3 - CIGS PV Technology The next thin-film PV technology we will discuss today is based on CIGS. CIGS stands for copper indium gallium selenide sulfide. The typical CIGS alloys are heterogeneous

More information

Synthesis and Characterization of Cadmium Sulfide (CdS) Quantum Dots (QDS) for Quantum Dot Sensitized Solar Cell Applications

Synthesis and Characterization of Cadmium Sulfide (CdS) Quantum Dots (QDS) for Quantum Dot Sensitized Solar Cell Applications Nano Vision, Vol. 5(7-9), 237-241, July-September 2015 (An International Research Journal of Nano Science & Technology), www.nano-journal.org ISSN 2231-2579 (Print) ISSN 2319-7633 (Online) Synthesis and

More information

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator

Thin film silicon technology. Cosimo Gerardi 3SUN R&D Tech. Coordinator Thin film silicon technology Cosimo Gerardi 3SUN R&D Tech. Coordinator 1 Outline Why thin film Si? Advantages of Si thin film Si thin film vs. other thin film Hydrogenated amorphous silicon Energy gap

More information

New Applications of Old Materials From Paint to Solar Cells

New Applications of Old Materials From Paint to Solar Cells New Applications of Old Materials From Paint to Solar Cells Peter Peumans Integrated Circuits Lab, Stanford University ppeumans@stanford.edu Sponsored by NSF Solar Energy At earth s surface average solar

More information

Solar cell technologies present and future

Solar cell technologies present and future Solar cell technologies present and future Joachim LUTHER, Armin ABERLE and Peter Wuerfel Solar Energy Research Institute of Singapore (SERIS) Nature Photonics Technology Conference, Tokyo, Japan 20 October

More information

Organic-based light harvesting electronic devices

Organic-based light harvesting electronic devices Organic-based light harvesting electronic devices Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 26-29th, 2013 Organic-based light harvesting devices From signal

More information

New generation of solar cell technologies

New generation of solar cell technologies New generation of solar cell technologies Emerging technologies and their impact on the society 9th March 2017 Dhayalan Velauthapillai Professor, Faculty of Engineering and Business Administration Campus

More information

light to electricity in p-n junctions

light to electricity in p-n junctions (-) (+) light e - Conducting back contact h + thin conducting transparent film n p light to electricity in p-n junctions + J - V + Dark Current - Photo Current Typical plots of current vs. applied potential

More information

Evins 1. Sarah Evins Professor Scarlatos HON 301 March 25, 2012

Evins 1. Sarah Evins Professor Scarlatos HON 301 March 25, 2012 Evins 1 Sarah Evins Professor Scarlatos HON 301 March 25, 2012 Abstract: This report seeks to clarify the current state of nanotechnology as it enables new innovations in solar technology. The report first

More information

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts Christopher E. D. Chidsey Department of Chemistry Stanford University Collaborators: Paul C. McIntyre, Y.W. Chen, J.D. Prange,

More information

REAL-WORLD DEGRADATION OF ORGANIC PHOTOVOLTAIC DEVICES IN THE SHEFFIELD SOLAR FARM

REAL-WORLD DEGRADATION OF ORGANIC PHOTOVOLTAIC DEVICES IN THE SHEFFIELD SOLAR FARM REAL-WORLD DEGRADATION OF ORGANIC PHOTOVOLTAIC DEVICES IN THE SHEFFIELD SOLAR FARM Dawn Scott dtp10dms@sheffield.ac.uk E-Futures DTC miniproject Supervisor Dr Alastair Buckley 19 th May 2011 OUTLINE What

More information

Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering

Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering Study of The Structural and Optical Properties of Titanium dioxide Thin Films Prepared by RF Magnetron sputtering Aqeel K. Hadi 1, Muneer H.Jaduaa 1, Abdul- Hussain K. Elttayef 2 1 Wasit University - College

More information

In the beginning God created the heaven and the earth. Genesis 1:1

In the beginning God created the heaven and the earth. Genesis 1:1 In the beginning God created the heaven and the earth. Genesis 1:1 Contents 1. Introduction Global energy demand/market Drawbacks of Si-based solar cell New types of solar cell 2. Hybrid solar cell Definition

