Ytterbium (Yb 3+ ) Host Material class Maximum Excitation T(K) ΔT(K) Reference phonon transition energy (cm -1 )

Size: px
Start display at page:

Download "Ytterbium (Yb 3+ ) Host Material class Maximum Excitation T(K) ΔT(K) Reference phonon transition energy (cm -1 )"

Transcription

1 Table 1. Yb 3+ -doped hosts in which net laser cooling has been observed. T is initial sample temperature, and ΔT is maximum temperature drop of the sample. RT is room temperature. Ytterbium (Yb 3+ ) ZBLANP Fluoride glass 506 / 2 F 7/2 2 F 5/2 RT 0.3 Epstein et al Mungan et al. 1997a Luo et al Gosnell et al RT 92 Thiede et al Mungan et al. 1997b ZBLAN Fluoride glass F 7/2 2 F 5/2 RT 0.33 Murtagh et al RT 3 Seletskiy et al RT 3.7 Rayner et al. 2001a RT 6 Heeg et al RT 13 Rayner et al. 2001b RT 48 Edwards et al BIG Fluoride glass ABCYS Fluoride glass CNBZn Fluoro-chloride glass KGd(WO 4 ) 2 Oxide crystal KY(WO 4 ) 2 Oxide crystal YAG Oxide crystal 630 Y 2 SiO 5 Oxide crystal BaY 2 F 8 Fluoride crystal F 7/2 2 F Fernandez et al F 7/2 2 F 5/2 RT 0.13 Guiheen et al F 7/2 2 F 5/2 Fernandez et al F 7/2 2 F 5/2 RT Bowman et al F 7/2 2 F 5/2 RT Mungan et al F 7/2 2 F 5/2 RT 8.9 Fernandez et al RT 8.8 Soares de Lima Filho et al F 7/2 2 F 5/2 RT 1 Epstein et al F 7/2 2 F 5/2 RT 4 Bigotta et al. 2006a,b YLF Fluoride crystal 450 KPb 2 Cl 5 Chloride crystal F 7/2 2 F 5/2 RT 6.3 Bigotta et al RT 69 Seletskiy et al RT 143 Seletskiy et al RT 150 Seletskiy et al RT 179 Melgaard et al RT 184 Melgaard et al F 7/2 2 F 5/ Fernandez et al Mendioroz et al. 2002

2 Table 2. Tm 3+ -doped hosts in which net laser cooling has been observed. T is initial sample temperature, and ΔT is maximum temperature drop of the sample. RT is room temperature. Thulium (Tm 3+ ) ZBLAN Fluoride glass 580 BaY 2 F 8 Fluoride crystal H 6 3 F 4 RT 1.2 Hoyt et al RT 19 Hoyt et al. 2003a RT 24 Hoyt et al. 2003b 3 H 6 3 F 4 RT 1.5 Patterson et al RT 3.2 Patterson et al Table 3. Er 3+ -doped hosts in which net laser cooling has been observed. T is initial sample temperature, and ΔT is maximum temperature drop of the sample. RT is room temperature. Erbium (Er 3+ ) CNBZn Fluoro-chloride - glass KPb 2 Cl 5 Chloride crystal I 15/2 4 I 9/2 2 H 9/2 RT 0.5 Fernandez et al I 15/2 4 I 9/2 2 H 9/2 RT 0.7 Fernandez et al I 15/2 4 I 13/2 RT 0.12 Condon et al Cs 2 NaYCl 6 Cubic elpasolite crystal 4 I 15/2 4 I 9/2 RT 6 Hasan et al Since the first experimental demonstration of cooling of solids in 1995 (Epstein et al. 1995), laser-induced cooling has been observed in a wide variety of glasses and crystals doped with the ytterbium (Yb 3+ ), thulium (Tm 3+ ), and in erbium (Er 3+ ) ions. The first observation of cryogenic operation was reported by Prof. Sheik-Bahae s research team at the University of New Mexico in April 2009 (Seletskiy et al. 2009). A temperature drop of ~150 K was demonstrated in a 0.2 cm 3 ytterbium doped fluoride crystal (Yb 3+ :LiYF 4 ) at a cooling power of 110 mw. In 2013, optical refrigeration with record temperature 119K, that is below the National Institute of Standards and Technology (NIST) defined cryogenic temperature of

