One-pot selective conversion of furfural into 1,5-pentanediol

Size: px
Start display at page:

Download "One-pot selective conversion of furfural into 1,5-pentanediol"

Transcription

1 Supplementry Informtion for One-pot seletive onversion of furfurl into 1,5-pentneiol over P -e Ir-ReO x /SiO 2 ifuntionl tlyst Sio Liu, Ysushi Am, Mszumi Tmur, Yoshino Nkgw* n Keiihi Tomishige* Deprtment of Applie Chemistry, Shool of Engineering, Tohoku University, , Ao, Armki, Ao-ku, Seni , Jpn * Corresponing uthors: Keiihi Tomishige n Yoshino Nkgw Shool of Engineering, Tohoku University, , Ao, Armki, Ao-ku, Seni, , Jpn E-mil: tomi@ere.he.tohoku..jp yoshino@ere.he.tohoku..jp

2 Tle S1. Conversion of furfurl over P(0.66)-Ir-ReO x /SiO 2 t ifferent furfurl onentrtion Entry Conentrtion Conversion Yiel / % / % / % 1,5-PeD 1,4-PeD 1,2-PeD 1-PeOH 2-PeOH THFA FFA 2-MTHF Others 1 5 > > > > PeD: pentneiol; PeOH: pentnol; THFA: tetrhyrofurfuryl lohol; FFA: furfuryl lohol; 2-MTHF: 2-methyltetrhyrofurn. Pretretment: 473 K, H 2 (8 MP), 1 h. Retion onitions: Furfurl (1 g), H 2 O (1-19 g), P(0.66)-Ir-ReO x /SiO 2 (100 mg), initil H 2 (6 MP), T 1 : 313 K, time 1: 2 h, T 2 : 393 K, time 2: 24 h, 500 rpm. S1

3 Intensity /.u Thet / egree Fig. S1. XRD ptterns of P(0.66) Ir ReO x /SiO 2 fter reution t 473 K for 1 h () n fter the fourth use (). S2

4 22.7 (I) μt f e E / ev (II) 10 White line intensity /.u ReO 3 Re 2 O 7 ReO 2 Re power, Vlene of Re Fig. S2. Results of Re L 3 -ege XANES nlysis of Ir-ReO x /SiO 2 n P(1.8) Ir ReO x /SiO 2. (I) Re L 3 -ege XANES spetr, (II) Reltion etween white line re n vlene of Re. () Re power, () Ir ReO x /SiO 2 fter the tlyti use, () P(1.8) Ir ReO x /SiO 2 fter the tlyti use n () ReO 2, (e) ReO 3 n (f) Re 2 O 7. The metho of XANES nlysis The first pek in the L 3 -ege XANES is lle s white line, n the white line re in the L 3 -ege XANES is known to e n informtive inition of the eletroni stte. The lrger white line intensity is ue to greter eletron vny in -oritl. As reporte previously, reltive eletron efiieny n ioni vlene n e etermine on the sis of the white line intensity. S1-S4 Regring the referene ompouns, ioni vlene of Re speies h lmost liner reltion to the white line intensity. Therefore, the verge vlue of Re speies n e estimte y the exmining the white line re in the XANES spetr. S5, S6 S3

5 Tle S2. Summry of hrteriztion results of the tlysts Ctlyst -1 Metl mount / mmol g t Vlene of Re TPR CO sorption -1-1 P Ir Re from XANES H 2 onsumption / mmol g t Vlene of Re / mmol g t Ir-ReO x /SiO P-ReO x /SiO P(0.09)-Ir-ReO x /SiO P(0.22)-Ir-ReO x /SiO P(0.44)-Ir-ReO x /SiO P(0.66)-Ir-ReO x /SiO P(0.89)-Ir-ReO x /SiO P(1.8)-Ir-ReO x /SiO P(0.66)/SiO [(mount of H 2 onsume, mol)-2 (Ir loing mount, mol)]/(re loing mount, mol). S4