More information

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell , pp.66-71 http://dx.doi.org/10.14257/astl.2016.140.14 The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell Don-Kyu Lee Electrical Engineering, Dong-Eui University,

More information

Department of Chemistry, University of California, Davis, California 95616, USA 2

Department of Chemistry, University of California, Davis, California 95616, USA 2 Enhance Solar Water Splitting Performance by Utilizing Near Infrared Radiation with Composite Films of Hematite and Rare Earth Doped Upconversion Materials Ming Zhang, 1 Yongjing Lin, 2 Thomas J. Mullen,

More information

Nano-Solar - A Technique for Optimal Usage of Solar Energy

Nano-Solar - A Technique for Optimal Usage of Solar Energy Nano-Solar - A Technique for Optimal Usage of Solar Energy HARISH THUTUPALLI Electronics and Instrumentation engineering, CVR College of Engineering, Hyderabad-501510, AP, India. E.Mail: harish.endeavour.fluky@gmail.com

More information

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems

CAM-IES: Centre for Advanced Materials for Integrated Energy Systems 2.4M funding for an EPSRC Networking Centre + 1.4M Matching from Industry Joint Centre involving Cambridge, Newcastle, Queen Mary and UCL. 400k earmarked for networking activities Start Date: 1 December

More information

A Critical Review of Pyrite as a Photovoltaic Material

A Critical Review of Pyrite as a Photovoltaic Material A Critical Review of Pyrite as a Photovoltaic Material Divija Pandel* and Satender Dehiya** *PhD. (The Department of Metallurgical and Materials Engg.), MNIT Jaipur **M.Tech (The Department of Metallurgical

More information

Silicon Photonics University of Pune Physics Short Course

Silicon Photonics University of Pune Physics Short Course Silicon Photonics University of Pune Physics Short Course August 11-13, 16, 17, 2010 India-U.S. Professorship Award Lectures S.Saini (Queens College), J. Michel (MIT) 2010 Sub-Micron Planar Platform -

More information

Why does pyrite have a low photovoltage?

Why does pyrite have a low photovoltage? Why does pyrite have a low photovoltage? August 25, 2011 Hypothesis I: metallic phase impurities Pyrite always contains metallic FeS-type phase impurities, which somehow reduce the photovoltage Evidence

More information

The 33rd Progress In Electromagnetics Research Symposium (PIERS 2013), Taipei, Taiwan, March 2013.

The 33rd Progress In Electromagnetics Research Symposium (PIERS 2013), Taipei, Taiwan, March 2013. Title Multiphysics modeling and understanding for plasmonic organic solar cells Author(s) Sha, WEI; Choy, WCH; Chew, WC Citation The 33rd Progress In Electromagnetics Research Symposium (PIERS 2013), Taipei,

More information

Simple fabrication of highly ordered AAO nanotubes

Simple fabrication of highly ordered AAO nanotubes Journal of Optoelectronic and Biomedical Materials Volume 1, Issue 1, March 2009, p. 79-84 Simple fabrication of highly ordered AAO nanotubes N. Taşaltin a, S. Öztürk a, H. Yüzer b, Z. Z. Öztürk a,b* a

More information

Photovoltaics Outlook for Minnesota

Photovoltaics Outlook for Minnesota Photovoltaics Outlook for Minnesota Saving dollars, not polar bears Steve Campbell scampbell@umn.edu University of Minnesota Department of Electrical and Computer Engineering Outline Why solar? Solar technologies

More information

Efficient Organic Solar Cells based on Small Molecules

Efficient Organic Solar Cells based on Small Molecules Fakultät Mathematik und Naturwissenschaften Institut für Angewandte Photophysik http://www.iapp.de Efficient Organic Solar Cells based on Small Molecules C. Körner, R. Fitzner, C. Elschner, F. Holzmüller,

More information

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells Kyung Hee Park, Chonnam National University, Electric Eng., Gwangju, Kr Kyung Jun Hwang,