3 123K, was achieved with Yb 3+ :LiYF 4 (Melgaard et al. 2013). In 2014, laser cooling of a 10% Yb:YLF sample to 114K ± 1K was announced (Melgaard et al. 2014). A temperature drop of 8.8 K from the chamber temperature was observed in a Yb 3+ :YAG crystal placed air in 2013 (Soares de Lima Filho et al. 2013). Today s record temperature, 91K, has been achieved in a Yb 3+ :YLF sample (Melgaard et al. 2014, 2015). Progress in laser cooling of rare-earth doped glasses and crystals is illustrated in Fig.1. It has been analysed in (Nemova 2016). Figure 1. Progress in laser cooling of rare- earth doped glasses and crystals. T is the temperature drop starting from room temperature. References Bigotta S., Parisi D., Bonelli L., Toncelli A., Tonelli M., Di Lieto A. (2006a) Spectroscopic and laser cooling results on Yb 3+ -doped BaY 2 F 8 single crystal. J. Appl. Phys. 100, 13109:1-7. Bigotta S., Parisi D., Bonelli L., Toncelli A., Di Lieto A., Tonelli M. (2006b) Laser cooling of Yb 3+ -doped BaY 2 F 8 single crystal. Opt. Mater. 28, Bigotta S., Di Lieto A., Parisi D., Bonelli L., Toncelli A., Tonelli M. (2007) Single fluoride crystals as materials for laser cooling application. Proc. SPIE 6461, 64610E E. Bowman S. R. & Mungan C. E. (2000) New materials for optical cooling. Appl. Phys. B 71, Condon N. J., Bowman S. R., O`Connor P. O., Quimby R. S., Mungan C. E. (2009) Optical cooling in Er 3+ :KPb 2 Cl 5.Opt. Express 17,

4 Edwards B. C., Anderson J. E., Epstein R. I., Mills G. L. & Mord A. J. (1999) Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration. J. Appl. Phys. 86, Epstein R. I., Buchwald M. I., Edwards B. C., Gosnell T. R., Mungan C. E. (1995) Observation of laser- induced fluorescent cooling of a solid. Nature (London) 377, Epstein R. I., Brown J.J., Edwards B.C., Gibbs A. (2001) Measurements of optical refrigeration in ytterbium-doped crystals. J. Appl. Phys. 90, Fernandez J., Mendioroz A., Garcia-Adeva A. J., Balda R., Adam J. L. (2000) Anti-Stokes laser-induced internal cooling of Yb 3+ -doped glasses. Phys.Rev. B 62, Fernandez J., Mendioroz A., Balda R., Voda M., Al-Salen M., Garcia-Adeva A. J., Adam J. L., Lucas J. (2002) Origin of laser-induced internal cooling of Yb 3+ -doped systems. Proc. SPIE 4645, Fernandez J., Garcia-Adeva A. J., Balda R. (2006) Anti-Stokes laser cooling in bulk erbiumdoped materials. Phys. Rev. Lett. 97, : 1-4. Gosnell T. R. (1999) Laser cooling of a solid by 65 K starting from room temperature. Opt. Lett. 24, Hasan Z., Qiu Z, Lynch J. (2011) Laser Cooling in Materials with High Concentration of Erbium. Proc. of SPIE 7951, 79510E:1-7. Hoyt C. W., Sheik-Bahae M., Epstein R. I., Edwards B. C., Anderson J. E. (2000) Observation of anti-stokes fluorescence cooling in Thulium-doped glass. Phys. Rev. Lett. 85, Hoyt C. W., Hasselbeck M. P., Sheik-Bahae M., Epstein R. I., Greenfield S., Thiede J., Distel J., Valencia J. (2003a) Advances in laser cooling of thulium-doped glass. J. Opt. Soc. Am. B 20, Hoyt C. W. (2003b) Laser cooling in thulium-doped solids. PhD Thesis University of New Mexico. Luo X., Eisaman M. D., Gosnell T. R. (1998) Laser cooling of a solid by 21 K starting from room temperature. Opt. Lett. 23, Melgaard S. D., Seletskiy D. V., Di Lieto A., Tonelli M., Sheik-Bahae M. (2013) Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature, Opt. Lett. 38, Melgaard S. D., Seletskiy D. V., Polyak V., Asmerom Y., Sheik-Bahae M. (2014) Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K, Opt. Express 22, Melgaard, S. D., Seletskiy, D.V., Albrecht, A., Sheik-Bahae, M. (2015). First solid-state cooling below 100K, SPIE Newsroom. doi: / Mendioroz A., Fernandez J., Voda M., Al-Saleh M., Balda R., Garcia-Adeva A. (2002) Anti- Stokes laser cooling in Yb 3+ -doped KPB 2 Cl 5 crystal. Opt. Lett. 27,

