エネルギーと無機系材料 2 省エネルギー環境保全デバイスにかかわる先端炭素材料

Size: px
Start display at page:

Download "エネルギーと無機系材料 2 省エネルギー環境保全デバイスにかかわる先端炭素材料"

Transcription

1 平成 25 年度 エネルギー物質工学演習 (M コース 2 年生後期 ) 日時 : 金曜日 3 時限目 (13:00~14:30) 場所 : ウエスト 2 号館 7 階エネ科ゼミ室 3(W2-703) など エネルギーと無機系材料 2 省エネルギー環境保全デバイスにかかわる先端炭素材料 尹聖昊 ( ユンソンホ ) 宮脇仁 九州大学先導物質化学研究所

2 Key Material for Energy & Environmental Devices Carbon is an Indispensable Material for Energy related Devices Best Structure for Best Performance Best Selection Best Selection Scientific Cycle - Structural Understanding - Structure Preparation Carbon - Working Mechanism Molecular Level Electrochemical Catalytic / Kinetics Molecular / Heat Transfer

3 Raw materials 炭素材料原料 Coal tar Polymer: Thermosetting and thermoplastic Heavy oil and residues Biomass Precursor Pitches: CF, ACF, MCMB, Ball type AC, Binder pitch, Additives Polymer: AC, ACF, Glassy carbon, CF Cokes: Electrode, Capacitor, Battery anode, AC, Additives Char: AC, Additives, Reducer for Solar cell

4 World Energy Demand Estimate Demand and consumption of fossil fuels still increase to Effective utilization of fossil fuels and their residues (side products) of fossil fuels is a most important task to solve. Carbon materials of energy saving and storage, and environmental protections is key materials for the Energy and Environmental Industries. Nanotechnology is not an aim but a useful concept and method to help this new carbons. Understanding from the raw materials and their pretreatment technique is necessary for the successful development of new carbons. There is an important job to be done. And everybody expects that somebody would do it. But Nobody did it. Source: IEA, World Energy Outlook 2006

5 炭素材の製造

6 Phase of reaction Structural units Applications Heat treatment Temperature ( o C) Vapor Solid Liquid Molecular Structures Cluster Microdomain Domain Pore From vapor phases From solid and liquid phases 탄소화 탄화 Radical Pyrolysis Carbon materials Organic materials Crosslinking Polycondensation Carbonaceous materials Carbon Materials Aromatization Coking Organic materials Nucleation of cluster La increasing Lc increasing Microdomains raw materials Partial merger of Microdomains Shrinkage or metamorphosis of microdomains Nucleation of domain by merger of microdomains Shrinkage or metamorphosis of domains Nucleation of micropores Decreasing microspores Pyro- Carbons (Coating C/C etc) Fibrous carbons DLC Glassy or hard carbons Activated carbons Needle coke Carbon fiber (HT) 2000 흑연화 3000 Graphites Lc(112) increasing HOPG Glassy carbons Electrode Li battery Carbon fiber (HM) C/C

7 人造カーボンの構造の由来

8 PAN 系炭素繊維の構造

9 単位構造と構造の制御 Aromatic planar molecule fiber axis spinning Lc(002) Stacking unit of planar molecules (Molecular assemble unit) Closely packed microdomains in mesophase pitch Deformed micro-domain Aligned micro-domains in the mesophase pitch fiber Graphitic unit Micro-domain (Quasi-aligned molecular assemble unit) Heat Treatment Pleat unit Domain Pitch fiber Graphitized fiber IAMS, Kyushu University Axial nano-scale microstructure in the graphitized fiber inherited from liquid crystal mesophase pitch Carbon, 34, (1996) S. H. Yoon, Y. Korai, K.Yokogawa, S. Fukuyama, M. Yoshimura, I. Mochida

10 構造概念からの炭素材

11 Application of carbon materials Electric and Heat Conductions Conductor and Semi-conductor Energy Storage Battery anode Super capacitor Gas storage Environmental Protection Activated surface Mechanical Reinforcement High Temperature Materials

12 Applications of Carbons Wastewater treatment Organic reaction Nano reactor Solar cell IT Environmental Catalyst Support Gas storage Memory Ion storage Energy CVD/synthesis Nano-pore Electric salination FED Display Field emission Arc/Laser ablation ITO alternative Fibril, biocompatibility Nano-fibril Electron spin transportation Dielectric Nano-robot Bio Nano-Eng. Electric Devices Package Antistatic Etc. AFM/STM EMS Bio-chip DDS Nano-lithography FET TMR

13 Characteristics of carbons Thermal stability High thermal and electric conductivities SWNT, Diamond : 4000 W/mK, K-11 carbon fiber: 1100 W/mK Small heat expansion High thermal shock properties High chemical stability Abrasion and lubricant properties High mechanical properties