More information

HANA BENEŃOVÁ 1, PETR MACH 2

HANA BENEŃOVÁ 1, PETR MACH 2 Wydawnictwo UR 2017 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 3/21/2017 www.eti.rzeszow.pl DOI: 10.15584/eti.2017.3.11 HANA BENEŃOVÁ 1, PETR MACH 2 Suggestion for Modify of

More information

Solar Energy Conversion: A very brief introduc8on. Chem 204 April 7, 2014

Solar Energy Conversion: A very brief introduc8on. Chem 204 April 7, 2014 Solar Energy Conversion: A very brief introduc8on Chem 204 April 7, 2014 Worldwide energy usage Worldwide energy usage Now: about 15 TW (15 x 10 12 J/s) From Chemistry: the Central Science, 12 th ed. Quick

More information

Tunable band structure in coreshell quantum dots through alloying of the core

Tunable band structure in coreshell quantum dots through alloying of the core Tunable band structure in coreshell quantum dots through alloying of the core A. Guille ǀ D. Mourad ǀ T. Aubert ǀ A. Houtepen ǀ R. Van Deun ǀ E. Brainis ǀ Z. Hens 1. Introduction Semiconductor nanocrystals

More information

AMOLED displays. OLEDs for lightening. Organic Electronics

AMOLED displays. OLEDs for lightening. Organic Electronics Organic Electronics AMOLED displays MatWi II summer term 2015 Priv. Doz. Bert Nickel (nickel@lmu.de) Introduction: Organic electronics Fabrication and characterization of organic thin films Devices: solar

More information

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer Osamu Yoshikawa*, Akinobu Hayakawa, Takuya Fujieda, Kaku Uehara, SusumuYoshikawa Institute of Advanced Energy Kyoto University Introduction

More information

Photovoltaics under concentrated sunlight

Photovoltaics under concentrated sunlight Photovoltaics under concentrated sunlight April 2, 2013 The University of Toledo, Department of Physics and Astronomy Principles and Varieties of Solar Energy (PHYS 4400) Reading assignment: Sections 9.4

More information

Overview of Photovoltaic Energy Conversion

Overview of Photovoltaic Energy Conversion Overview of Photovoltaic Energy Conversion Topics Solar Energy Economics Photovoltaic Technologies Challenges and Opportunities II-VI Solar Cells November 20, 2006 U.S. Energy Overview (Quadrillion BTU)

More information

Nanoscience in (Solar) Energy Research

Nanoscience in (Solar) Energy Research Nanoscience in (Solar) Energy Research Arie Zaban Department of Chemistry Bar-Ilan University Israel Nanoscience in energy conservation: TBP 10 TW - PV Land Area Requirements 10 TW 3 TW 10 TW Power Stations

More information

Towards scalable fabrication of high efficiency polymer solar cells

Towards scalable fabrication of high efficiency polymer solar cells Towards scalable fabrication of high efficiency polymer solar cells Hui Joon Park 2*, Myung-Gyu Kang 1**, Se Hyun Ahn 3, Moon Kyu Kang 1, and L. Jay Guo 1,2,3 1 Department of Electrical Engineering and

More information

An Introduction to Solar Cell Technology *

An Introduction to Solar Cell Technology * OpenStax-CNX module: m41217 1 An Introduction to Solar Cell Technology * Brittany L. Oliva-Chatelain Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal

o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Introduction Solar Energy A.Uses of Solar Energy o Ref 1: Solar Vapor Generation Enabled by Nanoparticles. Day, Jared; Halas, Naomi; Lal Surbhi; Neumann, Oara; Nordlander, Peter; and Urban, Alexander.

More information

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY Meijun Lu 1,2, Ujjwal Das 1, Stuart Bowden 1, and Robert Birkmire 1,2 1 Institute of Energy

More information

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 04, 2012 Lecture 01

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 04, 2012 Lecture 01 EE 5611 Introduction to Microelectronic Technologies Fall 2012 Tuesday, September 04, 2012 Lecture 01 1 Instructor: Jing Bai Contact Email: jingbai@d.umn.edu, hone: (218)726-8606, Office: MWAH 255 Webpage:

