LIST OF TABLES Table Physical properties of synthesised Lithium, Sodium and Potassium Vanadates Table4.5.1 Textural properties of synthesised Po

Size: px
Start display at page:

Download "LIST OF TABLES Table Physical properties of synthesised Lithium, Sodium and Potassium Vanadates Table4.5.1 Textural properties of synthesised Po"

Transcription

1 LIST OF TABLES Table Physical properties of synthesised Lithium, Sodium and Potassium Vanadates Table4.5.1 Textural properties of synthesised Potassium Vanadates Table Langmuir sorption parameters for Co(II) ion removal using the ion-exchangers LiVn, NaVn and KVn Table Freundlich sorption parameters for Co(II) ion removal using ion-exchanger LiVn, NaVn and KVn Table Dubinin-Radushkevich (D-R) sorption parameters for Co(II) ion removal using LiVn, NaVn and KVn Table Physical properties of synthesised Tin, Lead and Bismuth Vanadates Table Textural properties of synthesised Tin, Lead and Bismuth Vanadates Table Apparent kinetic values for the photocatalytic degradation of Alizarin red S using absence of light (photolysis), 254nm and 365nm. Table Apparent kinetic values for the photocatalytic degradation of Alizarin red S using Tin, Lead and Bismuth Vanadates Table Physical properties of synthesised Zinc, Cadmium and Mercury Vanadates Table 6.5.1Textural properties of Zn(II), Cd(II) and Hg(II) vanadates Table Apparent kinetic values for the photocatalytic degradation of Malachite Green using absence of light (photolysis), 254nm and 365nm. Table Apparent kinetic values for the photo catalytic degradation of Malachite Green using Zinc, Cadmium, Mercury Vanadates Table Physical properties of synthesized Cerium, Uranium and Thorium Vanadates Table Textural properties of synthesized Ce(III), U(IV) and Th(IV) Vanadates Table Langmuir sorption parameters for Ni(II) ion removal using Cerium, Uranium and Thorium Vanadates Table Freundlich sorption parameters for Ni(II) ion removal using Cerium, Uranium and Thorium Vanadates Table Dubinin-Radushkevich (D-R) sorption parameters for Ni(II) ion removal using Lithium, Sodium and Potassium Vanadates Table Correlation coefficient (R 2 ) values for Cobalt ion removal using Cerium, Uranium and Thorium Vanadate ion-exchangers xv

2 LIST OF FIGURES Fig. 1.1 Various fields of application of nanotechnology Fig. 1.2 A general sketch of the reaction mechanisms for the formation of the hybrid nanostructures Fig. 1.3 Schematic illustration of the formation of photogenerated charge carriers (hole and electron) upon absorption of ultraviolet (UV) light Fig. 1.4 Applications of TiO 2 photo catalysis Fig Schematic diagram of the photo catalytic reactor Fig XRD pattern of Lithium Vanadate Fig XRD pattern of Sodium Vanadate Fig XRD pattern of Potassium Vanadate Fig FT-IR spectrum of Lithium Vanadate Fig FT-IR spectrum of Sodium Vanadate Fig FT-IR spectrum of Potassium Vanadate Fig Raman spectrum of Lithium Vanadate Fig Raman spectrum of Sodium Vanadate Fig Raman spectrum of Potassium Vanadate Fig a SEM image of Lithium Vanadate Fig b EDX spectrum of Lithium Vanadate Fig a SEM image of Sodium Vanadate Fig b EDX spectrum of Sodium Vanadate Fig a SEM image of Potassium Vanadate Fig b EDX spectrum of Potassium Vanadate Fig a N 2 adsorption desorption isotherms of Potassium vanadates b) & c) pore distribution and histogram image (B.J.H Method) Fig a UV-Visible DRS spectrum b) Band gap energy of Lithium Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Sodium vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Potassium Vanadate Fig PL spectrum of Lithium Vanadate Fig PL spectrum of Sodium Vanadate Fig PL spectrum of Potassium Vanadate Fig Effect of ion-exchanger amount on the % removal of cobalt(ii)ion Fig Effect of ion-exchanger on various concentration of Co(II) solutions xvi