14 Thermal characteristics of carbons

15 Bonding Hybridization Allotropes Derived and Defective Forms SP 3 Cubic diamond Diamond-like Carbon Polycrystalline Graphite Pyrocarbons SP 2 Hexagonal graphite Carbon Black Cokes and Activated Carbons Carbon Fibers SP 2+ rehybridization Fullerene Bucky Onions Toroidal Structures Acetylene Blacks Nanotubes SP 1 Carbyne Ref.) Bourrat, X. Structure in Carbons and Carbon Artifacts. In: Sciences of Carbon Materials. Marsh, H.; Rodriguez-Reinoso, F., Eds., Universidad de Alicante, pp1-97. Carbon Allotropes

16

17

18 Molecular structures of graphite

19

20

21 Conventional Fossil Fuels Petroleum Coal Natural Gas Exploration and Production, Refining of Heavy Fraction to Very Clean Fuel Clean Coal Technologies Efficient Combustion Gasification Liquefaction Transportation LNG or Pipe Line GTL: Small Resources Price and Cost : Ultimate Recoverable Quantity

22 From fossil fuel to functional carbons Carbonaceous resources Side products Advanced Carbon Materials for Energy Saving, Storing, And Environmental Protections and Improvements Effective conversion and utilization of fossil fuels and their residues Petroleum Heavy residues Energy Saving Energy Storing Environmental Protections Natural Gas C10 + Catalyst Fuel Cell Battery Li-ion battery Water Purification Syngas Separator Bipolar Plate Na-S battery Air battery Water conversion NO 3-, PO 4-3 removal Coal Coke COG Tar Advanced Generation Structural Materials For IGCC, IGFC Structural Materials For Atomic Reactor Light Weight Super capacitor EDLC for EV, FV Hydrogen H-storing Bombe Methane Atmosphere AC, ACF for DeSOx, DeNOx, devocs AC, ACF for Sick-house gases CO 2 separation & Concentration Biomass Char Carbon Fibers Synthetic Carbon Methane storage

23 ピッチ系高性能炭素繊維 メゾフェーズピッチ 紡糸不融化炭化 黒鉛化 高弾性 高引張強度 高熱 電気伝導度 問題点 : 低圧縮強度 > 複合材料使用制限 原因 : ドメイン ( プリット構造 ) の大きさ 均一さ Pleat 構造 > 均一 縮小 > 圧縮強度向上

24 Tensile strength (GPa) Classification of Carbon Fiber T700S T300J 4.0 Granoc XN series LU H T T300 I M T400H M30 M40 T1000G T800H M35J M40J M46J M50J HM M46 M50 M60J Granoc YS series UHM Ultra High Modulus Type(UHM) Young s Modulus > 600GPa Tensile Strength > 2500MPa High Modulus Type(HM) Young s Modulus :350~600GPa Tensile Strength > 2500MPa Medium Modulus Type(IM) Young s Modulus :280~350GPa Tensile Strength > 3500MPa Standard Modulus Type(HT) Young s Modulus :200~280GPa Tensile Strength > 2500MPa Kureha CFs Young s Modulus (GPa) Low Modulus Type(LM) Young s Modulus < 200GPa Tensile Strength < 3500MPa

25 PAN 系炭素繊維メーカー製造能力の推移

26 Pitch 系炭素繊維メーカー製造能力 Company T/Y Type Precursor Pitch Kureha 1450 Short Isotropic Osaka Gas Chemical 600 Short Isotropic Mitsubishi Chemical 1000 Long Mesophase Japan Graphite Fiber 180 Long Mesophase CYTEC 230 Long Mesophase Total 3460 * 2010, (From HP Information, China: 200T/Y, Isotropic)

27

28 28 CFs for Construction

29 Windmill Wind power generation which has become popular recently is expected to require bigger and bigger blades to have higher and higher output capacity for each unit. In order to support big size blades, use of CFRP becomes vitally necessary. And as the material for high speed rotating body for fly wheels which are attracting public attention as a technology to store energy effectively based on theory of top spinning, use of CFRP is becoming popular.

30

31

32

33

34 Research background : Battery Road

35

36 Small fuel cells

37 37 Semi-conductors

38

39 What is activated carbon? CO 2 CO 2 CO 2 CO 2 CO 2 C C C C C C 2CO C 2CO 2CO 2CO Carbon materials Activation reagents Air, CO 2, Steam KOH (NaOH), ZnCl 2

40

41

42

43

44 Characterization of ACF purification NO NO NO 2 NO 2 (SPM) Hazardous chemicals Odor NH 3 SO 2 Natural ventilation ACF Room temperature, ozonizer is no need, no light irradiation, compact design

45

46

47

48

49

50

51

52

53 Report 1. 先端炭素材が省エネルギー 環境保全デバイスの Key マテリアルになる理由を分子構造 物性の側面から自由に記述せよ 提出期限 : 次の授業時間まで学科事務室の上村さんに提出すること Word Processor を使わず 作成すること A 4 1 枚以内で作成すること 授業科目 日時と講義者 (Yoon 教授 ) を明記すること