More information

Effect of grain boundaries on photovoltaic properties of PX-GaAs films

Effect of grain boundaries on photovoltaic properties of PX-GaAs films Indian Journal of Pure & Applied Physics Vol. 48, August 2010, pp. 575-580 Effect of grain boundaries on photovoltaic properties of PX-GaAs films M K Sharma & D P Joshi* Principal, Govt Sr Sec School Kolar,

More information

The Potential of Photovoltaics

The Potential of Photovoltaics The Potential of Photovoltaics AIMCAL 2008 2008 Fall Conference Vacuum Web Coating Brent P. Nelson October 22, 2008 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency

More information

Preparation and Characterization of Hybrid Polymer-Inorganic Solar Cells Sub-Module

Preparation and Characterization of Hybrid Polymer-Inorganic Solar Cells Sub-Module 7th International Conference on Physics and Its Applications 2014 (ICOPIA 2014) Preparation and Characterization of Hybrid Polymer-Inorganic Solar Cells Sub-Module Erlyta Septa Rosaa, Shobiha, Fauzie Rachman

More information

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET)

Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) Photovoltaic Fundamentals, Technology and Practice Dr. Mohamed Fawzy Aboud Sustainable Energy Technologies center (SET) The Greenhouse Effect 270 ppm carbon dioxide (CO 2 ) in the atmosphere absorbs outgoing

More information

Nanostructured Solar Cells: From Academic Research to Commercial Devices

Nanostructured Solar Cells: From Academic Research to Commercial Devices Nanostructured Solar Cells: From Academic Research to Commercial Devices V. Mitin 1,2, A. Sergeev 1,2, N. Vagidov 1,2, K. A. Sablon 3, J. W. Little 3 and K. Reinhardt 4 1 OPEN, OptoElectronic Nanodevices

More information

Quantum Dot Band Gap Investigations

Quantum Dot Band Gap Investigations Brigham Young University BYU ScholarsArchive All Student Publications 2016-11-15 Quantum Dot Band Gap Investigations John Ryan Peterson Brigham Young University - Provo, jryan388@gmail.com Follow this

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting. Final Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting April 20, 2012 Final Report to the Global Climate and Energy Project Investigators Nicholas Melosh, Department of Materials Science and Engineering,

More information

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013

Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Solid or Liquid? By Dr Damion Milliken, CTO, and Dr Hans Desilvestro, Chief Scientist - July 2013 Introduction Natural photosynthesis, based on complex organic photoactive antennae and metal organic redox

More information

Mini-project report Real world degradation of organic photovoltaic devices in the Sheffield Solar Farm. Dawn Scott

Mini-project report Real world degradation of organic photovoltaic devices in the Sheffield Solar Farm. Dawn Scott Mini-project report Real world degradation of organic photovoltaic devices in the Sheffield Solar Farm Dawn Scott dtp10dms@sheffield.ac.uk 20/05/2011 1 Abstract The aim of this project was to investigate

More information

ET3034TUx High efficiency concepts of c- Si wafer based solar cells

ET3034TUx High efficiency concepts of c- Si wafer based solar cells ET3034TUx - 4.4 - High efficiency concepts of c- Si wafer based solar cells In the previous block we have discussed various technological aspects on crystalline silicon wafer based PV technology. In this

More information

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes)

Spotlight on Photovoltaics & Fuel Cells: A Web-based Study & Comparison (Teacher Notes) General Lesson Notes Electrochemistry is defined as the branch of chemistry that deals with oxidationreduction reactions that transfer electrons to form electrical energy rather than heat energy. An electrode

More information

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach

Optimization of Water based Optical Filter for Concentrated Crystalline Si PV/T System - A Theoretical Approach Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Optimization

More information

j185 Index bulk heterojunction (BHJ) 87, 88, 89 solar cell 87, 90, 95

j185 Index bulk heterojunction (BHJ) 87, 88, 89 solar cell 87, 90, 95 j185 Index a absorbing acceptor 91 AC current 148 devices 32 acrylic glass components 20 active-matrix display modules 1 AFM images 95 aluminum foil 73 aluminum gallium arsenide 143 aluminum/zinc oxide

More information

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics

Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Lecture 7 Solar Energy Solar Resource Physical principles of solar conversion (elec.) Solar conversion technologies Photovoltaics Principles, technologies, systems, costs, markets Assessing PV output Global