3 Fig a,b&c Langmuir isotherm for Co(II) ion removal at various concentrations using LiVn, NaVn and KVn Fig a,b&c Freundlich isotherm for Co(II) ion removal at various concentrations using LiVn, NaVn and KVn Fig a,b&c Dubinin-Radushkevich (D-R) isotherm for Co(II) ion removal at various concentrations using LiVn, NaVn and KVn Fig XRD pattern of Tin Vanadate Fig XRD pattern of Lead Vanadate Fig XRD pattern of Bismuth Vanadate Fig FT-IR spectrum of Tin Vanadate Fig FT-IR spectrum of Lead Vanadate Fig FT-IR spectrum of Bismuth Vanadate Fig Raman spectrum of Tin Vanadate Fig Raman spectrum of Lead Vanadate Fig Raman spectrum of Bismuth Vanadate Fig a SEM image of Tin Vanadate Fig b EDX spectrum of Tin Vanadate Fig a SEM image of Lead Vanadate Fig b EDX spectrum of Lead Vanadate Fig SEM image of Bismuth Vanadate Fig EDX spectrum of Bismuth Vanadate Fig. 5.5 N 2 adsorption desorption isotherms of Tin, Lead and Bismuth vanadates Fig a UV-Visible DRS spectrum b) Band gap energy of Tin Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Lead Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Bismuth Vanadate Fig PL spectrum of Tin Vanadate Fig PL spectrum of Lead Vanadate Fig PL spectrum of Bismuth Vanadate Fig Effect of photo catalyst dosage on the photodegradation of ARS Fig Effect of photocatalyst on varying of ARS concentrations Fig a Photocatalytic minerlisation of ARS using p-block nano metal vanadates xvii

4 Fig b Photo catalytic degradation rate of ARS at different irradiation and absence of UV-Visible light Fig UV-Visible spectrum of Photo degradation of ARS (ARS = 100 ppm, photo catalyst = 50 mg/100 ml, natural ph, λ = 365 nm) Fig Comparison of PCD efficiency (% ) of synthesized p-block vanadates for ARS Fig Kinetic plot for the degradation of Alizarin red S Tin, Lead and Bismuth vanadates Fig XRD pattern of Zinc Vanadate Fig XRD pattern of Cadmium Vanadate Fig XRD pattern of Mercury Vanadate Fig FT-IR spectrum of Zinc Vanadate Fig FT-IR spectrum of Cadmium Vanadate Fig FT-IR spectrum of Mercury Vanadate Fig Raman spectrum of Zinc Vanadate Fig Raman spectrum of Cadmium Vanadate Fig Raman spectrum of Mercury Vanadate Fig a SEM image of Zinc Vanadate Fig b EDX spectrum of Zinc Vanadate Fig a SEM image of Cadmium Vanadate Fig b EDX spectrum of Cadmium Vanadate Fig a SEM image of Mercury Vanadate Fig b EDX spectrum of Mercury Vanadate Fig TEM image of Zinc Vanadate Fig N 2 adsorption desorption isotherms of Zn(II), Cd(II) and Hg(II) vanadates Fig a UV-Visible DRS spectrum b) Band gap energy of Zinc Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Cadmium Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Mercury Vanadate Fig PL spectra of Zinc Vanadate Fig PL spectra of Cadmium Vanadate Fig PL spectra of Mercury Vanadate Fig Effect of photo catalyst dosage on the photo degradation of MG Fig Effect of photocatalyst on varying of MG concentrations Fig a Photocatalytic minerlisation of MG using d-block nano metal vanadates xviii

5 Fig b photo catalytic degradation rate of MG at different irradiation and absence of UV-Visible light Fig UV-Visible spectrum of Photo degradation of MG (MG = 20 ppm, photo catalyst = 50 mg/100 ml, natural ph, λ = 365 nm) Fig Comparison of PCD efficiency (%) of synthesized d-block vanadates for MG Fig Kinetic plot for the degradation of MG by nano Zinc, Cadmium and Mercury vanadates Fig XRD pattern of Cerium Vanadate Fig XRD pattern of Uranium Vanadate Fig XRD pattern of Thorium Vanadate Fig FT-IR spectrum of Cerium Vanadate Fig FT-IR spectrum of Uranium Vanadate Fig FT-IR spectrum of Thorium Vanadate Fig Raman spectrum of Cerium Vanadate Fig Raman spectrum of Uranium Vanadate Fig Raman spectrum of Thorium Vanadate Fig a SEM image of Cerium Vanadate Fig b EDX spectrum of Cerium Vanadate Fig a SEM image of Uranium Vanadate Fig b EDX spectrum of Uranium Vanadate Fig a SEM image of Thorium Vanadate Fig b EDX spectrum of Thorium Vanadate Fig N 2 adsorption desorption isotherms of Ce(III),U(IV) and Th(IV) vanadates Fig a UV-Visible DRS spectrum b) Band gap energy of Cerium Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Uranium Vanadate Fig a UV-Visible DRS spectrum b) Band gap energy of Potassium Vanadate Fig PL spectrum of Lithium Vanadate Fig PL spectrum of Sodium Vanadate Fig PL spectrum of Potassium Vanadate Fig Effect of ion- exchanger amount on the % removal of nickel(ii) ion Fig Effect of initial nickel(ii) ion concentration Fig a,b&c Langmuir sorption parameters for Ni(II) ion removal using ionexchangers Cerium, Uranium and Thorium Vanadates xix

6 Fig.7.9.2a,b&c Freundlichsorption parameters for Ni(II) ion removal using ion-exchangers Lithium, Sodium and Potassium Vanadates Fig a,b&c Dubinin-Radushkevich (D-R) sorption parameters for Ni(II) ion removal using ion-exchanger of Lithium, Sodium and Potassium Vanadates xx