Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information Performance Enhancement of Silicon Alloy-based Anodes using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries Hwi Soo Yang, Sang-Hyung Kim, Aravindaraj G Kannan, Seon Kyung Kim, Cheolho Park, and Dong-Won Kim *, Department of Chemical Engineering, Hanyang University, Seoul , Korea Next-G Institute of Technology, Iljin Electric Co. Ltd, Gyeonggi-do 425-, Korea * address: dongwonkim@hanyang.ac.kr, Tel.: S-1

2 Table S1. Comparison of electrochemical performance of silicon and silicon alloy electrodes employing various binders. Active material Si content in alloy / active material in electrode Binder Initial capacity / coulombic efficiency Cycling performance / retention Ref. Silicon alloy (Si, Al-Cu-Fe) 5 at% / 86.6 wt% PAI cured at C 1177 mah g -1 / 85.6 % 927 mah g -1 after cycle at.2 C / 86 % This work Silicon alloy (Si, Si-Ti-Ni) 65 at% / 72 wt% PAI cured at 35 C 7 mah g -1 / 76 % 56 mah g -1 after cycle at.5 C / 8 % 1 Silicon particle 84 wt% PAI cured at 1 C 2674 mah g -1 / 69 % 17 mah g -1 after cycles at.1 C / 85 % 2 Silicon alloy (Si, Al-Cu-Fe) 5 at% / 86.6 wt% PAI cured at C 917 mah g -1 / 8.5 % 836 mah g -1 after 5 cycles at.1 C / 91 % 3 Nitridated silicon alloy (Si, Si-Ti-Ni) 66 at% / 88 wt% CMC 849 mah g -1 / 92.7 % 634 mah g -1 after cycle at 1. C/ 75 % 4 Silicon microparticle 5 wt% Polyimide cured at C 77 mah g -1 / 81 % ma g 1 after cycles / 76 % 5 Silicon alloy (Si-Ni) 32.4 at% / 8 wt% PVdF 118 mah g -1 / 8 % 8 mah g -1 after 25 cycles / 67 % 6 carbon-coated Si Cu 3 Si 15 wt% / 7 wt% PVdF 19 mah g -1 / 83 % 85 mah g -1 after 3 cycles at ma g -1 / 83 % 7 Silicon nanoparticle 63 wt% PAA 36 mah g -1 / 9 % 25 mah g -1 after cycles at.5 C / 94 % 8 Silicon nanoparticle 6 wt% Polyimide 2392 mah g -1 / 71.2 % 1313 mah g -1 after 3 cycles at 1.2 A g - 1 / 69 % 9 Silicon nanoparticle 6 wt% PAA-CMC 29 mah g -1 / 81 % 16 mah g -1 after cycles at 3 ma g -1 / 57 % S-2

3 (a) amide imide (b) amide imide (c) amide imide (d) amide imide Figure S1. N 1s XPS spectra of PAI binders thermally treated at different temperatures. (a) untreated, (b) o C, (c) 3 o C, and (d) o C. S-3

4 (a) C=O (amide) C=O (imide) π-π* transition (b) C=O (amide) C=O (imide) π-π* transition (c) C=O (amide) C=O (imide) π-π* transition (d) C=O (amide) C=O (imide) π-π* transition Figure S2. O 1s XPS spectra of PAI binders thermally treated at different temperatures. (a) untreated, (b) o C, (c) 3 o C, and (d) o C. S-4

5 Load (N) 8 6 Untreated o C 3 o C o C Extension (mm) Figure S3. Load-extension curves of PAI films thermally treated at different temperatures. S-5

6 Discharge capacity (mag g -1 ) (a) Cycle number PAI ( o C) PAA PVdF Discharge capacity (mah g -1 ) (b) Untreated o C 3 o C o C 6 8 Cycle number Figure S4. Cycling performance of (a) silicon alloy electrodes with various binders at.2c rate, and (b) silicon alloy electrodes with thermally treated PAI at different temperatures at 2.C rate. S-6

7 FV (N) FH (N) (a) horizontal force vertical force depth 3 FV (N) FH (N) (b) horizontal force vertical force depth Depth ( m) Depth ( m) Time (s) Time (s) FV (N) FH (N) (c) horizontal force vertical force depth 3 FV (N) FH (N) (d) horizontal force vertical force depth Depth ( m) Depth ( m) Time (s) Time (s) Figure S5. Peeling test profiles of SAICAS tests for (a) silicon alloy electrode without thermal treatment, and silicon alloy electrodes thermally treated at (b) o C (c) 3 o C and (d) o C (F H : horizontal force, F V : vertical force, D: depth distance). S-7

8 References (1) Suh, S.-S.; Yoon, W. Y.; Lee, C.-G.; Kwon, S.-U.; Kim, J.-H.; Matulevich, Y.; Kim, Y.-U.; Park, Y.; Jeong, C.-U.; Chan, Y.-Y.; Kang, S.-H. Implementation and Characterization of Silicon Anode with Metal Alloy Inactive Matrix for Lithium-Ion Secondary Batteries. J. Electrochem. Soc. 13, 16, A751 A755. (2) Choi, N.-S.; Yew, K. H.; Choi, W.-U.; Kim, S.-S. Enhanced Electrochemical Properties of a Si- Based Anode using an Electrochemically Active Polyamide Imide Binder. J. Power Sources 8, 177, (3) Yu, B.-C.; Kim, H.-Y.; Park, C. h.; Kim, S. K.; Sung, J. W.; Sohn, H.-J. Si Nano-crystallites Embedded in Cu-Al-Fe Matrix as an Anode for Li Secondary Batteries. Electrochim. Acta 14, 13, (4) Song, T.; Kil, K. C.; Jeon, Y.; Lee, S.; Shin, W. C.; Chung, B.; Kwon, K.; Paik, U. Nitridated Si Ti Ni Alloy as an Anode for Li Rechargeable Batteries. J. Power Sources 14, 253, (5) Kim, J. S.; Choi, W.; Cho, K. Y.; Byun, D.; Lim, J.; Lee, J. K. Effect of Polyimide Binder on Electrochemical Characteristics of Surface-Modified Silicon Anode for Lithium Ion Batteries. J. Power Sources 13, 244, (6) Wang, G. X.; Sun, L.; Bradhurst, D. H.; Zhong, S.; Dou, S. X.; Liu, H. K. Innovative Nanosize Lithium Storage Alloys with Silica as Active Centre. J. Power Sources, 88, (7) Yoon, S.; Lee, S.-I.; Kim, H.; Sohn, H.-J. Enhancement of Capacity of Carbon-coated Si Cu 3 Si Composite Anode using Metal Organic Compound for Lithium-Ion Batteries. J. Power Sources 6, 161, (8) Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Appl. Mater. Interfaces, 2, S-8

9 (9) Choi, J.; Kim, K.; Jeong, J.; Cho, K. Y.; Ryou, M.-H.; Lee, Y. M. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 15, 7, () Koo, B.; Kim, H.; Cho, Y.; Lee, K. T.; Choi, N.-S.; Cho, J. A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angew. Chem. Int. Ed. 12, 51, S-9