More information

Plasmonic Photovoltaics

Plasmonic Photovoltaics Plasmonic Photovoltaics Investigators Harry A. Atwater, Howard Hughes Professor and Professor of Applied Physics and Materials Science, California Institute of Technology Krista Langeland, Ph.D. student,

More information

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu Multiphoton lithography based 3D micro/nano printing Dr Qin Hu EPSRC Centre for Innovative Manufacturing in Additive Manufacturing University of Nottingham Multiphoton lithography Also known as direct

More information

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang

Research on high efficiency and low cost thin film silicon solar cells. Xiaodan Zhang Research on high efficiency and low cost thin film silicon solar cells Xiaodan Zhang 2013 China-America Frontiers of Engineering, May 15-17, Beijing, China Institute Institute of of photo-electronics

More information

Amorphous Silicon Solar Cells

Amorphous Silicon Solar Cells The Birnie Group solar class and website were created with much-appreciated support from the NSF CRCD Program under grants 0203504 and 0509886. Continuing Support from the McLaren Endowment is also greatly

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project March 5 th, 2010 Investigators Nicholas Melosh, Department of Materials Science

More information

Solar Cells and Photosensors.

Solar Cells and Photosensors. Designing Photonic Crystals in Strongly Absorbing Material for Applications in Solar Cells and Photosensors. Minda Wagenmaker 1, Ebuka S. Arinze 2, Botong Qiu 2, Susanna M. Thon 2 1 Mechanical Engineering

More information

Thermally-Enhanced Generation of Solar Fuels

Thermally-Enhanced Generation of Solar Fuels Thermally-Enhanced Generation of Solar Fuels Xiaofei Ye, Liming Zhang, Madhur Boloor, Nick Melosh, William Chueh Materials Science & Engineering, Precourt Institute for Energy Stanford University Fundamentals

More information

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS

PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS PROMISING THIN FILMS MATERIALS FOR PHOTOVOLTAICS Emmanuelle ROUVIERE CEA Grenoble (France) emmanuelle.rouviere@cea.fr Outline Introduction Photovoltaic technologies and market Applications Promising Thin

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) In Situ XAS Study of Modified Hematite Photoanodes

More information

ARTIFICIAL PHOTOSYNTHESIS: DIRECT PRODUCTION

ARTIFICIAL PHOTOSYNTHESIS: DIRECT PRODUCTION NSF CCI, DOE BES, AFOSR, Moore Foundation ARTIFICIAL PHOTOSYNTHESIS: DIRECT PRODUCTION OF FUELS FROM SUNLIGHT NATHAN S. LEWIS Division of Chemistry and Chemical Engineering JOINT CENTER FOR ARTIFICIAL

More information

Crystalline Silicon Solar Cells

Crystalline Silicon Solar Cells 12 Crystalline Silicon Solar Cells As we already discussed in Chapter 6, most semiconductor materials have a crystalline lattice structure. As a starting point for our discussion on crystalline silicon

More information

Nanoparticle Solar Cells

Nanoparticle Solar Cells Nanoparticle Solar Cells ECG653 Project Report submitted by Sandeep Sangaraju (sangaraj@unlv.nevada.edu), Fall 2008 1. Introduction: Solar cells are the most promising product in future. These can be of

More information

Amorphous-like Density of Gap States in Single Crystal Pentacene

Amorphous-like Density of Gap States in Single Crystal Pentacene Amorphous-like Density of Gap States in Single Crystal Pentacene D. V. Lang 1, X. Chi 2, T. Siegrist 3, A. M. Sergent 3, and A. P. Ramirez 3 1 Los Alamos National Laboratory, Los Alamos, NM 87545 2 Columbia

More information

EELE408 Photovoltaics Lecture 18 Photovoltaic Arrays & Modules

EELE408 Photovoltaics Lecture 18 Photovoltaic Arrays & Modules EELE08 Photovoltaics Lecture 18 Photovoltaic Arrays & Modules Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Photovoltaic