6 290 (I) (II) F(r) (III) Distne / 0.1 nm 95 Fig. S3. Results of Ir L 3 -ege EXAFS nlysis of Ir ReO x /SiO 2 n P(1.8) Ir ReO x /SiO 2 fter the tlyti use. (I) k 3 -Weighte EXAFS osilltions. (II) Fourier trnsform of k 3 -weighte Ir L 3 -ege EXAFS, FT rnge: nm 1. (III) Fourier filtere EXAFS t (soli line) n lulte t (otte line), Fourier filtering rnge: nm. () Ir power, () IrO 2, () Ir ReO x /SiO 2 fter hyrogenolysis of glyerol S7 n () P(1.8) Ir ReO x /SiO 2 fter reution. S5

7 180 (I) (II) F(r) Distne / 0.1 nm 110 (III) Fig. S4. Results of Re L 3 -ege EXAFS nlysis of Ir ReO x /SiO 2 n P(1.8) Ir ReO x /SiO 2 fter the tlyti use. (I) k 3 -Weighte EXAFS osilltions. (II) Fourier trnsform of k 3 -weighte Re L 3 -ege EXAFS, FT rnge: nm 1. (III) Fourier filtere EXAFS t (soli line) n lulte t (otte line), Fourier filtering rnge: nm. () Re power, () NH 4 ReO 4, () Ir ReO x /SiO 2 fter hyrogenolysis of glyerol [S7] n () P(1.8) Ir ReO x /SiO 2 fter reution. S6

8 260 (I) (II) F(r) Distne / 0.1 nm 145 (III) Fig. S5. Results of P K-ege EXAFS nlysis of P(1.8) Ir ReO x /SiO 2 fter the tlyti use. (I) k 3 -Weighte EXAFS osilltions. (II) Fourier trnsform of k 3 -weighte P K-ege EXAFS, FT rnge: nm 1. (III) Fourier filtere EXAFS t (soli line) n lulte t (otte line), Fourier filtering rnge: nm. () P foil, () PO, () P(1.8) Ir ReO x /SiO 2 fter reution. S7

9 180 (I) (II) 150 F(r) (III) Distne / 0.1 nm Fig. S6. Results of Re L 3 -ege EXAFS nlysis of P(1.8) Ir ReO x /SiO 2 fter the tlyti use without Re-P shell. (I) k 3 -Weighte EXAFS osilltions. (II) Fourier trnsform of k 3 -weighte Re L 3 -ege EXAFS, FT rnge: nm 1. (III) Fourier filtere EXAFS t (soli line) n lulte t (otte line), Fourier filtering rnge: nm. () Re power, () NH 4 ReO 4 n () P(1.8) Ir ReO x /SiO 2 fter the reution. Tle S3. Curve fitting results of Re L 3 -ege EXAFS of P (1.77)-Ir-ReO x /SiO 2 without Re-P shell Ctlyst Shells CN R / 10-1 nm σ / 10-1 nm ΔE 0 / ev R f / % e P(1.8)-Ir-ReO x /SiO 2 Re-O Re-Ir (or -Re) NH 4 ReO 4 Re=O Coorintion numer. Bon istne. Deye-Wller ftor. Differene in the origin of photoeletron energy etween the referene n the smple. e Resiul ftor. Fourier filtering rnge: nm. S8

10 Referene S1 T. Kuot, K. Askur, N. Ihikuni n Y. Iwsw, Chem. Phys. Lett., 1996, 256, S2 T. Kuot, K. Askur n Y. Iwsw, Ctl. Lett., 1997, 46, S3 A.N. Mnsour, J.W. Cook Jr. n D.E. Syers, J. Phys. Chem., 1984, 88, S4 J.A. Horsely, J. Chem. Phys., 1982, 76, S5 M. Rønning, T. Gjervn, R. Prestivik, D.G. Niholson n A. Holmen, J. Ctl., 2001, 204, S6 Y. Ishi, T. Eshi, S. Ito, T. Kuot, K. Kunimori n K. Tomishige, Chem. Commn., 2009, S7 Y. Am, Y. Shinmi, S. Koso, T. Kuot, Y. Nkgw n K. Tomishige, Appl. Ctl. B: Environ., 2011, 105, S9