5 Mungan C. E., Buchwald M. L., Edwards B. C., Epstein R. I., Gosnell T. R. (1997a) Laser cooling of a solid by 16 K starting from room-temperature. Phys. Rev. Lett. 78, Mungan C. E., Buchwald M. L., Edwards B. C., Epstein R. I., Gosnell T. R. (1997b) Internal laser cooling of Yb 3+ -doped glass measured between 100 and 300 K. Appl. Phys. Lett. 71, Mungan C. E., Bowman S. R., Gosnell T. R. (2000) Solid-state laser cooling of ytterbiumdoped tungstate crystals, Int. Conf. on Lasers, Albuquerque, NM, USA Murtagh M. T., Sigel G. H., Fajardo J. C., Epstein R. I. (1999) Laser induced fluorescent cooling of rare-earth-doped fluoride glasses. J. Non-Cryst. Solids 253, Nemova G. Laser cooling in rare earth doped glasses and crystals, in Laser cooling: fundamental properties and applications, edited by Galina Nemova, Pan Stanford Publishing Pte. Ltd., Singapore, Patterson W., Hasselbeck M. P., Sheik-Bahae M., Bigotta S., Parisi D., Toncelli J., Tonelli M., Epstein R. I., Thiede J. (2004) Observation of optical refrigeration in Tm 3+ :BaY 2 F 8. Lasers and Electro-Optics (CLEO), San Francisco, CA, USA. Patterson W., Bigotta S., Sheik-Bahae M., Parisi D., Tonelli M., Epstein R. I. (2008) Anti- Stokes luminescence cooling of Tm 3+ doped BaY 2 F 8. Opt. Express 16, Rayner A., Hirsch M., Heckenberg N. R., Rubinsztein-Dunlop H. (2001a) Distributed laser refrigeration. Appl. Opt. 40, Seletskiy D., Hasselbeck M. P., Sheik-Bahae M., Epstein R. I. (2007) Laser cooling using cavity enhanced pump absorption. Proc. SPIE 6461, Seletskiy D., Hasselbeck M. P., Sheik-Bahae M., Epstein R. I., Bigotta S., Tonelli M. (2008) Cooling of Yb:YLF using cavity enhanced resonant absorption. Proc. SPIE 6907, B B9079. Seletskiy D. V., Melgaard S. D., Bigotta S., Di Lieto A., Tonelli M., Epstein R. I., Sheik- Bahae M. (2009) Demonstration of an optical cryocooler. CLEO/IQEC 2009 Postdeadline submission. Seletskiy D. V., Melgaard S. D., Bigotta S., Di Lieto A., Tonelli M., Sheik-Bahae M. (2010) Laser cooling of solids to cryogenic temperatures. Nature Photon. 4, Soares de Lima Filho E., Nemova G., Loranger S., Kashyap R. (2013) Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure. Opt. Express 21,