More information

Nanocrystalline silicon carbide films for solar cells

Nanocrystalline silicon carbide films for solar cells PACS 64.70.K-,77.84.Bw, 81.30.-t Nanocrystalline silicon carbide films for solar cells S.I. Vlaskina 1, G.N. Mishinova 1, V.I. Vlaskin 1,2, V.E. Rodionov 1, G.S. Svechnikov 3 1 V. Lashkaryov Institute

More information

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project

Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project April 25, 2010 Photon Enhanced Thermionic Emission for Solar Energy Harvesting Progress Report to the Global Climate and Energy Project Investigators Nicholas Melosh, Department of Materials Science and

More information

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES THE VALUE OF EFFICIENCY & ENERGY GAP FOR DIFFERENT DYE SOLAR CELLS Nserdin A. Ragab* 1, Sawsan Ahmed Elhouri Ahmed 2, Ahmed Hassan Alfaki 3, Abdalsakhi

More information

Si Quantum Dots for Solar Cell Applications

Si Quantum Dots for Solar Cell Applications IRCC Award Talk Si Quantum Dots for Solar Cell Applications 18th Aug. 2010 Chetan S. Solanki Department of Energy Science and Engineering Indian Institute of Technology Acknowledgements Dr. Ashish Panchal

More information

Ternary organic solar cells offer 14% power conversion efficiency

Ternary organic solar cells offer 14% power conversion efficiency See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321050127 Ternary organic solar cells offer 14% power conversion efficiency Article in Science

More information

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K

Solar Spectrum. -Black body radiation. Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K Solar Spectrum 1 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun 6000 K 2 Solar Spectrum -Black body radiation Light bulb 3000 K Red->Yellow->White Surface of Sun

More information

Yanmei Liu, Min Li, Qingqing Fang, Qingrong Lv, Mingzai Wu, and Shuai Cao

Yanmei Liu, Min Li, Qingqing Fang, Qingrong Lv, Mingzai Wu, and Shuai Cao CHINESE JOURNAL OF PHYSICS VOL. 48, NO. 4 AUGUST 2010 Structural and Photoluminescence Properties of Polyethylene Glycol (PEG)-Assisted Growth Co-Doped ZnO Nanorod Arrays Compared with Pure ZnO Nanorod

More information

MAKING SOLAR ELECTRICITY A USER-CONVENIENT REALITY WITH LIGHT MANAGEMENT

MAKING SOLAR ELECTRICITY A USER-CONVENIENT REALITY WITH LIGHT MANAGEMENT 1 MAKING SOLAR ELECTRICITY A USER-CONVENIENT REALITY WITH LIGHT MANAGEMENT IN PHOTOVOLTAICS Manuel J. Mendes, Olalla S. Sobrado, Sirazul Haque, Andreia Araújo, António Vicente, Tiago Mateus, Hugo Águas,

More information

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 2492 2496 Part, No. 5A, May 2000 c 2000 The Japan Society of Applied Physics Passivation of O 2 / Interfaces Using High-Pressure-H 2 O-Vapor Heating Keiji SAKAMOTO

More information

Product Development for Organic Photovoltaics

Product Development for Organic Photovoltaics Product Development for Organic Photovoltaics Jens Hauch jhauch@konarka.com Who is Konarka? Renewable Energy Printable low-cost Solar Cell Organic Chemistry Printed Electronics Innovators at the Intersections

More information

Dye-sensitized solar cell using natural dyes from Ecuador

Dye-sensitized solar cell using natural dyes from Ecuador 1 st INTERNATIONAL CONGRESS ISEREE 2013 Quito Ecuador November, 2013 Javier C. Ramirez Perez, Ph.D., P.E. Prometheus Research Professor CIBE-ESPOL Dye-sensitized solar cell using natural dyes from Ecuador

More information

Solar Energy (1) Robert Pitz-Paal, DLR Institute of Solar Research

Solar Energy (1) Robert Pitz-Paal, DLR Institute of Solar Research DLR.de Chart 1 Solar Energy (1) Robert Pitz-Paal, DLR Institute of Solar Research DLR.de Chart 2 Outline 1. Why to deploy Solar Energy massively? 2. Photovoltaics Fundamentals 3. Market and Cost Situation

More information